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Abstract—In the last decades, tremendous progress has been
made in the field of autonomous indoor navigation for mobile
robots. However, these approaches assume the structural part
of the environment to be completely static. In practice, movable
parts of scenes, e.g. doors, frequently violate this assumption
which leads to poor performance. Also, mobile manipulation
capabilities can only be utilized, if the robot knows about the
movability of objects.

In this paper, we address an important part of these problems
by the explicit representation of doors as door leaves and joints.
We propose to augment standard approaches to navigation like
2D occupancy grid mapping and Monte-Carlo-Localization.
Our algorithm detects doors during mapping and represents
their movability adequately in the map. During localization,
the state of doors is estimated from measurements while it
is simultaneously used to improve localization robustness and
accuracy. In experimental results we demonstrate superior
performance of our method compared to a state-of-the-art
approach to localization.

I. INTRODUCTION

In recent years, robust and efficient approaches to au-

tonomous robot navigation in indoor environments have been

developed. Research in this field has produced a vast set of

algorithms and tools to address the problems of simultaneous

localization and mapping (SLAM) and motion planning.

A state-of-the-art approach to indoor navigation is to use

precise laser range finders (LRFs) to acquire a map, to

represent the map in a 2D occupancy probability grid, and to

apply probabilistic filters like particle filters for robust state

estimation.

However, the majority of these approaches assume the

environment to be completely static. Thus, movable parts of

the environment, e.g. doors, violate this core assumption and

may lead to poor performance or even failure. To cope with

dynamic objects, e.g. people, previous work investigated to

detect which measurements are caused by dynamic objects

and to neglect them in further processing stages.

Although this procedure would also increase robustness

with movable objects, the explicit representation of the mov-

able parts of the environment instead could further increase

navigation performance: The robot can localize itself through

measurements to consistently estimated movable objects.

Also, if the robot has mobile manipulation capabilities, the

robot may utilize information about the movability of objects

to deliberatively achieve its goal, e.g. by opening doors.
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Fig. 1: Doors are typical examples for movable parts that

have significant impact on the environment structure.

Doors are typical examples for movable parts in indoor

environments. Especially in corridors, the opening of a door

has significant impact on the structure of the environment (s.

Fig.1). Thus, we propose to extend a standard approach to

indoor navigation by an explicit representation of doors.

We represent the static parts of the environment in a

2D occupancy grid map. In addition, doors are modeled in

parametrized form as linear segments hinged on a vertical

axis. We also attribute an opening angle range to each door

which is inferred from observations. A 2D LRF measures

bearing and distance to reflecting surfaces. From these mea-

surements, we build the map through standard occupancy

grid mapping. We detect doors where linear segments in

the scan mismatch with the map. Measurements of dynamic

objects that do not correspond to doors are not used for

mapping. For localization, we present an extension of the

Monte-Carlo-Localization (MCL) algorithm. While the robot

localizes itself with respect to the static parts of the map

and doors, it concurrently estimates the door states from the

measurements.

In experiments, we demonstrate that our approach yields

superior results compared to a state-of-the-art localization

scheme that assumes a static map.

The remainder of this paper is structured as follows: After

a brief discussion of related work, we describe our door

detection and mapping algorithm in Sec. III. We detail how to

localize with respect to this map and how to simultaneously

estimate door states in Sec. IV. In Sec. V, we present exper-

imental results. We conclude the paper with a discussion of
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our approach and future work.

II. RELATED WORK

In the context of navigation and environment perception,

movable objects have attracted some attention in the past.

To improve localization performance in the presence of

movable objects, Stachniss and Burgard [13] proposed an

approach that uses local grid maps of typical configurations

of the environment. Schulz and Burgard [12] estimate the

state of dynamic objects, especially doors, in a dual ap-

proach to robot localization and object state estimation. They

represent the belief over robot pose and object states as

distinct particle sets. Instead, we estimate both quantities in

a joint distribution to consider their correlations. We also

describe how to detect doors and how to augment maps

automatically. An approach to estimate binary door states

(i.e. open or closed) and to use them to improve localization

has been presented by Avots et al. [3]. They assume that a

map containing doors is a priori known.

For mobile manipulation purposes, Petrovskaya and

Ng [11] developed a method to precisely localize a robot

relative to doors. They model doors as polygons and, similar

to our approach, apply a Rao-Blackwellized particle filter to

localize the robot and estimate the state of the door. In our

approach, we do not require to precisely model the position

and shape of doors in advance. Also, as we model to measure

the distance to doors, our observation model is very similar to

the well known end-point model of laser range beams. Thus,

it can be easily and consistently integrated into approaches

that apply the end-point model.

To perceive movable objects it is desirable to be able to de-

tect them automatically during or after the mapping process.

Biswas et al. [4] detect objects that moved between scans of

the environment. They describe the shape of detected objects

as local grid maps and use these to recognize objects in

future scans. The approach of Anguelov et al. [2] combines

laser range sensing with vision to learn models of doors in

corridor environments. The map is represented as line seg-

ments with shape, color, and movability attributes, which are

extracted from data in a batch process through expectation-

maximization. Our approach detects doors online during the

map building process and provides a representation directly

suitable for localization purposes.

Perception of articulated objects requires accurate kine-

matic models. Several approaches to learn kinematic models

and topologies of articulated objects using e.g., vision [15]

or 3D range data [1], have been presented in the literature.

As our approach focusses on state estimation of door leaves

hinged on a rotational joint, we use an appropriate predefined

model to explain the observed rigid body transforms.

Several approaches to SLAM have been designed to

operate in dynamic environments. Hähnel et al. [8] apply

expectation-maximization to classify if measurements corre-

spond to static or dynamic objects. Only measurements of

the static environment are finally used for SLAM. Wang and

Thorpe [17] acquire grid maps through scan-matching based

SLAM. They detect dynamic objects where mismatches

between the current scan and the map occur, and remove

them from the map of static objects. Compared to these ap-

proaches, we do not aim to detect measurements of dynamic

objects to solely exclude them from the map. Instead, we

explicitly represent a subset of such objects, namely doors,

in the map as movable features of the environment and

utilize them for localization. We also reject measurements

of dynamic objects that do not correspond to doors during

the mapping process.

III. DOOR DETECTION AND MAPPING

We assume that the environment consists of static parts,

movable doors, and other dynamic objects. Movable objects

typically appear static in a sequence of scans, but they may

rapidly change their state during or between observations. Es-

pecially doors change their state frequently between environ-

ment snapshots. Such changes can modify the environment

structure as measured by laser range finders significantly.

We detect these changes during the mapping process and

recognize doors as linear features that mismatch between

scan and map. As a byproduct we exclude measurements of

other dynamic objects from the mapping process.

Occupancy grid maps are an efficient mean to represent

the static structure of an environment. They do not impose

strong assumptions on the environment structure in contrast

to feature-based maps. However, the independent treatment

of the grid cells makes the representation of dynamic objects

that span over multiple grid cells difficult. Thus, we propose

to augment occupancy grid mapping by detecting door

features in the map. We remove them from the grid map

and replace them with a parametrized door feature.

In occupancy grid mapping, the environment is discretized

at a fixed resolution. Each cell contains a probabilistic

estimate of its binary occupancy state. In addition, we assign

further attributes to each cell, similar to the notation in [9]:

A transient cell has once been estimated to be unoccupied

with a high likelihood, and thus may only cover transient

objects. This is indicated by the occupancy probability falling

below some threshold. Complementarily, a cell is denoted

seen-occupied, if its occupancy probability ever exceeds a

second threshold. Small scan registration errors can cause

spurious measurements in cells close to static features in the

environment. Thus, only cells within a neighborhood of cells

with low occupancy probability are marked transient.

We use these attributes to classify new measurements as

either static or dynamic. Measurements that fall into transient

cells are collected in the set of dynamic measurements (s.

Fig. 2a). The remaining static measurements are further

processed in occupancy grid mapping. It is possible that

doors and other dynamic objects appear static since their first

observation, but change their state during the map building

process. For this reason, we detect when previously seen-

occupied cells attain low occupancy probability. The mean

points of these cells are added to a second set of dynamic

points.

In both sets we detect lines by first clustering the points
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(a) (b) (c)

Fig. 2: (a) Scan points (red) falling into transient cells are classified as measurements of dynamic objects. (b) In each scan,

lines (blue) are extracted from dynamic measurements. (c) Doors are extracted where lines (blue/green) in multiple scans

rotate about a common joint.

by proximity:

Ci = {p | ∃q ∈ Ci : ‖p − q‖ < ǫ}. (1)

Each cluster Ci potentially corresponds to an object. There-

fore, it is necessary that the distance of the closest measure-

ments of different objects in a scan is greater than ǫ.

In each cluster, we determine all possible lines with a

minimal length δ,

Li = {(p, q) ∈ Ci × Ci | ‖p − q‖ > δ}. (2)

If the maximal angle between any two lines extracted from

cluster points of the same time instance exceeds a threshold,

we consider the cluster as non-line object. Otherwise, we

determine the mean line segment. Its length is given by

the longest segment in Li. The line object is added to a

persistent set of potential door leaves, if its length is within

a specific range [λmin, λmax]. Fig. 2b shows lines detected

in the dynamic measurements of a scan.

In each iteration of the map building process, we extract

door objects from the set of potential door leaves. As

we model doors that rotate about a fixed hinge joint, we

determine line objects with close end points. We require that

a door is perceived in at least two distinguishable opening

angles, i.e. the angle between two candidate line objects has

to be significantly large. By this we can avoid false classifi-

cations of other linear appearing dynamic objects, as long as

they do not rotate about one of their endpoints. Additionally,

we exclude objects which rotate more than 180◦ about the

hinge axis to improve the robustness of our approach in office

environments. Though, this constraint has to be relaxed in

environments with e.g. swinging doors.

We represent an extracted door as the position of the door’s

hinge joint, the length of the door leaf, a reference opening

angle in global coordinates, and an observed opening angle

range.

IV. SIMULTANEOUS LOCALIZATION AND

DOOR STATE ESTIMATION

In standard approaches to mobile robot localization like

Monte-Carlo-Localization with occupancy grid maps, the

map is assumed static. Thus, only the robot pose is estimated

during localization. However, typical indoor environments

contain movable parts that violate the assumption of a static

environment.

To improve localization performance, we propose an ex-

tension to MCL that localizes the robot with respect to our

map representation proposed in Sec. III. For this purpose,

localization and door state estimation have to be performed

simultaneously. We formulate this problem as the estimation

of the joint probability distribution p(x1:t, dt|z1:t, u1:t,m),
where x1:t denotes the trajectory of the robot until time

step t, dt is a vector of door opening angles, and m

is the static map. In each time step, the robot acquires

measurements zt in the form of laser range scans. Its motion

actions are summarized in the control inputs ut.

Similar to the FastSLAM approach [10] to simultaneous

localization and mapping, we factor this distribution as

p(x1:t, dt|z1:t, u1:t,m) =

p(x1:t|z1:t, u1:t,m)
∏
k

p(dk,t|x1:t, z1:t, u1:t,m) (3)

into a trajectory estimation problem and the estimation of

individual door states conditioned on the trajectory. For this

factorization we make the assumption that door states are

stochastically independent of each other given the robot

trajectory and the observations.

We solve this estimation problem with a Rao-

Blackwellized particle filter: We apply particle filtering to

the trajectory estimation problem. In addition to a pose

sample, each particle maintains individual normal distributed

door state estimates. For the estimation of the door opening

angles, we use linear Kalman filters [18].

In each time step, the particle filter algorithm proceeds as

follows:

1) Sampling: The sample pose x
[i]
t of each parti-

cle i is propagated according to the robot motion

model p(xt|xt−1, ut). Afterwards, the trajectory estimate of

the new particle set is distributed according to the proposal

distribution p(x
[i]
1:t|z1:t−1, u1:t,m). The door states are also

updated with a simple state transition model dk,t = dk,t−1 +
ǫt with ǫt ∼ N (0, σ2

d,t). We assume here that the state of
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doors may change unpredictably over time and that the robot

does not actively influence this state.

2) Importance: The particles are weighted with the mis-

match between target and proposal distribution:

w
[i]
t =

p(x
[i]
1:t|z1:t, u1:t,m)

p(x
[i]
1:t|z1:t−1, u1:t,m)

(4)

Applying Bayes rule and standard Markov assumptions

we arrive at

w
[i]
t = η p(zt|x

[i]
1:t, z1:t−1,m)

= η
∏
j

p(zj,t|x
[i]
1:t, z1:t−1,m) (5)

where we assume stochastic independence between individ-

ual beams zj in a scan.

For beams that measure the static part of the environment

the observation likelihood is given by p(zj,t|x
[i]
t ,m). When

a beam measures a door dk, the door state estimate has to

be incorporated into the observation likelihood by marginal-

ization:

p(zj,t|x
[i]
1:t, z1:t−1,m)

=

∫
p(zj,t, dk|x

[i]
1:t, z1:t−1)ddk

=

∫
p(zj,t|x

[i]
t , dk) p(dk|x

[i]
1:t−1, z1:t−1)ddk

(6)

We model observations in the occupancy grid map with

the endpoint model. It assumes that the measurement of the

distance of a beam’s endpoint to the closest occupied cell

is normal distributed. Analogously, our observation model

of doors measures the distance of the beam’s endpoint to

the door leaf. The convolution of the observation likelihood

with the estimated door state probability in eq. (6) can not be

computed in closed form. Instead we approximate it through

first order taylor expansion and error propagation. As both

models measure the same quantity, we can use maximum

likelihood data association to determine the correspondence

of a beam to either a door or to the static map.

Note that we represent the doors’ hinge joints both as oc-

cupied cells in the grid map and as endpoints of door-leaves.

By our association method we prevent double integration of

information.

3) Door State Update: The door state estimates are main-

tained in each particle individually and they are conditioned

on the pose sample of the particle. Thus, we find line

segments in the scan zt and associate them for each particle

to corresponding door features in the map from the particle’s

pose. We employ a linear Kalman filter to update the door

state estimates with the observed door angles.

Although the door states have to be updated for each

particle individually, the update can be implemented very

efficiently. We detect lines only once in a scan with the

Douglas-Peucker algorithm [5] (s. Fig. 3) which efficiently

extracts a polygon on the scan points. For each particle, this

polygon is transformed to the sample pose. Then, for each

door, we find lines that have an endpoint close to the hinge

Fig. 3: Doors (red) are observed as line segments (black) in

a scan (blue). To detect lines we extract a polygon (purple)

that approximates the shape of the current laser scan. As each

particle maintains its own door state estimate, the lines are

transformed to the particle poses. For each door, correspond-

ing line observations are determined. In this example, segment

4 is an observation of door 1, as it ends close to the door’s

hinge and has a similar length. Segment 3 meets none of the

two requirement. As the line segment corresponding to door 2

is merged with adjacent walls, our algorithm still uses line 3

as observation of door 2. No segment corresponds to door 5.

positions of the door, have similar length, and are oriented

within the door’s opening angle range.

Doors that are parallel to adjacent walls may not be

distinguishable from these walls. Thus, if no line segment

could be found for a door, a potentially longer segment is

searched with low point-to-line-distance to the door hinge

position. This segment can still be used to measure the angle

of the door.

4) Resampling: To concentrate the particles on the rel-

evant parts of the state space, a new particle set is drawn

from the current set. The probability of a particle to be

contained in the new set is proportional to its weight. We

apply low-variance-sampling [16] to reduce the chance of

particle depletion.

V. EXPERIMENTAL RESULTS

We evaluate the applicability and the performance of

our approach in localization and mapping experiments. We

compare our method with an implementation of Monte-

Carlo-Localization with occupancy grid maps. For data ac-

quisition we used our robot platform Dynamaid [14] and the

simulation environment Stage of the Player/Stage project [6].

Dynamaid is equipped with a SICK S300 laser range finder.

The experiments with Dynamaid have been conducted in an

office environment at the University of Bonn.

A. Door Detection and Mapping

Our approach augments occupancy grid mapping in known

poses with the detection and modeling of doors. To obtain a

trajectory for mapping we apply the FastSLAM 2.0 imple-

mentation GMapping [7] which is robust to dynamic changes

in the environment to some degree. To collect test data, the

4898



robot moved through the corridor in Fig. 1 and Fig. 4 back

and forth. The door states were changed manually in between

the two passages. Our method correctly discovers all doors

that appear in at least two distinguishable opening angles.

As our approach depends on the classification of cells as

transient or seen-occupied, these regions have to be observed

sufficiently often. By this it is possible that door detections

are missed in the initial mapping stages, when they only

move one time during mapping.

B. Localization Accuracy

Accurate localization requires that distance to features

is distinctively measurable along perpendicular directions.

In a corridor, walls and doors are the main features of

the environment. For standard approaches to localization,

movable objects must be removed from the map of static

objects. Thus, they can mainly use walls as features for

localization.

In most buildings, walls are either parallel or perpendicular

to each other. If the robot moves along a corridor, it measures

wall segments mainly aligned with the corridor direction.

Thus, when only walls can be used for localization, its

accuracy along the corridor direction is lower than in the

orthogonal direction. If doors are present, our approach can

measure distance at doors along the corridor direction, as

their orientation is not restricted to the main orientations

of the building. In our experiments, we denote the corridor

direction as x- and its orthogonal direction as y-direction.

Another source of inaccuracy are errors in the model. If

the current states of doors are not represented in the static

map, the pose estimate is distorted towards poses that yield

erroneously a higher scan likelihood.

In our experiments, the simulated robot moved along

the corridor. We evaluated the performance of standard

MCL with doors manually removed from the map and our

approach for different opening states of doors. The parameter

sets used in both approaches were the same, with the excep-

tion of parameters related to door state estimation. To obtain

comparable results we didn’t alter the door configuration

in the corridor during test runs. See Fig. 4 for an example

configuration of our corridor.

Fig. 5 shows the average localization error over 10 runs,

when the doors are closed. Both approaches can measure

the end of the corridor. However, while our approach has a

constantly low localization error of about 0.05m, the error

in standard MCL fluctuates between 0.05m and 0.22m. This

is due to the fact that in standard MCL, the pose estimate

is biased towards positions, in which large parts of the scan

match with the walls in the static map. In our approach, the

doors are correctly estimated as closed, such that range can

be consistently measured on doors.

If doors are open, they may occlude parts of the static

environment. On the other hand, parts of adjacent rooms

become visible through open doorways. From Fig. 6 it can

be seen that our approach outperforms standard MCL under

such conditions. Fig. 7 shows similar results when the doors

are partially opened.

(a)

(b)

Fig. 4: Top: Grid map of the environment used in the ex-

periments with minimum and maximum door angles. Bottom:

Likelihood field of the static map with estimated door states.

Fig. 5: Localization error along a corridor with closed doors

in simulation: While both standard MCL (red/solid) and our

approach (blue/dashed) can measure the end of the corridor,

the error in standard MCL fluctuates. As movable objects are

missing in the standard MCL map, the pose estimate is biased

towards poses with higher scan likelihood.

When the doors are opened, the nearly opposing doors

on the right side of our corridor compel the robot to drive

two tight curves. This entails a fast increase in the pose

error caused by the robot’s odometry. Hence, the localization

accuracy temporarily drops until the pose belief converges to

the correct pose again.

C. Global Localization

In the preceding section we have evaluated the localization

accuracy of an initially localized robot. Another important

aspect of a localization approach is the ability to perform

global localization if the robot’s initial pose is unknown.

To successfully estimate the correct pose it is essential to

sample the target distribution sufficiently dense to obtain

hypotheses that approximate the correct pose. Also, to keep

the distribution of particle poses consistent, a correct map is

necessary.

We evaluate the robustness of our approach during global

localization and compare it with MCL. Higher success rates

at specific numbers of particles indicate higher robustness.

The number of particles is adapted in relation to the uncer-
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Fig. 6: Localization error along a corridor with open doors

in simulation: Open doors occlude parts of the static map. On

the other hand, adjacent rooms become visible through open

doorways. Our approach (blue/dashed) outperforms standard

MCL (red/solid) in this environment.

Fig. 7: Localization error along a corridor with partially

opened doors in simulation: Our approach (blue/dashed) is

more accurate than standard MCL (red/solid) under these

conditions.

tainty in the robot’s pose. In our experiments we assume the

robot to be localized if the localization error and the number

of particles falls below a threshold. Each initial particle set

size is evaluated in 10 global localization runs.

In a first simulation experiment we compare the number

of particles necessary to perform global localization in a

corridor environment with closed doors. Although global

localization with MCL is possible in 80% of the tests with

10,000 particles, our approach succeeded in all cases with

this number of particles (s. Fig. 8).

In experiments with 50,000 particles the best particle

was correctly localized with our approach. However, due to

performance issues, the update rate was low and the amount

of particles could not be reduced sufficiently. With this large

amount of particles, MCL achieves 100% success rate.

In a second simulation experiment, the doors are partially

open. This changes the corridor environment significantly.

While MCL only succeeds with large particle set sizes over

50,000 particles, our approach demonstrates robust global

Fig. 8: Percentage of successful global localization at-

tempts with closed doors in 10 simulated runs. Our approach

(blue/solid) performs mostly better than MCL (red/striped).

Fig. 9: Percentage of successful global localization attempts

with partially open doors in 10 simulated runs. Our approach

(blue/solid) outperforms MCL (red/striped) clearly.

localization with only 5,000 particles.

To demonstrate the applicability of our system in real

world scenarios we used our approach on our mobile robot

platform Dynamaid. We evaluated the ability to localize

globally with initial particle sets of 1,000 to 10,000 particles.

For MCL, we also tested 20,000 particles. Each configuration

was evaluated in eight test runs. We assumed the global

localization to be finished if the pose estimate converged

to a unimodal distribution peaked at the robot location.

Fig. 10 shows the number of successful localization

attempts. The results obtained during the simulation runs

are confirmed by the experiments with the real robot. Our

approach succeeded to globally localize the robot in five out

of eight runs with only 1,000 particles. MCL achieves a

comparable success rate with much more particles. While our

method succeeded in every test with 10,000 particles, 20,000

particles seem not to suffice for robust global localization

with MCL.

VI. DISCUSSION

In this paper, we presented an approach to mobile robot

localization and mapping that utilizes doors as movable fea-

tures of the environment. Our method enhances occupancy
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Fig. 10: Percentage of successful global localization attempts

on a real robot. Our approach (blue/solid) outperforms MCL

(red/striped) and was successful in all test runs with 10,000

particles. We evaluated the approaches with partially open

doors (O) and closed doors (C).

Fig. 11: Trajectories of a simulated mobile robot navigating

to a goal 2 via a subgoal 1 in a room. The room is accessible

through two doors of which only the left is open. Left: without

considering door states. Right: with our approach incorporat-

ing door states (blue).

grid maps with parametrized models of doors. We propose a

particle filter algorithm that enables a robot to localize with

respect to our augmented map and to concurrently estimate

the state of doors.

In experiments we demonstrate that our approach

yields superior results compared to standard Monte-Carlo-

Localization with occupancy grid maps. In the presence of

doors, it improves localization accuracy significantly, if the

assumption on a static environment is violated. For global

localization, the measurement of doors additionally reduces

the ambiguity of the environment. With our approach, the

robot can relocalize itself within shorter time and more

robustly.

Action Planning

Information about movable objects like doors can be useful

to improve action planning in the navigation or mobile

manipulation context. For instance, to plan efficient paths it is

valuable to estimate the state of doors in the environment, if

the robot has no manipulation capabilities. Fig. 11 compares

the trajectories of a simulated robot following a plan with two

subgoals with and without door state knowledge. For mobile

manipulation purposes, the robot needs the ability to acquire

movability properties of an object. To open doors, the robot

requires knowledge about the position of the hinge joint, the

length of the door leaf, etc., as given in our representation

of doors.

Future Work

In future work, we plan to integrate our proposed method

into SLAM and to generalize our approach to arbitrary

dynamic objects. More generally, the acquisition of adequate

models of dynamic objects, the compact representation of ob-

ject knowledge, and the efficient state estimation of dynamic

objects within the SLAM and mobile manipulation context

is an interesting topic for future research.

REFERENCES

[1] D. Anguelov, D. Koller, H.-C. Pang, P. Srinivasan, and S. Thrun.
Recovering articulated object models from 3d range data. In Proc.

of the conf. on Uncertainty in Artificial Intelligence, pp. 18-26, 2004.
[2] D. Anguelov, D. Koller, E. Parker, and S. Thrun. Detecting and

modeling doors with mobile robots. In Proc. of the IEEE International

Conference on Robotics and Automation (ICRA), 2004.
[3] D. Avots, E. Lim, R. Thibaux, and S. Thrun. A probabilistic technique

for simultaneous localization and door state estimation with mobile
robots in dynamic environments. In Proceedings of IROS, 2002.

[4] R. Biswas, B. Limketkai, S. Sanner, and S. Thrun. Towards object
mapping in non-stationary environments with mobile robots. In
Proceedings of IROS, pages 1014–1019, 2002.

[5] D. Douglas and T. Peucker. Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature.
Cartographica: The International Journal for Geographic Information

and Geovisualization, 10(2):112–122, 1973.
[6] B. Gerkey, R. Vaughan, and A. Howard. The player/stage project:

Tools for multi-robot and distributed sensor systems. In Proc. of the

11th int. Conference on Advanced Robotics, pages 317–323, 2003.
[7] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for

grid mapping with rao-blackwellized particle filters. IEEE Transac-

tions on Robotics, 23(1):34–46, 2007.
[8] D. Hähnel, R. Triebel, W. Burgard, and S. Thrun. Map building

with mobile robots in dynamic environments. In IEEE International

Conference on Robotics and Automation, pp. 1557–1563, 2003.
[9] J. Modayil and B. Kuipers. Bootstrap learning for object discovery. In

Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), volume 1, 2004.
[10] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A

factored solution to the simultaneous localization and mapping prob-
lem. In Proc. of AAAI National Conference on Artificial Intelligence,

pp. 593–598, 2002.
[11] A. Petrovskaya and A. Ng. Probabilistic mobile manipulation in

dynamic environments, with application to opening doors. In Proc. of

the Int. Joint Conference on Artificial Intelligence (IJCAI), 2007.
[12] D. Schulz and W. Burgard. Probabilistic state estimation of dynamic

objects with a moving mobile robot. Journal of Robotics and

Autonomous Systems, 34(2-3):107–115, 2001.
[13] C. Stachniss and W. Burgard. Mobile robot mapping and localization

in non-static environments. In Proc. of the National Conference on

Artificial Intelligence, volume 20, page 1324, 2005.
[14] J. Stückler and S. Behnke. Integrating Indoor Mobility, Object

Manipulation and Intuitive Interaction for Domestic Service Tasks.
In Proc. of the 9th IEEE-RAS Int. Conf. on Humanoid Robots, 2009.

[15] J. Sturm, C. Stachniss, V. Pradeep, C. Plagemann, K. Konolige, and
W. Burgard. Learning Kinematic Models for Articulated Objects. In
Proc. of the Int. Conf. on Artificial Intelligence (IJCAI), 2009.

[16] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press,
2005.

[17] C. Wang and C. Thorpe. Simultaneous localization and mapping with
detection and tracking of moving objects. In Proc. IEEE International

Conference on Robotics and Automation, pages 2918–2924, 2002.
[18] G. Welch and G. Bishop. An introduction to the Kalman filter.

University of North Carolina at Chapel Hill, Chapel Hill, NC, 1995.

4901


