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Abstract— This paper proposes a method for learning view-
point detection models for object categories that facilitate
sequential object category recognition and viewpoint planning.
We have examined such models for several state-of-the-art
object detection methods. Our learning procedure has been
evaluated using an exhaustive multiview category database
recently collected for multiview category recognition research.
Our approach has been evaluated on a simulator that is
based on real images that have previously been collected.
Simulation results verify that our viewpoint planning approach
requires fewer viewpoints for confident recognition. Finally, we
illustrate the applicability of our method as a component of
a completely autonomous visual recognition platform that has
previously been demonstrated in an object category recognition
competition.

I. INTRODUCTION

When a human attempts to identify what they are looking
at, they may often pick objects up to rotate them or move
their head from side to side in order to obtain a variety of
viewpoints. In some cases this behavior allows a “canonical”
viewpoint of the object to be obtained (e.g. the label on
a bottle) and in other cases, the movement may allow
disambiguation between similar items (e.g. searching for the
logo to identify the brand of car being viewed). Humans
integrate information over the numerous viewpoints they see
without effort, and can rapidly decide where to move next
to gather the most information. In contrast, the analogous
scenario remains a challenge for a visually guided mobile
robot.

For robots that attempt to interact naturally with humans
in home environments, the majority of tasks require semantic
knowledge about the category labels of objects. Hence, the
problem of “where to look” and how to integrate infor-
mation from multiple views, so easily solved by humans,
is a vital requirement. Existing active vision methods are
primarily focused on specific objects with easily described
appearances. Multiview object recognition techniques from
the Computer Vision community have also recently shown
strong performance on recognizing specific objects, but these
do not generalize to many of the object categories found
in a typical home. Category recognition has mostly been
studied in the context of labeling a single image from a
database, which ignores several aspects facing a robot system
such as viewpoint. Note that we distinguish between specific
instances such as “Norco Launch 2002 Mountainbike” and
generic object categories such as “bicycle”.
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Fig. 1. The response of the deformable parts model detector from [1] on
images of a bicycle from numerous viewpoints. Images shown below align
with datapoints, and bounding boxes drawn in images represent detector
responses that exceed a threshold pre-calibrated to balance precision and
recall.

This paper proposes a sequential category recognition
(SCR) solution centered on learning models of a category
detector’s response with respect to viewing direction using
training data from a multiview category database. For ex-
ample, Figure 1 shows the detection responses of a state-
of-the-art category recognizer on a number of views of a
single bicycle. The model learning procedure described be-
low summarizes the responses of a detector across numerous
instances and to capture its dependence on viewpoint. These
learned models allow for fusion of the information from
a sequence of images of the same object using sequential
Bayesian estimation. Also, informative viewpoints can be
chosen based on the current estimate and viewpoint model,
which allows an active system to recognize an object with
fewer views.

We have constructed our SCR solution in the context
of an integrated visual search robot system named Curious
George [2]. This system has previously been evaluated in the
Semantic Robot Vision Contest (SRVC) [3], a competition
amongst completely autonomous object category recognition
platforms. SRVC requires systems to use Internet imagery
for learning visual models (no human annotation), to au-
tonomously explore a realistic environment, and to use the
learned models to visually identify the presence of instances
from object categories, placed by the organizers. Curious
George placed first in the robot category of the SRVC for
2007 and 2008, recognizing roughly half of the test objects
However, all contestants in SRVC mainly recognized those
objects with specific appearances, and rarely the instances
of truly generic categories (e.g. the robots always recognize
Coke cans and never vacuums). We have observed that a
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primary challenge in recognizing generic categories during
the SRVC contest or in any quasi-realistic home scenario
is that appearance differs drastically across viewpoints and
state-of-the-art recognizers are not well suited to model this
fact.

We do not refer to the method described in this paper
as pose estimation. Although accurate pose inference for
category recognition would be extremely useful, it is beyond
the state-of-the-art for methods in visual modeling, for all
but the most geometrically consistent categories. This is in
contrast to pose estimation for a specific instance where
methods in automated feature matching and geometric in-
ference (techniques similar to those used for Visual SLAM)
allow highly accurate solutions. The instances that share
semantic labels (category members) often have drastically
different geometry, and the models suitable for capturing
their variation are inexact in nature. Several recent methods
include [4], [5], [6]. Our viewpoint-dependent models of
detector response can be seen as a soft form of pose
estimation and are inspired by the approaches listed.

The next section will discuss related work in Active
Vision and multiview object category recognition. In the
following, our SCR method is presented, along with our
strategy for learning viewpoint detection functions, and an
entropy minimization planning algorithm. Finally, we will
present results for evaluation of the system on a simulator
and with a physical robot platform.

II. RELATED WORK

Embodied object recognition systems, and in particular
those aimed towards home robotics, often consider similar
problems to those addressed in this paper (e.g. [7], [8], [9]).
In particular, Ye et al. [10] have considered modeling the
variation in viewpoint when observing a specific object and
learning this model from training data. We have been inspired
by this approach, and have performed a similar analysis
for the response of object category detectors over many
instances per class. More recently Sjo et al. have constructed
a highly capable recognition system [11] but note explicitly
that object viewpoint is not modeled in their work at present.

The problem of moving a camera through the world to
aid in inference is typically referred to as Active Vision.
The idea of minimizing the entropy of an estimator based
on camera motion has been studied in the Active Vision
community, notably by [12], [13]. Various authors (e.g. [13])
have previously suggested the use of a generative model of
object appearance conditional on the object label and other
confounding variables such as pose and lighting p(A|o, θ, l),
along with a sequential Bayesian update strategy in order
to solve this problem. However, these models have typically
been associated with systems performing relatively simple
visual tasks such as recognition of specific instances of ob-
jects annotated with identifiable markers. This paper studies
a method for Active Vision during category recognition.

Several authors have recently considered building object
category recognizers that perform well over all viewpoints
[4], [5], [6]. These methods typically require annotated data

from a semi-dense sampling of viewing directions and in
some cases require additional information such as a video
sequence [4]. Several authors have also explored the variation
of object category models with respect to viewing direction,
similar to our work (e.g. [14], [15]). While multiview cate-
gory recognition is a promising direction, it is unlikely that
truly viewpoint invariant category recognition is possible due
to the extreme intra-category appearance variation for some
objects (e.g. the back sides of monitors). In fact, for some
categories, human observers have difficulty in recognizing
certain views, which leads to the behavior of turning the
object with the hands or moving the head and eyes to see a
different viewpoint.

In order to learn the viewpoint detection function for an
object recognizer, validation data containing multiple view-
points of numerous instances of each category is required.
Many image databases containing multiple viewpoints of ob-
jects have recently been made available, however, we found
that many of them did not fit our purposes. For example,
Viksten et al. [16] collected a database with fine-grained
viewpoint sampling for each object, but only a single instance
of each category is present, as their efforts have been targeted
towards grasp planning for industrial applications. The use
of the Internet as an online forum for users to annotate data
has been used to produce very large labeled databases such
as LabelMe [17]. Also, online task auction sites are suitable
for dataset construction and have been used in ImageNet
[18] and also by [19]. These large category datasets have
so far not been annotated with image viewpoint. A dataset
collected by Savarese et al. [20] contains 72 views (8 azimuth
angles, 3 heights and 3 scales) of each of 10 instances for 10
common object categories. While containing far fewer object
instances than some other resources, the precise viewpoint
labels associated with each image make this dataset suitable
for evaluation of multiview techniques, and it will be used to
construct our viewpoint detection response functions in the
next section.

III. SEQUENTIAL CATEGORY RECOGNITION

We define the active sequential category recognition prob-
lem as inferring the category label of an object based on
a series of images collected over time and from various
viewpoints, as well as choosing new viewpoints at each
timestep (path planning). However, without factoring the
problem, an SCR solution would be required to plan in
an extremely high dimensional search space formed by
every control action of the robot and its camera. To focus
the discussion, in this paper we consider a subset of this
problem by assuming several visual processing tasks can be
completed efficiently outside the scope of this work (in our
case, we defer to existing system components of Curious
George [2]). In particular, we assume that locations of the
world have been identified as potential object candidates
(proto-objects), for example by a mid-level visual attention
system that chooses targets and segments potential objects
from the world. This leaves the task of choosing the next
viewing angle from which to observe one of the candidate
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objects. Additionally, for the purposes of this paper, we
do not choose between multiple objects, but consider the
scenario where a single new object has been encountered
and the robot is tasked to verify its identity before moving
on to the next task.

In short, we consider the restricted variant of SCR where
the robot must infer p(o = x|f1...fN ), the likelihood that
the proto-object has category label x, for all categories
conditioned on the classification responses received on N
images so far. The system must choose a sequence of
viewpoints (θ1, ...θN ) from which to observe the object - that
is it has some ability to actively select which data to examine.
Our solution follows a similar approach to that taken in
[13] to infer the category of the object being considered as
well as the pose of the object. Specifically, we have trained
a number of generative detector models: p(f(A(Vθ))|o, θ),
where f(A(Vθ)) represents the response of a detector f
evaluated on an image with appearance A(Vθ), for a given
view Vθ. o is a variable representing the category label and
θ represents the pose of the object. The image appearance
obtained from a viewpoint, A(Vθ) is a complicated function
depending on an object’s appearance and many factors in
the environment such as lighting. For simplicity in much of
the discussion, we will describe a detector’s response as fi,
indexing only by i, the order in which the image was taken –
the reader is asked to remember that the detector’s response
is a function of the viewpoint and environmental factors.

A. Learning a Viewpoint Function

As mentioned, the score of an object recognizer trained
on a single viewpoint of each object is likely to be biased
towards that viewpoint. Correctly modeling this fact will
allow a visual search system to correctly infer the state of
the world, and so we set out to model the detection response
as a function of viewpoint for several state-of-the-art object
recognizers trained on a variety of datasets. In particular, we
have examined three object recognition approaches that are
currently used heavily in the Computer Vision community:

1) SIFT matching is an algorithm based on the observa-
tion that local image features can be reliably detected
and described in a fashion that is largely invariant to
changes in scale, lighting and in-plane rotation [21]
(N.B. the list of invariances does not include viewpoint
changes, although invariance over a small range of
views is possible, as discussed in [22]). In particular,
we have implemented image matching based on SIFT
features with RANSAC to fit a fundamental matrix to
a candidate set of point matches in order to discard
outliers and return highly confident match results.

2) Bag-of-Features Matching is equivalent to SIFT-
matching without checking of the geometric consis-
tency between feature matches. This allows the method
to generalize better across intra-category variation in
geometry and makes the approach more suitable for
category recognition. Note, for clarity, that we have
not utilized vector-quantized features or an SVM for

classification as has been attempted by [23] and is often
also refered to as “Bag-of-Features”.

3) Deformable parts model is an algorithm that combines
several feature types and jointly infers parts and object
labels with an SVM. This method was selected due
to its strong performance on the recent Pascal Visual
Object Categories competition [24]. We have used the
author’s implementation for this method [1].

Fig. 2. Example viewpoint detection functions of the deformable parts
model detector for classes: (top) bicycle, (middle) car, and (bottom) monitor.
The radial coordinate represents the detector response to positive(left) and
negative(right) samples. The solid red line is the expected value and dotted
blue lines depict the uncertainty in the response.

Each of the three methods was evaluated across a large
number of views drawn from the object category dataset
which has recently been collected by Savarese et al. [20] de-
scribed above. The detector results over this set characterize
the distribution of responses over viewpoints. We modeled
the empirical distribution of detector responses obtained over
the dataset with a univariate normal per {o, θ} pair. This
produces a viewpoint likelihood function: p(f |o, θ) which
can be evaluated for each detector response and integrated
into the SCR framework as will be shown below.

Several viewpoint detection models for the deformable
parts model are displayed in Figure 2. Each row in the
image represents the response given for a different category:
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Fig. 3. Viewpoint detection function for the (top)SIFT matching and
(bottom) Bag-of-Features detectors. The radial coordinate represents the
detector response to positive(left) and negative(right) samples. The solid
red line is the expected value and dotted blue lines depict the uncertainty
in the response.

bicycle, car and monitor. Some notable structure is present
in each: responses for the bicycle category show clear
symmetries, and, as was clear in Figure 1, the front and
back views give much lower detector responses than views
from close to the side; responses for cars have a similar
shape, but the front and the back views are somewhat more
recognizable due to a car’s greater width and identifiable
features such as headlights; and finally, the response function
for monitors is the canonical single-viewpoint recognition
scenario as monitors only demonstrate a reliable appearance
from straight-on front views.

Figure 3 shows the viewpoint detection models of the
SIFT matcher and Bag-of-Features approaches when trained
to recognize bicycles. The viewpoint profile of the responses
for both methods are similar to those observed in the previous
figure, which adds support to the observation that side
views of bicycles are more readily distinguishable than front
and rear views. In contrast to the deformable parts model,
however, we found that the detectors’ response functions for
negative instances (images that do not contain bicycles) were
nearly as strong as those for the positive instances (images
containing bicycles) over most of the viewpoint range. This
is due to the fact that the feature matching step in both of
these approaches returned a small number of features for
instances of the category not present in the training set.
That is, the local object appearance varied too greatly for
correct matching. This is can be seen in the figure in that
the mean values for both positive and negative responses are
similar. For this reason, we have primarily focused on the

deformable parts model in the rest of the results given in
this paper. Integrating a specific view recognizer such as the
SIFT matching approach with a general category recognizer
is left for future work.

B. Multiview Sequential Bayesian Estimation

Fig. 4. The posterior distribution over object presence and pose is updated
as each image is collected. This is demonstrated for 4 steps of one robot
recognition simulation trial. The graphs display: the prior top-left p(o =
x, θ), the posterior after one image top-right, p(o = x, θ|f1), and so on.
In each graph, the radial coordinate represents the belief probability for the
object occuring and having the pose indicated by the angular coordinate.
This trial is evaluation of the category label “car” and the true world state
is that a car is present with pose 135◦. The magenta “x” shows the pose
of the object and the blue circle shows the robot’s pose at each time step.

This section describes our approach to integrating the
scores of classifiers over images of an object from multiple
viewpoints. We build upon the viewpoint detection models
described previously. Consider inferring p(o, θ|F ), the prob-
ability that an object is present at a given viewpoint based
on n responses, F = {f1...fN}. This can be easily derived
using Bayes’ Rule:

p(o, θ|F ) =
p(F |o, θ)p(o, θ)

p(F )
(1)

=
p(F |o, θ)p(o, θ)∑

oiε{t,f}

∑
θjε[0,2π)

p(F |oi, θj)p(oi, θj)
(2)

We make the standard Naive Bayes assumption, that each
pair of classifiers is conditionally independent given the
object label and viewpoint. Also, we apply an uniform prior
for p(o, θ), so it can be factored from the denominator. The
expression becomes:

5058



p(o, θ|F ) =

N∏
k=1

p(fk|o, θ)

∑
oiε{t,f}

∑
θjε[0,2π)

N∏
k=1

p(fk|oi, θj)

(3)

Equation 3 represents the probability that the data is
explained by a given object configuration. It is based on
the generative viewpoint detector models for p(fk|o, θ) that
are learned from data, as described previously. Our use of
a uniform prior for p(o, θ) is appropriate here since we are
modeling each object in an unbiased fashion. In extensions
to integrated systems, it is likely to be beneficial to use
domain knowledge to specify an informative prior such as the
likelihood of each type of object occurring in each room of
a house. This is left for future work. Also, please note that
we have excluded a model for robot motion in this work.
For simplicity, we assume that the robot’s motion is known
exactly. While this is not true in general, our work makes a
very coarse discretization of angle into 8 bins, and so it is
likely that we can correctly determine the correct bin for the
robot’s position a large fraction of the time from odometry
or SLAM position estimates.

Figure 4 illustrates the posterior evolving over each time
step for the object category “car”. As a new observation is
made, the updated posterior function becomes narrower and
eventually aligns with the actual pose of the object. This
corresponds to probabilistic estimation of pose and category.

C. Viewpoint Planning

The active component of our SCR system requires a deci-
sion making strategy to control the position of the camera in
the world – the viewpoint from which objects are observed.
The choice of camera motions allows numerous views to
be collected so that, for example, the canonical viewpoint
present in the training data can be observed, or a view can
be obtained that allows objects with similar appearances
to be disambiguated. We employ entropy as a measure to
determine the confidence of the recognition system in its
belief about the presence (or absence) of the object. Entropy
is defined as follows:

H(p(x)) = −
∑
i

p(xi) log(p(xi)) (4)

For random variable x. For the viewpoint planning prob-
lem, we attempt to minimize the entropy of the posterior
belief by selecting the next viewpoint Vθ as follows:

V ∗φ = argminφH(p(o, θ|f1...fN , f(A(Vφ)))) (5)

Search for the minimizing view requires evaluation of
equation (3) for each viewpoint, which is not trivial because
it depends on the next detector response that will be obtained
– a quantity that cannot be known exactly until after the plan-
ning action has been executed. Integration over all possible

detector responses (a continuous variable) is computationally
expensive. It can be avoided by computing the expected
classifier response, but this produces a biased estimate for
the entropy. So, instead we draw a number of samples for
the value of f from p(f |o, θ) and compute the minimum
averaged over these samples.

IV. EXPERIMENTAL RESULTS
A. Simulated Multiview Recognition

We have constructed a simulated recognition environment
to test our SCR approach. The simulator models a robot’s
position with respect to an object, and returns a pre-collected
image from the simulated robot’s viewpoint, in place of
an image that would be acquired by a physical robot’s
camera. The pre-collected images were drawn from a hold-
out portion of the Savarese et al. dataset used during training.
We evaluated a variety of detectors on each image and used
the responses to update the recognition system’s posterior
belief about the object’s presence and viewpoint.

We compare our method with a non-adaptive viewpoint
selection strategy that chooses a random previously unseen
view at each timestep. This method has been a favorite
approach for contestants in the SRVC contest, and was
suggested in [2] as an approach that obtains coverage of
viewpoints while reducing viewpoint overlap early in the
search process. Compared to other non-adaptive strategies,
the random approach may find interesting views faster, at
the cost of additional robot motion.

We compared each planning strategy using our viewpoint
simulator by repeatedly simulating detection results and
allowing the planner to view the result and choose a new
robot position. For statistical significance, 160 trials were
conducted. Between each trial a different object instance is
chosen at random from the validation set. Also a random ini-
tial viewing angle is chosen from one of the 8 azimuth angles
available in the Savarese dataset. The object’s identity and
initial viewpoint are hidden from the planning approaches,
so the situation is a realistic approximation to the situation
where the robot segments a proto-object from the world, has
no prior knowledge about the category label or viewpoint of
the object, and must infer these quantities by collecting and
analyzing images.

Figure 5 summarizes the results of the simulation trials.
The results demonstrate that planning to reduce entropy al-
lows the recognition system to confidently infer the category
label from fewer test images, since it is able to use the
history of detector responses to determine the viewpoints
that are most likely to discriminate the object. As more and
more views are collected, the probability that the random
strategy finds these views increases also, and once each
method has exhausted the available viewpoints, performance
is identical. A similar result is shown on the right of the
figure. In this case, the rapid initial decrease in posterior
entropy results from the planner discovering discriminative
views, and the subsequent small increase in entropy results
from the fact that we force the planner to continue even
after it has essentially converged on its decision about the
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Fig. 5. A comparison of detection results between a system using entropy minimization planning and a system which uses a random planning strategy. The
graph on the left shows the sum of detector responses for true positives minus the sum of responses for true negatives, a summary statistic for classification
performance. The graph on the right shows the entropy of the marginal p(o = x|f1...fN ), the detector’s belief in the true category label x. All results
are averages over 160 random selections of an object instance and starting viewpoint.

object, so it encounters the viewpoints that are difficult to
discriminate later in the recognition process. In both cases,
the results demonstrate that adaptive, entropy minimization
planning aids in the sequential object recognition process.

B. Visual Search with the Curious George Platform

The Curious George platform uses visual saliency and
depth cues to locate possible objects in the environment.
As mentioned above, these mid-level vision techniques limit
the search space which includes infinite locations and point
of views. Figure 6 shows a sample scenario where robot
has identified a proto-object in its view. The bicycle is
correctly segmented based on depth and visual saliency
features, in realtime, and this candidate object is passed
to the SCR system for evaluation. The viewpoint planning
method described above is integrated with this pre-existing
feature of the robot. We have previously applied a planning
algorithm which weighs between multiple objectives such
as map building, coverage of the environment and certainty
of object labels, and the SCR method described here is an
additional component within this framework, which will be
evaluated during the upcoming SRVC contests.

V. CONCLUSION AND FUTURE WORK

This paper has outlined an active multiview framework
that can be used by an embodied visual searcher to infer
the identity of a target object being considered. We have
demonstrated the dependence of state-of-the-art object rec-
ognizers on the viewpoint from which an object is seen. This
relationship is always likely to be present given the wide
variety of appearance amongst category members for some
viewpoints. We have learned viewpoint detection models for
a number of detectors, and demonstrated that the sequential

Bayesian estimation approach is capable of leveraging these
models to provide improved recognition performance when
compared to single-view strategies. Our method has been
evaluated on a simulator based on a dataset of challenging
images and its applicability has been illustrated for a physical
embodied platform, Curious George.

There are several natural extensions to the current work.
In this paper we have evaluated three object detection algo-
rithms, but have chosen the one which performed best overall
to use in all cases. Instead, a visual search planner could be
given the opportunity to integrate information from all de-
tectors, or better yet, the visual searcher could choose which
method to run at each viewpoint, prioritizing computation
towards detection results that are likely to be informative.
Also, we have focused our analysis to the visual search
problem involving only a single target object. In a home
environment, a robot is faced with a large number of potential
targets, and it may also be tasked with exploring new regions
to discover new objects. In this case, a visual search platform
must choose between numerous potential objects as well as
between the viewpoints for each object. This is a challenging
problem, but solving it will produce an active visual search
robot capable of determining the semantic categories of
objects within a home and subsequently performing useful
tasks for the human inhabitants.
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