
A Quadratic Regulator-Based Heuristic for Rapidly Exploring State
Space

Elena Glassman and Russ Tedrake

Abstract— Kinodynamic planning algorithms like Rapidly-
Exploring Randomized Trees (RRTs) hold the promise of
finding feasible trajectories for rich dynamical systems with
complex, nonconvex constraints. In practice, these algorithms
perform very well on configuration space planning, but struggle
to grow efficiently in systems with dynamics or differential
constraints. This is due in part to the fact that the conventional
distance metric, Euclidean distance, does not take into account
system dynamics and constraints when identifying which node
in the existing tree is capable of producing children closest
to a given point in state space. We show that an affine
quadratic regulator (AQR) design can be used to approximate
the exact minimum-time distance pseudometric at a reasonable
computational cost. We demonstrate improved exploration of
the state spaces of the double integrator and simple pendulum
when using this pseudometric within the RRT framework, but
this improvement drops off as systems’ nonlinearity and com-
plexity increase. Future work includes exploring methods for
approximating the exact minimum-time distance pseudometric
that can reason about dynamics with higher-order terms.

I. INTRODUCTION
Kinodynamic motion planning algorithms attempt to find

feasible trajectories for a dynamical system from a start
state to a goal state while respecting constraints on position,
velocity, and/or acceleration. The problem is believed to be
at least PSPACE-hard [1], however a number of random-
ized algorithms have been proposed which can achieve fast
average-time performance for a large variety of problems [2],
[3], [4], [5], [7].

A common theme running through many path-planning
algorithms is some notion of distance in the space in which
trajectories lie. In algorithms that attempt to create roadmaps,
paths are found between neighboring nodes. In the Rapidly
Exploring Random Tree (RRT) algorithm, nodes of a tree are
grown toward randomly selected goals; only the node that is
closest to the randomly selected goal is expanded [4], [5].

The distance function that maps two points to a distance
score can be defined however the user sees fit. It is a
pseudometric, since it does not need to meet the formal
requirements of a metric, such as symmetry. It provides
the user with the opportunity to incorporate his/her prior
knowledge about the problem: he/she defines what makes
two nodes neighbors in a roadmap, or what makes a point
close enough to a goal state for a path to be considered
complete, or to which nodes it is least costly to steer the
system, from some specified initial state (i.e., cost-to-go).

E. Glassman is with the Department of Electrical Engineering and
Computer Science, MIT, Cambridge, MA 02139, USA elg@mit.edu

R. Tedrake is the X Consortium Associate Professor of Electrical
Engineering and Computer Science, MIT, Cambridge, MA 02139, USA
russt@mit.edu

Fig. 1. Illustration of one iteration of growing an RRT, adapted from [8].

1: procedure BUILD RRT(xinit)
2: T .init(xinit);
3: for k = 1 to K do
4: xrand ← RANDOM STATE();
5: EXTEND(T, xrand)
6: end for
7: Return T
8: end procedure
9: procedure EXTEND(T, x)

10: xnear ← NEAREST NEIGHBOR(x, T);
11: if NEW STATE(x, xnear, xnew, unew) then
12: T .add vertex(xnew);
13: T .add edge(xnear, xnew, unew);
14: end if
15: end procedure

Fig. 2. The basic algorithm for constructing RRTs, adapted from [8].

The performance of the RRT, a particularly popular and
simple randomized path-planning algorithm that is currently
one of the most promising methods for planning in phase
space and for solving other problems with differential con-
straints [13], can vary greatly as a function of the definition
of distance [8]. LaValle and Kuffner asserted that an exact,
quickly computable distance pseudometric would address
remaining barriers to more efficiently exploring state space.
The basic RRT algorithm is shown in Fig. 2, and illustrated in
Fig. 1. In this work, the EXTEND function creates multiple
xnew (child) nodes using each of a set of specified actions,
and the child node which is closest to xrand, according to the
NEAREST NEIGHBOR function, is added to the RRT. The
definition of distance has its effect by determining which
node the NEAREST NEIGHBOR function returns for the
RRT to extend.

For our proposed distance function, we use a finite-horizon
affine quadratic regulator (AQR) to calculate optimal cost-

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 5021

to-go functions of linearizations of the plant for multiple
time horizons in order to locally approximate the optimal
distance measure. In Section II, we place this in the con-
text of previously proposed metrics. We elaborate on the
problem formulation in Section III and give a more detailed
explanation of our metric and our method of evaluating it
in Section IV. In Section V, we show RRT trees grown on
four benchmark systems and compare outcomes when using
our distance function to the outcomes obtained when using a
standard distance function. Finally, in Section VI, we discuss
the results and future work.

II. RELEVANT LITERATURE

An ideal distance pseudometric is the optimal cost-to-go
function [10]. Even if an exact pseudometric does not exist
or cannot be computed efficiently, LaValle and Kuffner have
argued that approximations will still dramatically improve
performance. In the process of developing the idea, we found
that LaValle and Kuffner have mentioned the possibility of
using cost-to-go functions from applying optimal control to
linearized systems, as part of a list of many possibilities, in-
cluding Lyapunov functions, fitted spline curves, and steering
methods [6].

There is literature on how to analytically or numerically
solve for the optimal path [11],[12] but the optimal paths
can only be computed for a small class of systems. If
an approximate cost-to-go function meets several specific
conditions, then it is a feasible navigation function. This
function can be greedily descended to reach the goal state
[24]. However, it is hard to find feasible navigation functions
for many nonlinear and/or constrained systems.

Note also that if the cost-to-go function also satisfies the
principle of optimality, it can be referred to as an optimal
cost-to-go function, also known as an optimal value function
in the value iteration and dynamic programming literature.
The metric (in configuration space) induced by the cost of
optimal paths between points, in the context of nonholo-
nomic motion planning, is also called the nonholonomic,
singular, Carnot-Caratheory, or sub-Riemannian metric [14].

Perhaps the most common pseudometric, which is in fact a
metric, is that of Euclidean distance between two state space
points as a function of their coordinates in that space:

dist(x, x′) =
√
α (x1 − x′1)2 + . . .+ ζ (xn − x′n)2 (1)

The scaling factors can be used to encode domain knowledge
about the relative significance of various state components.
This metric works well on holonomic systems, in terms of
coverage of the sampled space, but performs far more poorly
in state space, which will be demonstrated in the section
containing experimental results. It encodes no information
about the constrained relationship between position and
velocity. In the state space of a frictionless one-dimensional
brick (double integrator) shown in Fig. 3, points A and B are
equidistant from point C with respect to Euclidean distance.
Yet, we know that the brick at point A is moving toward
point C, while the second instance of the brick, at point B,

is moving away from point C. Since the distance function
determines which branch will be extended toward C, it makes
intuitive sense to define distance so that A is in fact closer
to C than B.

Fig. 3. Nodes A and B are equidistant to point C with respect to the
Euclidean distance metric. However the children of node B, which has
positive velocity, must be to the right of their parent, and therefore cannot
get closer to C. In this case, Euclidean distance fails to distinguish between
two nodes, one which is clearly the right choice for extending towards C,
and the other which is not.

With a simple energy-based pseudometric, an RRT can
find a very direct path for an underactuated simple pendulum
to ascend to the unstable upright position, wasting very few
tree nodes on spurious paths. The pseudometric is simply
the difference in energy between two states. For energy-
conservative systems in which (1) the goal lies on a set
of connected states with the same energy, (2) the dynamics
along that connected set bring that system to the goal state
passively, and (3) no other states outside of that connected
set have the same energy, this can be a very effective
pseudometric.

In [18], the approximation of the ideal metric was designed
using knowledge of the blimp dynamics and the underlying
Lie group structure. [19] used RRTs to plan dynamic tra-
jectories for helicopters by using cost-to-go functions from
the unconstrained problem to solve for combinations of trim
trajectories (maneuvers/motion primitives) in an environment
with obstacles. The cost-to-go calculation was made even
more tractable by exploiting the (problem-specific) symme-
tries and relative equilibria of helicopters, along with the
construction of motion primitives. [20] uses the local first-
order approximation of cost-to-go, where cost is time, and
the calculation is simple enough that it only requires the Eu-
clidean distance between state space points and evaluations
of given system dynamics function.

There are two major themes that run through the published
work on RRT algorithm modifications. These modifications
are designed to make the RRT algorithm less sensitive to the
quality of the pseudometric. The first theme is that of reduc-
ing repeated failed expansions of a node. For example, [21]
collects collision information online, i.e., constraint violation
tendency (CVT), and uses that to bias search. The high-
level reasoning behind [20]’s modification is essentially the
same, but the implementation uses a history-based weighting
instead of the CVT. [13] proposes RRT-Blossum, which
attempts to distinguish between types of child nodes, so that
the beneficial types are added to the tree while the others are

5022

ignored.
The second main theme in the work on RRT algorithm

modification is adaptively biasing the sampling distribution
towards regions of state space that are reachable by the
tree’s current set of nodes. [20] replaces the traditional
uniform distribution of xrand with a compactly supported
Gaussian-based distribution centered around a point in region
of interest. [25] developed a local reachability-guided sample
biasing method.

III. PROBLEM FORMULATION

Following the RRT framework, we require the following
components:

1) State Space: A 2n-dimensional differentiable mani-
fold, X , that denotes the state space. A state, x ∈ X ,
is defined as x = (q, q̇), for q ∈ C, where C is the
n-dimensional configuration space.

2) Pseudometric: A real-valued function, ρ : X ×X →
[0,∞), which specifies the cost of traveling from one
point to another in X in accordance with a specified
cost function.

3) Boundary Value: xinit ∈ X
4) Constraint Satisfaction Detector: A function, D :

X → {true, false} which indicates when global
constraints have been satisfied or violated.

5) Inputs: A set U of inputs containing all inputs that
affect the state. In this work, it was a set of seven
forces/torques linearly spaced between the system-
specified input bounds.

6) Equation of Motion: The dynamics expressed as a
differential equation ẋ = f(x, u).

7) Incremental Simulator: A function for generating
future states of the agent given the current state, the
equations of motion, a time interval, and u over that
time interval.

The primary objective of this work is to develop a pseu-
dometric that increases the capability of the RRT to explore
state space, compared to the standard Euclidean distance.
This breaks down into two subproblems: determining the
appropriate cost function for maximum state space coverage
and developing an approximation of the optimal cost-to-go
function that can be computed efficiently and scales well
with the number of state variables. The pseudometric will
be directly compared to the exact optimal cost-to-go function
when the later function is known, and its impact on the ability
of the RRT to explore state space will be assessed on four
different dynamic systems.

IV. DESIGNING THE AQR-BASED DISTANCE
HEURISTIC

Most RRTs in the existing literature, including the basic
RRT algorithm we employ in this work, expand nodes
forward for a fixed ∆t. In order to be efficient in the
number of nodes, we would like to solve a minimum-time
problem from each existing node of the tree to xrand, which
boils downs to a minimum-time optimal control problem.
Exact solutions are known for several types of systems, such

as the bounded-input continuous-time double integrator and
all discrete-time linear systems. Switching functions, which
provide a visual cookbook for determining the time-optimal
path for bounded-input continuous-time systems, potentially
both nonlinear and linear, can be analytically calculated using
the Pontryagin Minimum Principle, as shown in [27], when
the dimension is small. For systems with three or more state
variables, it becomes “generally difficult, if not impossible,
to obtain an analytical expression for the switching hyper-
surface” [26].

Linear and quadratic programming (LP and QP) can be
used to solve minimum-time optimal control problems for
discrete-time systems with both bounded and unbounded
inputs, but the solution only applies to getting from one
specific state to another. Therefore it requires solving an LP
or QP problem for every node in the tree, for each xrand,
which becomes increasingly time-consuming as the size of
the tree grows.

Minimum-time linear quadratic regulators (LQR) are a
class of optimal controllers for linear systems with quadratic
cost functions of state and/or action for which the global
exact closed-form cost-to-go to the specified goal state in
the dynamic system’s phase space can be found efficiently
by numerical matrix integration. The solution applies to
all nodes in the tree, for each xrand. We adapt this class
of controller and its associated cost-to-go function to our
purposes. A more detailed explanation and derivation is
included in [23]. Consider a smoothly differentiable, possibly
nonlinear system:

ẋ = f(x, u), x ∈ <n, u ∈ <m (2)

and xrand, a random sample in the state space produced by
the RRT algorithm that is building a tree on this system. We
linearize f(x, u) at xrand and a nominal input, uf , which is
always set to a zero vector in practice. We chose xrand as the
linearization point so that the global optimal cost-to-go can
be found once rather than finding the global optimal cost-to-
go to xrand using the dynamics from linearizing about RRT
node i and then repeating that process for each node in the
tree.

Most randomly sampled points in state space are not
stabilizable (e.g., any point that has a non-zero velocity). For
these points, infinite-horizon LQR is not well defined, and
the linearized system will in fact have affine dynamics. The
derivation that follows mirrors that of an open-loop finite-
horizon LQR, but has been generalized to affine systems,
and for that reason, we refer to the resulting controller as an
affine quadratic regulator (AQR).

For notational simplicity, we will define a new coordinate
system centered about xrand:

x̄ = x− xrand. (3)

The following series of equalities and approximations shows
the derivation of the linearized (affine) system from the

5023

derivative of the state:

˙̄x =
d

dt
(x(t)− xrand) = ẋ(t) (4)

≈ f(xrand, uf) +
δf

δx
(x(t)− xrand) +

δf

δu
(u− uf) (5)

= c+Ax̄+Bū, A ∈ <nxn, B ∈ <nxm (6)

We define the following cost function:

J(x̄, t0, tf) =
∫ tf

t0

[
1 +

1
2
ūT (t)Rū(t)

]
dt,R = RT > 0,

(7)

s.t. x̄(tf) = ~0 (8)
x̄(t0) = x̄0 (9)

˙̄x = Ax̄+Bū+ c. (10)

The linearized dynamics are autonomous, so the cost func-
tion can be re-parameterized with respect to time, without
loss of generality, by T , the total trajectory length. T can
have a significant impact on the cost-to-go from a state
to xrand. Consider a situation where, just by the passive
linearized dynamics alone, the linearized system will arrive
at xrand from some state xi in ti seconds. A controller that
drives the system from xi to xrand in some other amount of
time may require a large increase in control effort.

The optimal control solution for this constrained system
can be found using Pontryagin’s minimum principle, which is
a necessary condition for optimality. To apply this principle,
we must define the Hamiltonian [11].1

H(t) = 1 +
1
2
ūT (t)Rū(t) + λ(t) [Ax̄+Bū+ c] (11)

For the optimal solution, the Hamiltonian must be at a
minimum or stationary point with respect to changes in the
control function ū(t) [11]. Defining L as the integrand of J ,
this translates to:

0 =
δH

δū
=
δL

δū
+
δfT

δū
λ(t) = Rū+BTλ(t) (12)

This “stationarity condition” and the positive definiteness of
R allow us to solve for the optimal control function in terms
of the Lagrange multiplier, λ:

ū∗ = −R−1BTλ(t) (13)

The time-varying Lagrange multiplier’s dynamics will satisfy

−λ̇ =
δH

δx
= ATλ(t), 0 ≤ t ≤ T (14)

so the closed-form solution for λ in terms of its final value
is

λ(t) = eA
T (T−t)λ(T) (15)

We do not know the final value of λ. However we can define
boundary conditions in terms of the system’s state, in the
form of a strict final boundary value condition:

x(T) = xrand (x̄(T) = 0) (16)

1The change in state, ˙̄x, as a function of state and action is not time-
varying in this case, but the definition of the Hamiltonian is general enough
to handle such a problem specification [28].

The relationship between x̄ and λ can be found by substi-
tuting the optimal control solution ū∗, which is in terms of
λ, for ū in the equation governing the dynamics of x̄:

˙̄x(t) = Ax̄(t)−BR−1BT eA
T (T−t)λ(T) + c (17)

The relationship between the state and the Lagrange multi-
plier (Equ. 17) and the dynamics of the Lagrange multiplier
(Equ. 14) together form what is referred to as the Hamilto-
nian system. With initial and final boundary values for the
state, x0 and xrand, we can solve the Hamiltonian system
for λ(t).

We integrate Equ. 17 to get a relationship between the
state, not the change in state, and the Lagrange multiplier,
evaluate the relationship at T , impose the state final boundary
value constraint, and substitute in the expression for λ in
terms of its final value (shown earlier in Equ. 15):

x̄(T) = eAT x̄0 −
∫ T

0

S(T, τ)λ(T) + eA(T−τ)cdτ = 0,

(18)

S(t, τ) ≡
∫ t

0

eA(t−τ)BR−1BT eA
T (t−τ)

(19)

S is referred to as the continuous reachability gramian. The
symmetry of S allows us to invert it when solving for the
final value of λ. Recall that with this final value of λ we
know ū∗(t) and x̄(t) for the entire optimal trajectory. The
dynamics of P = S−1 are

Ṗ (t) = AP (t) + P (t)AT −BR−1BT . (20)

S(t) for all t < T can be found by integrating the dynamics
of P backwards in time from P (T) = 0. S(T) is infinite,
because P (T) = 0, as a result of the final state constraint
that mandates an infinite cost for all trajectories that do not
reach x̄ = 0 at T .

By plugging ū∗ into the cost function, we get the follow-
ing:

J∗(x̄, T) = T +
1
2
dT (x̄0, T)S(T)d(x̄0, T), (21)

d(x̄0, T) = eAT x̄0 +
∫ T

0

eA(T−τ)cdτ (22)

Finally, since the cost of traveling along the optimal trajec-
tory from x̄0 to the origin of our state coordinate system in
T units of time is highly dependent on T , we search for the
horizon time with the least cost

T ∗ = argminTJ
∗(x̄0, T), 0 ≤ T ≤ Tmax (23)

J∗(x̄0, T
∗) is the distance when traveling from x0 to xrand

according to the AQR-based pseudometric, which has been
visualized for a bounded-input continuous-time double in-
tegrator in Fig. 4. The AQR-based pseudometric captures
many of the features of the exact solution that the Euclidean
distance cannot.

The user must choose some maximum T by considering
the possibility of the lowest J∗(x̄, T) for a given x̄ occurring

5024

at a longer T and the additional computation time of finding
J∗(x̄, T) for longer T . The additional computation of con-
sidering longer T is made more efficient by observing that
both S and d can be solved recursively by integrating back-
wards from the final conditions. See [23] for implementation
details.

(a) AQR-Based Distance

(b) Time of Exact Minimum-Time Trajectory

(c) Euclidean Distance

Fig. 4. Maps of distance to a sample point, [2,5], in the state space of the
bounded-input continuous-time double integrator. The distance magnitudes
in each subfigure are different, but the relevant feature here is how well the
shape of the distance landscape of one pseudometric compares to another.
The AQR-based pseudometric approximates the exact solution, which is
known for this system.

A. Voronoi Diagrams

Every new sampled point (xrand) is mapped back to the
nearest node to it in the RRT (xnear) so that xnear can
be expanded towards xrand. Since the sampled space is
sampled uniformly with respect to the Euclidean distance, the
probability of expanding node i in the RRT is proportional to
the Euclidean area of the Voronoi region of node i, where the
Voronoi region contains all points closer to node i than any
other RRT node, in terms of the distance pseudometric used
by the NEAREST NEIGHBOR function. This is referred to
as the Voronoi bias, the bias RRTs have towards exploring

places not yet visited. Regions on the frontier of the tree
and regions where little exploration has occurred contain the
fewest nodes; the farther apart the nodes are in a region, the
larger their Voronoi regions and the more likely they are to
be nearest of all RRT nodes to xrand and expanded.

By determining the Voronoi regions, the distance pseudo-
metric also determines what regions of the sampled space are
least explored, and which children of an expanded xnear have
brought the RRT closer to that less explored space, which
directly affects how well RRT’s exploration of configuration
space on holonomic systems can be replicated within the
state space of dynamic (nonholonomic) systems. Fig. 5
shows a side-by-side comparison of the Voronoi regions as a
function of the various distance pseudometrics known for
the bounded-input continuous-time double integrator. The
regions based on the AQR-based pseudometric approximate
those of the exact solution well.

(a) The Five-Node Tree (b) AQR-Based Distance

(c) Exact Min-Time (d) Euclidean Distance

Fig. 5. Voronoi diagrams for a 5-node toy RRT on the bounded-input
continuous-time double integrator.

V. EXPERIMENTS
Since we developed our pseudometric with a specific,

measurable performance index in mind, i.e., state space
coverage, the design of experiments was straightforward.
Note that [20] also used this technique to quantitatively
compare planning algorithms’ effectiveness. For each dy-
namic system, we build two RRTs. The parameters of the
system and the RRT-building algorithm are held constant,
except for the distance pseudometric, so that any resulting
differences in state space coverage between the trees can be
attributed solely to the choice of pseudometric. The two trees
do not receive identical random xrand to grow towards, and
due to this inherent randomness, the reported results are the
averages of repeated trials. While RRTs can be biased to
grow towards a particular point, these RRTs have no goal-
bias, since we are interested in creating trees whose branches
reach out into all regions of the sampled state space.

The RRT algorithm attempts to grow the tree towards
random samples (xrand) which are taken from some finite-
volume subset of the infinitely large phase space. This

5025

sampled space was divided into bins. The percentage of pop-
ulated bins is our measure of coverage. For two-dimensional
state spaces, a 10x10 grid of identically sized bins was
used. For four-dimensional state spaces, a 6x6x6x6 grid of
identically sized bins was used. (That amounts to 1296 bins
in total to cover the space.)

RRTs were grown on four different dynamic systems: the
double integrator, pendulum, cart-pole, and Acrobot. All four
systems have bounds on the force/torque that can be applied.
The double integrator is equivalent to a brick that moves
along a single dimension without friction. The pendulum
is a point-mass on a massless rod attached to an actuated
pivot point, and is also undamped. The cart-pole is the
same classic system that control textbooks address. It is a
pendulum attached to a brick, with no actuation at the pivot
point of the pendulum, driven entirely by forces applied to
the brick. The Acrobot is a double (two-link) pendulum with
actuation only at the joint between the two links. All trees
were grown from a root node where the system is at its stable
equilibrium. The green “X” indicates the location of the tree
root (xinit), and the axes of the plot are set such that only
the sampled region of state space (the region from which
xrand is uniformly, randomly drawn) is visible.

The RRT algorithm’s, dynamic systems’ and the pseu-
dometrics’ settings may all have a significant effect on
the results. In the Euclidean distance metric, the squared
differences between two states along each axis are equally
weighted. The AQR-based pseudometric has two parameters:
the maximum considered horizon for the finite-time AQR op-
timal control problem and R, the penalty factor for applying
force/torque in the AQR cost function. For these experiments,
the maximum considered finite horizon length was arbitrarily
set to 5 seconds. However, R, the penalty factor for applying
force/torque, was varied in order to find the value which
produced the greatest coverage.

A. Double Integrator

The double integrator system is unique among the four dy-
namic systems considered, and for two reasons. First, ignor-
ing the bounds on the force that can be applied, its dynamics
are linear. There is no need for linearization in order to apply
the AQR-based pseudometric, which eliminates one source
of error. Second, the true minimum-time trajectory between
any two points is known; the corresponding minimum-time
pseudometric returns the length, in time, of the node that
can reach a given state in the least amount of time. The
AQR-based pseudometric is intended to approximate the true
minimum-time pseudometric. We have already compared
maps of the distances they assign to a mesh of points around
a given goal. In this section, we can see how well the AQR-
based pseudometric approximates the true minimum-time
pseudometric in terms of state space coverage.

The axes of the figures in Fig. 6 are set such that only
sampled space from which xrand is randomly uniformly
drawn is visible, and it is perhaps most readily apparent
that the exact minimum-time pseudometric leads to a very
uniform coverage of the entire sampled space. We can

(a) Using the Exact Minimum-
Time Pseudometric

(b) Using AQR-Based Distance

(c) Using Euclidean Distance

Fig. 6. Examples of 1000-node RRTs grown on a double integrator with
bounds on the input applied to the system.

also see that coverage of the RRT using the AQR-based
approximation of the minimum-time pseudometric reaches
almost as much of the sampled space. Finally, we can see that
the Euclidean-based RRT is not able to explore the upper left
and lower right quadrants of state space as well as the RRTs
using the other pseudometrics. This can be explained by the
fact that many of the xrand in the upper left and lower right
quadrants were closest in Euclidean distance to the branches
representing states where the system is constrained by its
dynamics to continue moving away, not toward, that xrand.

Fig. 7. Comparative coverage of 1000-node RRTs’ exploration of the
double integrator’s state space. Fifty RRTs were grown for each distance
pseudometric, and the mean and standard deviation of those RRTs’ coverage
is shown.

B. Pendulum

In Fig. 8, it is clear that the RRT with the AQR-based
pseudometric is able to reach a greater percentage of the
state space than the RRT with the Euclidean metric. This

5026

(a) Using AQR-Based Distance (b) Using Euclidean Distance

Fig. 8. 200-node RRTs grown on a torque-limited pendulum.

comparison holds true over repeated trials, as shown in Fig.
9.

Fig. 9. Comparative coverage of 200-node RRTs’ exploration of the pen-
dulum’s state space. Fifty RRTs were grown for each distance pseudometric,
and the mean and standard deviation of those RRTs’ coverage is shown.

C. Cart-pole

In Fig. 10, there is no clear difference between the
coverage of the RRTs using the two different distance
pseudometrics. Fig. 11 confirms this lack of differentiation.

Tripling the size of the trees does not change the relative
performance of the RRTs using these two pseudometrics.

D. Acrobot

In Fig. 12, there appears to be some advantage to using
the AQR-based distance pseudometric, in terms of coverage.
However, it is not possible to know this from the figure
because information is lost when the four-dimensional space
is projected onto two two-dimensional graphs. Fig. 13 shows
that on average, there is no significant difference in coverage.

VI. DISCUSSION

It is impossible to make sweeping statements about the
value of the AQR-based pseudometric based on just four
dynamic systems, but trends can be discussed, and perhaps
verified in future work. There appears to be a negative
correlation between the complexity/nonlinearity of a sys-
tem’s dynamics and the benefit of using the AQR-based
distance pseudometric over the Euclidean distance. This
makes intuitive sense since, for systems with more complex,
nonlinear dynamics, the accuracy of the cost-to-go (distance)
estimates of the AQR-based pseudometric will degrade faster

(a) Using AQR-Based Distance

(c) Using Euclidean Distance

Fig. 10. 500-node RRTs grown on a force-limited cart-pole.

Fig. 11. Comparative coverage of 500-node RRTs’ exploration of the cart-
pole’s state space. Ten RRTs were grown for each distance pseudometric,
and the mean and standard deviation of those RRTs’ coverage is shown.

(a) Using AQR-Based Distance

(c) Using Euclidean Distance

Fig. 12. 500-node RRTs grown on a torque-limited Acrobot.

5027

Fig. 13. Comparative coverage of 500-node RRTs’ exploration of the
Acrobot’s state space. Ten RRTs were grown for each distance pseudometric,
and the mean and standard deviation of those RRTs’ coverage is shown.

as a function of distance to the linearization point. A more
subtle possible trend is that the coverage of any given RRT
grown using the AQR-based pseudometric is more consistent
than when using the Euclidean metric. The standard deviation
of coverage across repeated trials was the same or less.

Since the AQR-based pseudometric and the Euclidean
metric are both equally ignorant of obstacles, tests which
include obstacles are not planned. Since we observe a drop-
off in benefit as system complexity and nonlinearity increase,
future work could include exploring methods for approximat-
ing the exact minimum-time distance pseudometric which
can reason about dynamics with higher-order terms.

The results presented in this work are focused solely on
quantifying the impact of the AQR-based pseudometric on
RRTs’ coverage of state space. However, there may be other
advantages to using this pseudometric as well. AQR’s cost
function allows the user to bias the RRT towards solutions
which require low input energy. Growing an RRT with this
bias may not lead to the greatest coverage, but may in of
itself be of interest to the research community. The AQR-
based pseudometric can also be used in other algorithms
that depend on a notion of distance in state space, such as
probabilistic roadmaps.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the contributions of
David Wingate, Rick Cory, Alec Shkolnik, Ian Manchester,
John Roberts, and Martin Glassman. We also appreciate the
thoughtful feedback of Seth Teller and Abraham Bachrach.

REFERENCES

[1] J. H. Reif. Complexity of the movers problem and generalizations. In
Proceedings IEEE Symposium on Foundations of Computer Science,
pages 421-427, 1979.

[2] N. M. Amato and Y. Wu. A randomized roadmap method for path
and manipulation planning. In Proceedings of the IEEE International
Conference on Robotics and Automation, volume 1, pages 113–120.
IEEE, 1996.

[3] S. LaValle. Rapidly-exploring random trees: A new tool for path
planning. Technical Report 98-11, Iowa State University, Dept. of
Computer Science, 1998.

[4] S. M. LaValle and J. J. Kuffner, Jr. Randomized kinodynamic planning.
Proc. of the IEEE Int. Conf. on Robotics and Automation, 1:473–479,
1999.

[5] S. LaValle and J. Kuffner. Rapidly-exploring random trees: Progress
and prospects. In Proceedings of the Workshop on the Algorithmic
Foundations of Robotics, 2000.

[6] Steven M. LaValle and James J. Kuffner, Jr. Randomized kinodynamic
planning. International Journal of Robotics Research, 20(5):378–400,
2001.

[7] A. Yershova, L. Jaillet, T. Simeon, and S. M. LaValle. Dynamic-
domain RRTs: Efficient exploration by controlling the sampling do-
main. Robotics and Automation, 2005. ICRA 2005. Proceedings of
the 2005 IEEE International Conference on, pages 3856–3861, April
2005.

[8] Steven M. Lavalle. From dynamic programming to RRTs: Algorithmic
design of feasible trajectories. In Control Problems in Robotics.
Springer-Verlag, 2002.

[9] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control.
Athena Scientific, 2nd edition, 2000.

[10] Peng Cheng and S. M. LaValle. Reducing metric sensitivity in
randomized trajectory design. Intelligent Robots and Systems, 2001.
Proceedings. 2001 IEEE/RSJ International Conference on, 1:43–48,
2001.

[11] Frank L. Lewis. Applied Optimal Control and Estimation. Digital
Signal Processing Series. Prentice Hall and Texas Instruments, 1992.

[12] John Canny, Ashutosh Rege, and John Reif. An exact algorithm for
kinodynamic planning in the plane. In SCG ’90: Proceedings of the
Sixth Annual Symposium on Computational Geometry, pages 271–280.
ACM, 1990.

[13] Maciej Kalisiak. Toward More Efficient Motion Planning with Differ-
ential Constraints. Ph.D. thesis, University of Toronto, 2008.

[14] J. P. Laumond, S. Sekhavat, and F. Lamiraux. Guidelines in nonholo-
nomic motion planning for mobile robots. In J.-P. Laumond, editor,
Robot Motion Planning and Control, pages 1-53. Springer-Verlag,
Berlin, 1998.

[15] S. Sundar and Z. Shiller. Optimal obstacle avoidance based on the
Hamilton-Jacobi-Bellman equation. IEEE Trans. Robot. & Autom.,
13(2):305-310, April 1997.

[16] T. Basar and G. J. Olsder. Dynamic Noncooperative Game Theory.
Academic Press, London, 1982.

[17] S. M. LaValle. A Game-Theoretic Framework for Robot Motion
Planning. Ph.D. thesis, University of Illinois, Urbana, IL, July 1995.

[18] Jongwoo Kim, Jim Keller, and R. Vijay Kumar. Design and verification
of controllers for airships. In Proceedings of the 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS
2003), volume 1, pages 54–60, 2003.

[19] Emilio Frazzoli. Robust Hybrid Control for Autonomous Vehicle
Motion Planning. Ph.D. thesis, Massachusetts Institute of Technology,
June 2001.

[20] Jongwoo Kim, Joel M. Esposito, and Vijay Kumar. An RRT-based al-
gorithm for testing and validating multi-robot controllers. In Robotics:
Science and Systems I, June 2005.

[21] Peng Cheng. Sampling-based motion planning with differential con-
straints. Ph.D. thesis, 2005. Adviser-Steven M. Lavalle.

[22] Russ Tedrake. LQR-Trees: Feedback motion planning on sparse ran-
domized trees. In Proceedings of Robotics: Science and Systems (RSS),
page 8, 2009.

[23] Elena Leah Glassman. A quadratic regulator-based heuristic for rapidly
exploring state space. Master’s thesis, Massachusetts Institute of
Technology, February 2010.

[24] Steven M. LaValle. Planning Algorithms. Cambridge University Press,
2006.

[25] Alexander Shkolnik, Matthew Walter, and Russ Tedrake. Reachability-
guided sampling for planning under differential constraints. In Pro-
ceedings of the International Conference on Robotics and Automation
(ICRA), pages 2859–2865. IEEE/RAS, 2009.

[26] Donald E. Kirk. Optimal Control Theory: an Introduction. Dover
Publications, 2004.

[27] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control,
volumes I and II. Athena Scientific, 3rd edition, May 2005.

[28] Russ Tedrake. Underactuated Robotics: Learning, Planning, and Con-
trol for Efficient and Agile Machines: Course Notes for MIT 6.832.
Working draft edition, 2009.

5028

