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Abstract— This paper presents a solution to decentralized
Voronoi coverage in non-convex polygonal environments. We
show that complications arise when existing approaches to
Voronoi coverage are applied for deploying a group of robots
in non-convex environments. We present an algorithm that is
guaranteed to converge to a local optimum. Our algorithm
combines classical Voronoi coverage with the Lloyd algorithm
and the local path planning algorithm TangentBug to compute
the motion of the robots around obstacles and corners. We
present the algorithm and prove convergence and optimality.
We also discuss experimental results from an implementation
with five robots.

I. INTRODUCTION

Distributed coverage is a common application for multi-

robot systems where robots spread over an environment to

fulfill a perception task. Examples include environmental

monitoring and surveillance, maintenance and inspection, or

distributed actuation tasks, such as harvesting or demining.

An early survey about multi-robot coverage by [1] introduces

three basic types of coverage problems: blanket, sweep and

barrier coverage. Blanket coverage methods deploy sensors,

e.g. carried by networked robots, in a static arrangement

to cover an area. Most current results on blanket cover-

age are focused on convex environments; however realistic

applications require the ability of coping with non-convex

environments, including areas with many free-standing obsta-

cles as well as areas without obstacles but with non-convex

boundaries. To pave the way toward real-world multi-robot

systems, it is essential to enable coverage by groups of robots

in such environments. We address the deployment of a group

of networked robots to cover a non-convex environment in

this paper.

We propose a new control strategy that combines two well-

known algorithms: Lloyd algorithm [11], originated from

quantization theory, and TangentBug [14], a derivative of the

family of Bug algorithms. Figure 1 illustrates the concept

of our approach: Lloyd algorithm updates the goal position

of each robot, TangentBug then plans a path to the given
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Fig. 1. Control strategy as combination of the Lloyd algorithm and
the TangentBug algorithm. Hierarchical approach running distributed on n
robots: Lloyd algorithm computes the Voronoi region and updates the current
target (level 1), the local path planner computes the path to the target and
performs obstacle avoidance (level 2). A first control loop (loop 1) is formed
between level 1 and level 2, a second control loop (loop 2) is built into the
path planner on level 2.

goal. The consecutive interaction between the two algorithms

results in global convergence of the robot team to a final

Voronoi configuration that optimizes a cost function. The

control strategy spreads the robots over the environment

while taking care of the non-convexity of the environment

by the built-in obstacle avoidance behavior.

As our control strategy combines multi-robot coverage and

robot navigation, there is a broad body of work with potential

influence. Artificial potential fields, vector field histograms

and the Bug algorithms are examples of simple but powerful

sensor-based local path planners. The actual coverage control

in our control strategy is mainly based on a well-known

method for coverage of convex environments with mobile

networked robots. Voronoi coverage was introduced in [2]

and further developed in [3], [4] among others. The basic

concept goes back to the continuous p-median problem,

which is part of the locational optimization framework [5].

We will refer to this control stategy as Voronoi coverage in

this paper.

Other works have investigated the control of multiple

robots in non-convex environments. [6] considers the coordi-

nation of a group of robots to achieve rendez-vous in a non-

convex environment. [7] focuses on coverage to solve the

distributed Art Gallery Problem in non-convex environments.

A control approach to drive a multi-robot team to target

sets under collision avoidance and maintaining proximity

constraints is presented in [8] for known environments with

obstacles. In [9] and [10] the environment is transformed

by a diffeomorphism to a corresponding convex region, in
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which regular Voronoi coverage can be applied. The method

offers a creative solution to non-convex coverage, however

the authors note that it presents significant computational

challenges, and that it may lead to solutions that differ

from the optimal coverage solutions in the original space.

In [10] the authors resolve some of these issues for convex

regions with isolated obstacles. [4] approaches coverage

of environments with non-convex boundaries by applying

the geodesic distance measure to Voronoi coverage. This

method provides an elegant solution for some classes of

environments but is not guaranteed to work for all types of

non-convex environments.

This paper is organized as follows. In Section II we present

basic concepts of the Voronoi coverage method for convex

environments. We point out complications of the method in

non-convex environments and introduce our new approach

to the problem. In Section III we describe the algorithm

and its implementation in detail. We prove convergence and

optimality of our control strategy in Section IV. Simulations

in Section V and physical experiments in Section VI with

a group of networked robots in a non-convex environment

further verify the concept. We conclude in Section VII and

point to some interesting extensions of our approach.

II. PROBLEM FORMULATION

A group of networked robots must be deployed in an

environment. The environment can either be convex (forming

a convex domain without any obstacles or holes in it) or

it can be non-convex (including free-standing obstacles or

holes and areas with non-convex boundaries). Our focus is

on non-convex environments, but our approach also applies

for convex environments.

A. Convex environments

A widely studied class of solutions to coverage in convex

environments uses Voronoi coverage to optimize the con-

figuration of n robots by minimizing the average distance

to the nearest points of interest. A team of n robots at

positions P = [pi]
n
i=1 ∈R

Nn, navigate in a bounded polygonal

environment Ω ⊂ R
N . Ω is a closed set with the boundary

∂Ω. For the Euclidean distance measure with ‖·‖ denoting

the ℓ2- norm, a Voronoi tessellation V = {Vi}
n
i=1 is a partition

of Ω for which

Vi =
{

x ∈Ω | ‖x−pi‖ ≤ ‖x−p j‖, ∀ j = 1, ...,n , j 6= i
}

. (1)

Each Vi is the Voronoi cell corresponding to a robot located

at pi. The positions pi are called the generating points, the

robots are the generators of the Voronoi tessellation. Given

a positive density function φ : Ω→ R>0, we can define the

mass and the centroid of Vi as

MVi
=

∫

Vi

φ(x)dx, CVi
=

1

MVi

∫

Vi

x φ(x)dx . (2)

A Voronoi tessellation becomes a centroidal Voronoi

tessellation (CVT) when the generating points pi coincide

with the centroids, i.e. pi = CVi
, ∀i ∈ {1, ...,n}. In this case

we say the robots reach a centroidal Voronoi configuration.

CVTs are known to locally minimize the cost function

H (P) =
n

∑
i=1

H (pi) =
n

∑
i=1

∫

Vi

f (D(pi, x)) φ(x)dx , (3)

with D(·) a distance measure between a point pi and a

location x in Ω. The density function φ(·) describes the

weighting or importance of different areas in Ω. The func-

tion f : R≥0 → R≥0 is assumed to be smooth and strictly

increasing. f (z) = 1
2
z2 is our choice in the remainder of the

paper for simplicity. It accounts for the sensor reliability of

a robot and adds to the cost as the distance from the sensor

increases.

1) Euclidean distance: The Euclidean distance D(pi,x) =
‖x−pi‖ is a standardized choice for open space and convex

environments. Using the Euclidean distance we get from (3)

∂H (pi)

∂pi

=−MVi
(CVi
−pi) = 0, (4)

where MVi
and CVi

were defined in (2). The local minima are

reached with a CVT, since CVi
= pi implies ∂H

∂pi
= 0, ∀i ∈

{1, ...,n}.
2) Geodesic distance: The geodesic distance measure

is another intuitive choice, especially in the context of

non-convexity [4]. The geodesic distance is the length of

the shortest path from a start point pi to a goal point x, so

that the path lies completely in the domain Ω.

A deterministic method to construct centroidal Voronoi

tessellations is the classic Lloyd algorithm [11]: 1) construct

the Voronoi partition for the generating points at [pi]
n
i=1,

2) compute the centroids of these Voronoi regions, 3) set

the new locations of [pi]
n
i=1 to the centroids and start all over

again. Voronoi coverage is based on the Lloyd algorithm and

its continuous and discrete-time versions.

From (4) the proportional control law (here shown for the

Euclidean distance measure)

ui =
.

pi=−
k

MVi

∂H (pi)

∂pi

= k (CVi
−pi) , (5)

with simple first-order dynamics ṗi = ui can directly be

derived. From (5) it becomes clear that the Lloyd algorithm

implements a gradient descent controller. The convergence

properties of the Lloyd algorithm are well established. We

repeat them here as it will be useful later in our analysis.

Lemma 1 (Convergence of Lloyd algorithm): A set of

points in a given environment converges under the Lloyd

algorithm to a centroidal Voronoi configuration.

Proof: Convergence follows from Prop. III.3 in [2].

B. Complications from non-convex environments

We demonstrate the possible difficulties that arise for the

coverage problem in a non-convex environment with the

different example configurations shown in Figure 2(a) –

(d). For clarity of our explanation, we base our analysis

on a single robot in a non-convex environment. But the

considerations also hold true for the multi-robot case, where

4983



x

x

x

x

x

x x

x

x

x

x

(a) (b) (c) (d)

Fig. 2. Non-convex example environments (white circle: robot initial position, red circle: robot final position (geodesic), red cross: target (Euclidean,
CVT), green line: robot path, yellow color gradient: density function φ(·)). (a) L-shaped region: the geodesic distance provides a reasonable robot path (see
also [4]). (b) U-shaped region: the robot converges to a minimum point arbitrarily far from the optimal goal point (in the obstacle) due to the compromise
character of the geodesic distance. (c) Region with free-standing obstacle: the robot get stuck on its way to the goal in a saddle point as it does not stop
making compromises between different shortest path options. (d) L-shaped region (with different robot start position and different φ(·) compared to (a)):
Even in the case of a L-shaped region, when the start position and thus the robot’s visibility change, the robot happens to leave the region because of
non-zero gradient sums.

a Voronoi region of a single robot takes shape of the regions

in the example configurations.

First consider applying a controller (5) as used for Voronoi

coverage in convex environments. Let robot i at position pi

drive on straight lines, according to the Euclidean distance

measure, to the target position ti, which is the centroid CVi

of its Voronoi cell Vi. We are confronted with two types

of critical configurations: (i) the robot position temporarily

leaves the environment Ω during motion, i.e. the path goes

through an obstacle (Figure 2(a), (c)), (ii) the final goal

position lies outside the environment, in an obstacle, and

cannot be reached (Figure 2(b), (d)).

Next we investigate the limitations of Voronoi coverage in

non-convex environments when using the geodesic distance

measure. Although the geodesic distance helps keeping the

robot inside the environment region on its way to the target

and works fine for some cases, e.g. for the example in

Figure 2(a), there are other cases where it does not (such

as the cases depicted in Figure 2(b) – (d)). The geodesic

distance measure calculates the paths along the boundaries

and avoids the obstacles. But it introduces a compromise

characteristic at the same time, i.e. the controller gets trapped

and remains at a position of minimum average distance

to the locations of interest (see Figure 2(b)). This may

entirely be in the sense of locational optimization as the

distances to the upper and lower branch become balanced for

the density distribution given in Figure 2(b). However, the

compromise can lead to arbitrarily suboptimal configurations

for applications that require the robot’s final position to be

close to the centroid and maximum density area (e.g. if the

robots can see the area beyond the obstacles or sense a signal

through the walls).

The compromise character further causes the robot to

get stuck in a saddle point (unstable generalized CVT) in

Figure 2(c) or even worse, to drive into an obstacle in

Figure 2(d), as the projections of the gradients into target

direction of the geodesic distance do not add up to zero when

reaching the boundary. Geodesic distance as distance mea-

sure on its own solves some of the problems, but provides

no general guarantee that the robot reaches a point close to

a local minimum or remains in the environment. To break

the trade-offs, to circumnavigate the obstacles and solve

the problems pointed out in Figure 2(b) – (d), an obstacle

avoidance behavior or a local path planner is required.

That means with respect to Voronoi partitioning, we can

formulate the constrained optimization problem

min
P

H (P) = min
[pi]

n
i=1∈Ω

∫

Vi

f (D(pi,x))φ(x)dx , (6)

with Ω the constraint set. The Voronoi tessellation becomes

a constrained centroidal Voronoi tessellation (CCVT) and the

centroid a constrained centroid in this case (see also [12]).

The robots form a constrained centroidal Voronoi configura-

tion.

C. A new approach for non-convex environments

Non-convex domains pose non-convex optimization prob-

lems with non-convex constraints. We present a new ap-

proach for Voronoi coverage of a non-convex environment

that builds on the Lloyd algorithm and TangentBug [14],

a local path planner with obstacle avoidance behavior. The

control strategy is composed of two layers of abstraction: (1)

Lloyd algorithm provides goal updates based on successive

computation of Voronoi regions and their centroids on the

upper layer (level 1), while (2) TangentBug plans the robot

path to the next centroid target position on the lower layer

(level 2). This can be formulated according to Figure 1 as a

continuing sequence of the two loops on level 1 and level 2,

executed in a distributed fashion on each of the robots.

TangentBug is a simple but efficient sensor-based planner,

capable of handling unknown environments by using a range

sensor. The range can be any value from zero (contact sensor)

to infinity (entire visibility domain), where the length of the

robot’s path usually decreases with increasing range of the

sensor. TangentBug shows the two characteristic Bug behav-

iors: ”motion-toward-target”, a form of gradient descent, and

”boundary-following”, a form of exploration of the obstacle

boundary, which both are desired behaviors in the context of

our control strategy and guarantee global convergence to a

target.

We next restate the convergence of TangentBug in follow-

ing lemma.
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Lemma 2 (Convergence of TangentBug): The

TangentBug algorithm converges globally toward a

reachable target inside a given planar environment for a

sensor of any range in a finite path.

Proof: Convergence directly follows from Theorem 1

and Theorem 2 in [13] for a contact sensor. The proof in case

of a non-zero range sensor follows the lines of the proofs

for the contact sensor, and it can similarly be shown that the

robot reaches the target in a finite path if target reachability

is given (see Theorem 1 and 2 in [14]).

III. VORONOI COVERAGE WITH LOCAL PATH PLANNING

We describe the proposed control strategy in detail in

this Section and provide an implementation that enables

present Voronoi coverage algorithms to deal with non-convex

environments. A description of the implemented navigation

algorithm, or non-convex coverage algorithm respectively,

is detailed in Algorithm 1. Algorithm 1 calls Algorithm 2,

the path planning algorithm, as subroutine. Each algorithm

implements one of the two loops 1 and 2 of the control

strategy, as outlined in Figure 1. We used the Lloyd algorithm

on level 1 to generate the Voronoi tessellation. The Euclidean

distance is used to implement the control law in this paper

(equation (5)), even though the geodesic distance measure

could just as well be applied.

Algorithm 2 is intentionally kept in a rather theoretic

description, for the purpose of generality and clarity, and

needs for well engineered implementations. We have chosen

TangentBug as planner for the path generation on level 2.

Although TangentBug only needs local knowledge of the

obstacles, global knowledge of the environment is assumed

for the execution of the Lloyd algorithm in our present

approach.

A. Non-convex coverage algorithm

For the algorithm descriptions we need to introduce some

new terminology. We follow a similar idea as in [15], and

introduce virtual generators to navigation and path planning.

We distinguish between real generators greal
i and virtual

generators gvirt
i as well as real targets treal

i and virtual targets

tvirt
i of robot i. greal

i stands for the actual robot position,

whereas gvirt
i is the desired robot position in disregard of

the obstacles in the environment, as if we were dealing with

a convex environment. tvirt
i is the centroid of the current

Voronoi region, which was computed based on gvirt
i at the

last update of loop 1. treal
i is the projected point p∗i of tvirt

i

to the environment Ω. In some situations, the virtual and

real points simply coincide. An obstacle boundary Voronoi

region is defined as the subset of all the Voronoi regions, for

which the condition Vi ∩ ∂Ω 6= /0 ∧ tvirt
i /∈ Ω applies. It is

part of the constrained minimization problem and is used as

condition to determine if the boundary constraint is active in

a region Vi.

The proposed control strategy computes the Lloyd algo-

rithm using only the virtual generators, which are able to

freely pass through obstacles and occlusions. The robots then

Algorithm 1 NON-CONVEX COVERAGE ALGORITHM

Require: Set of robots i = {1, ...,n} with initial positions pS
i

in environment Ω, and each robot i provided with:

- Localization and knowledge of φ(·) and Ω
- Voronoi region computation

- PATH PLANNING ALGORITHM1

1: initialize at time T S
i = 0: greal

i ← pS
i , gvirt

i ← pS
i

2: loop {Loop 1}
3: acquire positions pi and {gvirt

j }
k
j=1, j 6= i of k neigh-

bors

4: construct local Voronoi region Vi associated with gvirt
i

5: compute the mass centroid CVi
of the Voronoi region,

⇒ update virtual target position: tvirt
i ← CVi

6: run PATH PLANNING ALGORITHM

7: end loop

8: compute the final Voronoi region associated with greal
i

1 PATH PLANNING ALGORITHM is a convergent, standard navi-
gation algorithm with local path planning capability. In our case, the
TangentBug algorithm is used.

Algorithm 2 PATH PLANNING ALGORITHM

Require: Set of robots i = {1, ...,n} in environment Ω, and

each robot i provided with:

- Obstacle avoidance: sensing and computation

- Virtual target tvirt
i , and var← tvirt

i

1: loop {Loop 2}
2: if Vi is an obstacle boundary Voronoi region then

3: project tvirt
i to point p∗i onto ∂Ω, and set var← p∗i

4: end if

⇒ update real target position: treal
i ← var

5: execute next motion step toward real target treal
i , apply

obstacle avoidance to drive to next position pi

⇒ update real generator position: greal
i ← pi

6: simulate next motion step toward virtual target tvirt
i

⇒ update virtual generator position gvirt
i

7: end loop

8: return virtual generator gvirt
i

attempt to follow the virtual generators’ centroids. Through-

out execution of loop 2, virtual generators are moving toward

virtual targets (gvirt
i → tvirt

i ) in a simulated environment rep-

resentation where obstacles and non-convex segments of the

boundary do not exist. In parallel, real generators are moving

toward real targets (greal
i → treal

i ), while the robots approach

the real targets in the real environment taking obstacles into

account. Each robot computes the next virtual and real target

points upon arrival at the current real target point. Each

robot pretends to be on track for an ideal convex case and

communicates its simulated virtual generator position to the

neighbors. That leads to a situation where the robots update

their own Voronoi region, centroid and thus next target

point based on the virtual positions gvirt
i of their neighbors,

while each of the robots tries to get as close as possible to
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the set ideal target tvirt
i to reach its objective. The virtual

generators and targets allow for the implementation of the

Lloyd algorithm for non-convexity and maintain convergence

of the method. If the robots’ real positions greal
i were used for

the computation in turn, or if the points were continuously

projected onto the boundary during ongoing execution of the

navigation algorithm (tvirt
i = treal

i and gvirt
i = greal

i ), Lloyd

algorithm could be massively perturbed depending on the

shape of the obstacle and result in unfavorable behavior (e.g.

long paths) and undetermined configurations (e.g. oscilla-

tions). Therefore we design the algorithm in a way such that

the real and virtual points remain loosly coupled until the end

(we mention though that projecting continuously may have

potential; an algorithm that projects the generators in each

iteration step of the Lloyd algorithm is described in [12]).

Whenever the position of robot i in the final configuration

of a local minimum lies in the free space away from an

obstacle, the robot finally succeeds in reaching its set target

and greal
i = treal

i = tvirt
i = gvirt

i holds. In the case of a convex

environment, the virtual and real points simply reduce to

single real points and the algorithm results in the exactly

same behavior as for Voronoi coverage of convex regions,

i.e. the constraints are not active.

Bug algorithms naturally provide solutions to some of the

challenges of Algorithm 2. Consider the case when the final

target is contained in an obstacle. TangentBug comes with a

reachability test, where reachability is determined during the

”boundary-following” behavior by just circling around the

obstacle. If the exploration of the obstacle boundary is com-

pleted after one full circle without having found a leave point,

the target will be unreachable. In this case, according to

step 3 in Algorithm 2, the target point must be projected onto

the obstacle boundary in an optimal way (see Section IV).

To implement this target projection procedure, TangentBug

can be extended with the robots checking boundary positions

for optimality during ”boundary-following”. The optimal

position along the boundary is stored in memory. Finally,

projecting the point to the obstacle boundary in an optimal

way simply means driving to the recorded position directly.

Once the robots have converged to a final configuration, a

last Voronoi partition is computed before termination of the

non-convex coverage algorithm. This last step is required

because several robots might not be at the centroid of their

Voronoi region due to the projection procedure (at active

constraints). The final computation of the Voronoi tessella-

tion improves the overall partition and guarantees that each

dominance region assigned to a robot is at least a Voronoi

region. However, notice that the final robot configuration is

a constrained centroidal Voronoi configuration in general.

B. Further properties and extensions to the approach

The control strategy is general and flexible, and allows for

adaptions to many different applications:

1) Offline vs. online: The approach is composed of two

separate levels that are connected to each other. Level 1

and level 2 can be completely decoupled. First, a version

of Lloyd algorithm runs until convergence. Second, the

resulting optimal configuration is provided to the robots as

input for level 2. Each robot runs its local path planner

to drive to the final target position. Such a setup could be

applied in a centralized off-line approach. In contrast, if level

1 and level 2 are interlaced, the interaction between the two

levels enables online navigation. This is what we are mainly

interested in.
2) Discrete-time vs. continuous: When level 1 and level

2 are coupled, it is a question of the frequency, sequences of

level 1 and 2 follow upon each other. Classic Lloyd algorithm

means that for one iteration on level 1, several loops on level

2 are executed. The Voronoi regions are not recomputed until

the robots reach their current targets, i.e. the centroids of

their current Voronoi regions. Under the discrete-time version

of the Lloyd algorithm, the ratio between the number of

iterations of loops 1 and loops 2 can be adjusted. For a

ratio of unity and infinitesimal size of the iteration steps, a

continuous (or quasi-continuous) version of Lloyd algorithm

results. The update rates influence the overall behavior of

the robots and define system requirements, such as required

communication or sensing performance.
3) Known vs. unknown: Similar to Voronoi coverage

in convex environments, the new control strategy can be

applied to a priori known as well as unknown environments.

In known environments the density function φ(·) can be

modeled appropriately (i.e. obstacle regions are not included

in the domain Ω). The density function, the obstacle position

and shape may also be unknown and must first be sensed

by the robots. Extensions are toward exploration, where

obstacles are learned and mapped. The density function

can further be set externally to direct the robots to certain

locations of special interest (formation control).
4) Selection of path planner: The modularity of the

control strategy allows for the usage of any local path plan-

ner. Examples for popular obstacle avoidance methods are

artificial potential fields or vector field histograms, which can

be used for sensor-based navigation. In this context, further

investigations can look at the method’s performance, e.g.

change in path lengths or time to reach a final configuration,

dependent on a varying sensor range. If a map is available, a

superior path planner like the A* algorithm is a good choice.

For the selection of a path planner, methods with provable

convergence guarantees are most preferable.

IV. ALGORITHM ANALYSIS

For the algorithm analysis we make following assump-

tions. The robots are point robots in a planar configuration

space R
2. The environment is represented by the set of

reachable points Ω. Ω is bounded and the obstacles are

polygonal. Both the perimeter of the obstacles and the

number of obstacles are finite. The density function φ(·)
is defined over Ω and the distance measure D(·) is the

Euclidean distance.

A. Convergence

We prove convergence of the control stategy for the

implementation based on the Lloyd algorithm and the Tan-

gentBug algorithm for the case of planar configuration space.
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Similar proofs can be given for the control strategy for other

dimensions N 6= 2 and a case where variations on the Lloyd

algorithm or a local path planner other than TangentBug are

used.

Theorem 1 (Convergence of the control strategy): For a

non-convex environment Ω ⊂ R
2 Algorithm 1, based on

the Lloyd algorithm and the TangentBug algorithm, causes

the robots to converge to a constrained centroidal Voronoi

configuration.

Proof: We give a proof by contradiction. Suppose

that the robots do not converge to a constrained centroidal

Voronoi configuration. That must be a result of: i) the

TangentBug algorithm does not converge, or ii) the Lloyd

algorithm does not converge. i) By Lemma 2, if TangentBug

does not converge, some target point is not reachable. But

that contradicts the projection properties of the control strat-

egy (namely, that a projection of points to the environment

always exists). ii) By Lemma 1, if the Lloyd algorithm does

not converge, an iteration takes infinite time. But that implies

i), which, as we have already shown, leads to a contradiction

(namely, that TangentBug always converges to a fixed and

reachable target point).

B. Optimality

When a target position lies outside the environment,

tvirt
i /∈ Ω, as soon as the corresponding virtual generator

also leaves the environment, gvirt
i /∈ Ω, the real position of

the robot must be constrained to the environment boundary

∂Ω. Let us now see how the points can be projected to the

boundary in the following.

Given the control strategy in Algorithm 1 and that n robots

converge to the fixed points p∗i = argminpi∈Ω ‖pi − tvirt
i ‖,

i ∈ {1, ...,n}, in the environment Ω, which are projections

of the optimal target points tvirt
i /∈ Ω, with tvirt

i = CVi
, to

the environment in the Euclidean sense. Define the final

configuration vector P∗ = [p∗1, ...,p∗i , ..., p∗n]∈R
Nn. We show

in the theorem below that P∗ minimizes the high dimensional

optimization minP∈Ωn ‖P − T‖, where T =
[

tvirt
1 , ..., tvirt

n

]

.

Furthermore we show that this implies P∗ locally minimizes

a constrained optimization problem closely related to equa-

tion (6).

Theorem 2 (Optimality of the control strategy): The

final configuration of the robots has the following properties:

1) The point P∗ is closest to T in R
Nn in the Euclidean

sense, given the projection of tvirt
i to its closest constrained

point p∗i in R
N , ∀i ∈ {1, ...,n}.

2) The final step of the control strategy (target projection)

solves the constrained optimization problem of minimizing

the cost function H (P) for the resulting final Voronoi

partition V = {Vi}
n
i=1 with tvirt

i as generators.

Proof: First we prove 1) by contradiction. From the

projection of the targets results that ‖pi − tvirt
i ‖ is mini-

mized at p∗i , ∀i ∈ {1, ...,n}. Suppose that ‖P∗−T‖ is not

minimized. Then ∃‖P̂−T‖ such that ‖P̂−T‖ < ‖P∗−T‖,
i.e. (‖p̂1 − tvirt

1 ‖
2 + ... + ‖p̂n − tvirt

n ‖
2)1/2 < (‖p∗1 − tvirt

1 ‖
2 +

...+‖p∗n− tvirt
n ‖

2)1/2. Substituting all ‖p̂i− tvirt
i ‖ but one by

‖p∗i − tvirt
i ‖ leads to (‖p∗1− tvirt

1 ‖
2 + ...+ ‖p̂i− tvirt

i ‖
2 + ...+

‖p∗n − tvirt
n ‖

2)1/2 < (‖p∗1 − tvirt
1 ‖

2 + ... + ‖p∗i − tvirt
i ‖

2 + ... +
‖p∗n − tvirt

n ‖
2)1/2. From that it follows that ‖p̂i − tvirt

i ‖
2 <

‖p∗i − tvirt
i ‖

2, ∀i ∈ {1, ...,n}, which is a contradiction.

Now we prove 2). We can rewrite the cost function us-

ing the parallel axis theorem as H (P) = 1
2 ∑n

i=1 JVi,CVi
+

1
2 ∑n

i=1 MVi
‖pi−CVi

‖2. The first term on the right side

of the equation is constant for a fixed area Vi and the

mass MVi
is also constant. Since CVi

= tvirt
i , minP H (P) =

minP ∑n
i=1 MVi

‖pi−CVi
‖2 = minP ∑n

i=1 ‖pi−CVi
‖2, which is

implied by the projection.

Remark 1: The final configuration resulting from the

control strategy is a constrained centroidal Voronoi con-

figuration. We find that the costs can be further reduced,

when the robots compute a last Voronoi partition Vend after

convergence to the constrained target points p∗i . By recalling

that Voronoi partitions act as minimizers of H for strictly

increasing f (·) and CVTs as minimizers of any Voronoi

tessellation V , we can derive lower and upper bounds on

the costs: H (tvirt ,V )≤H (p∗i ,Vend)≤H (p∗i ,V ).

Remark 2: Theorem 2 shows the interesting result that the

projection solves a constrained optimization problem. In fact,

the optimal configurations to which our algorithm converges

are those ”orthogonality points” described in [10] (Section

IV) as being desirable configurations. The algorithm in that

work is proven to drive the robots to orthogonality points for

a certain class of environments (convex regions with isolated

holes) with considerable computational complexity. Our con-

troller is straightforward by comparison, and is guaranteed to

drive the robots to the closest possible orthogonality points

to the true centroids. Specifically, our algorithm will not get

caught in the configurations mentioned in [10] Remark 4, in

which the centroid is attainable, but the robots are stuck at

orthogonality points arbitrarily far from the centroid.

V. EVALUATION IN SIMULATION

Next we present simulations to verify the proposed control

strategy and highlight some interesting aspects. The non-

convex coverage algorithm and its implementation are fully

decentralized. The simulations are carried out in Matlab. The

robots are point robots, the sensor range is infinite, i.e. the

sensor covers the whole visible area, and the environment

is assumed to be known a priori. For simplicity a uniform

density function φ(·) is used.

Figure 3 shows the deployment of five robots in a U-

shaped environment. The robots cover the environment and

converge to a final configuration, which is a centroidal

Voronoi configuration in this case. The TangentBug algo-

rithm provides the illustrated obstacle avoidance behavior

and guides the robots around the obstacle’s corners. The

plot in Figure 3 presents the total cost H of the real and

virtual generators for the robot configuration. It is interesting

to see how the cost for the real generators approaches the cost

for the virtual generators over time. The cost of the virtual

generators falls off as soon as a robot reaches its current

target point.
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Fig. 3. Voronoi coverage in a U-shaped environment (obstacle in black). From left to right: five robots (blue circles) start from an initial position and
move along the shown trajectories from one current target to the next target (red crosses) until they reach a final configuration. The next target is computed
by the Lloyd algorithm as soon as a robot reaches its current target. The green lines illustrate the trajectories of the virtual generators. Two green lines
intersect the obstacle’s corners and show that an obstacle avoidance behavior is needed to cover this environment. The cost H for the configuration of
the virtual and the real generators over time is shown in the plot on the right.

[m] [m]

[m] [m] [m]

[m]

Fig. 4. Left: Voronoi coverage in an environment with free-standing obstacles (obstacles in black). The virtual generator and target of one robot lie inside
an obstacle. The robot tries to reach it and starts circling around the obstacle. Finally, the target is projected to the closest point on the obstacle’s boundary
(yellow cross). The centroidal Voronoi tessellation (yellow) results from the virtual generators at the optimal virtual target, while the Voronoi diagram in
blue is the last partition computed by the robots in a final step. Right: E-puck robot platform equipped with markers for tracking.

On the left of Figure 4, five robots cover an area with two

free-standing obstacles. The virtual generator and the virtual

target of one of the robots are contained in an obstacle. After

the robot has explored the obstacle and completed one full

cycle, it projects the virtual target to the closest point on the

boundary. At the end, a last Voronoi tessellation is computed

to improve the final partition (the resulting cost is reduced

this way once more).

VI. EXPERIMENTS WITH REAL ROBOTS

We demonstrate in the following experiment the appli-

cability of our control strategy to real robots and non-

convex environments. For the experiment we use the e-

puck robot platform [16] (see Figure 4), a small two-wheel

differential drive robot, with a diameter of 7 cm. The e-puck

is equipped with a dsPIC microcontroller, different sensors

(e.g. IR proximity sensors) and actuators (e.g. LEDs). The

e-puck is powered by a Li-ion battery and offers a RS-232

and a bluetooth interface for communication.

We built a test setup with an overhead camera (USB-

camera with resolution of 1280 x 960 pixels) to track the

e-puck robots on a 1 m x 1 m ground plane in a distance

of 1.35 m from the camera. Each e-puck is fitted with a

marker showing a different symbol as depicted in Figure 4.

We adapted the ARToolkit augmented reality software [17] to

detect the markers and track the robots’ positions and orien-

tations. It further offers the possibility to overlay the ground

plane with virtual obstacles and environment boundaries.

The images are read into a host computer and processed.

The positions and orientations of the robots from the tracker

are passed on to the navigation algorithm which plans the

path for each of the robots for the next time step. The host

computer continuously sends information over bluetooth and

operates the robots by remote control. Each robot receives

the commands and actuates its stepper motors, which closes

the control loop. The algorithms for tracking and for the

actual path planning and robot control all run in Matlab.

Figure 5 shows the initial positions and final configuration

after completion of a test run with 5 robots for the U-

shaped environment. The robots succeed to cover the non-

convex environment. We ran seven experimental trials with

the robots for the given initial positions in the U-shaped

environment and emulated sensors with infinite sensor range.

The paper is accompanied by a video 1 that shows one

particular run of the experimental trials as well as simulations

for the environments in Figure 3 and 4 and other more

complex environments.

The experimental results match with the simulations.

While hardware noise and tracking errors only cause small

deviations, a main difference in the trajectories comes from

adjustments in the algorithm to account for the non-zero size

of the real robots by a safety margin along the boundary. The

1The reader also refers to www.asl.ethz.ch.
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Fig. 5. Voronoi coverage in a U-shaped environment. From left to right: five robots move according to the control strategy from an initial configuration to
a final optimal configuration. They avoid the obstacle and cover the non-convex environment. The plot on the right shows the initial and final configurations
over the test runs. Ideal simulated positions in black (cross: initial position, dot: final position) and real experimental positions in color (cross: initial
positions, circle: final positions). The magenta circle inside the obstacle shows a failed experimental run where the tracker lost the marker of one robot.

average position error over the robots and the experimental

runs is 5.42 cm. The duration of one experimental run is

4.56 min in average. Though the convergence of the robots

toward the final configuration was limited by the update rate

of the tracking system rather than the robot platform or the

control strategy itself.

VII. CONCLUSION

This paper presented a new control strategy to provide

Voronoi coverage in non-convex environments. We analysed

the problems of Voronoi coverage with non-convex environ-

ments in detail and designed a navigation algorithm based on

the Lloyd algorithm and the TangentBug algorithm. Lloyd

algorithm and TangentBug are interlaced and successively

iterated to drive a group of robots to a final constrained

Voronoi configuration. Lloyd algorithm updates the current

goal position, while TangentBug runs the path planning.

TangentBug is modified with a projection procedure to

constrain outlying target points to the environment. The

constrained points resulting from the projection were shown

to be solutions to the constrained optimization problem of

finding a robot configuration for the final Voronoi partition

of minimal cost. We proved both convergence and optimality

of the proposed control strategy, by applying the concept

of virtual generator and target points to multi-robot path

planning. The approach has been evaluated in simulations

and physical experiments with a team of networked robots.

We further demonstrated that the approach is general and

offers many interesting extensions, such as applying Voronoi

coverage to unknown environments, using a different path

planner better suited to a specific application or modifying

the coupling between Lloyd algorithm, path planner and

projection procedure.

In our future work we are interested in Voronoi coverage

in combination with sensor-based navigation in unknown and

non-convex environments. A direction will be to extend the

control strategy for adaptation to and learning or mapping of

the obstacles. Another step is to implement Voronoi coverage

directly on the robot platform.
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