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Abstract— Scene recognition is a highly valuable percep-
tual ability for an indoor mobile robot, however, current
approaches for scene recognition present a significant drop in
performance for the case of indoor scenes. We believe that
this can be explained by the high appearance variability of
indoor environments. This stresses the need to include high-
level semantic information in the recognition process. In this
work we propose a new approach for indoor scene recognition
based on a generative probabilistic hierarchical model that uses
common objects as an intermediate semantic representation.
Under this model, we use object classifiers to associate low-
level visual features to objects, and at the same time, we use
contextual relations to associate objects to scenes. As a further
contribution, we improve the performance of current state-of-
the-art category-level object classifiers by including geometrical
information obtained from a 3D range sensor that facilitates
the implementation of a focus of attention mechanism within a
Monte Carlo sampling scheme. We test our approach using real
data, showing significant advantages with respect to previous
state-of-the-art methods.

I. INTRODUCTION
Mobile robotics has made great advances, however, current

mobile robots have very limited capabilities to understand
their surrounding. As an example, most mobile robots still
represent the environment as a map with information about
obstacles and free space. In some cases, this representation is
enhanced with information about relevant visual landmarks,
but the semantic content is still highly limited. Clearly, to
increase the complexity of the tasks that mobile robots can
perform in natural environments, we must provide them
with a higher semantic understanding of their surrounding.
Scene recognition appears as a fundamental part of this
understanding. In particular, the ability to identify indoor
scenes, such as an office or a kitchen, is a highly valuable
perceptual ability to execute high-level tasks using mobile
robots.

Scene recognition, also known as scene classification or
scene categorization, has been extensively studied in areas
such as Cognitive Psychology and Computer Vision [1][2].
Historically, the main source of controversy has been be-
tween achieving scene recognition using low-level features
to directly capture the gist of a scene versus using interme-
diate semantic representations. Typically, these intermediate
representations can be obtained by processes such as region
segmentation or object recognition.

In terms of cognitive psychology previous studies have
shown that humans are extremely efficient in capturing the
overall gist of natural images, suggesting that intermediate
representations are not needed [1]. Following this idea,
early work in computer vision attempted to achieve scene
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recognition using supervised classifiers that directly operate
over low-level image features such as color, texture, and
shape [3] [4] [5]. The main problem with these approaches
has been their inability to generalize from the training data
to new scenes [2]. As discussed in [6], this problem has been
particularly relevant for the case of indoor scenes.

In an attempt to overcome the previous limitation, recent
work has started to include intermediate representations to
bridge the gap between low-level image properties and the
semantic content of a scene. The typical approach is based
on image segmentation, where the input image is segmented
into local regions that are later tagged with a semantic label
(e.g. sky, mountain, grass, etc.) [7] [8]. Unfortunately, this
approach inherits the usual poor performance of segmen-
tation algorithms. This is particularly relevant in the case
of indoor scenes, where the presence of a large number of
objects usually produces scenes with significant clutter that
are difficult to segment. As an alternative, some work avoids
the problems of image segmentation by introducing more
elaborated manual strategies to identify relevant intermediate
properties [9] [10], however, the significant extra work to
obtain representative training data usually precludes the
proper scaling of such techniques.

Borrowing ideas from text mining, recent work on scene
recognition has focused on hierarchical probabilistic methods
that use unsupervised techniques in conjunction with bag-
of-words schemes to obtain relevant intermediate represen-
tations [11][12]. Currently, these approaches represent the
state-of-the-art for scene recognition, however, they do not
perform well in the type of scenes usually visited by an
indoor mobile robot. As we demonstrate in this paper, and
has also been recently demonstrated in [6], these techniques
show a significant drop in performance for the case of indoor
scenes. This can be explained by the fact that, as opposed to
outdoor scenes, indoor scenes usually lack distinctive local
or global visual textural patterns.

In a related research track, recently there has been signifi-
cant progress in the area of object recognition. In particular,
it has been shown that it is possible to achieve real time
category-level object recognition without relying on image
segmentation, but instead using a sliding window approach
in conjunction with a focus of attention mechanism [13].
Furthermore, several results have shown the advantage of
using massive online data sources to automatically obtain
relevant training data to feed the object recognition models
[14]. In particular, correlations between object categories,
and between objects and abstract labels (semantic labels such
as kitchen), can be learned from online databases such as
Flickr [15].

From the previous analysis, a key insight is the relevance
of including semantic information in the scene recognition
process. Furthemore, new advances in object recognition and
convenient new sources of training data suggest a direct use
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of common objects as a key intermediate representation to
achieve robust scene recognition. We believe that such an
approach is particularly relevant for indoor environments,
where current techniques do not provide satisfactory results.

In this paper we propose a new approach for indoor scene
recognition based on a probabilistic hierarchical representa-
tion that uses common objects as an intermediate semantic
representation. Our main intuition is that we can associate
low-level features to objects through object classifiers, and
we can also associate objects to scenes using contextual
relations. In this respect, the natural semantic meaning of
common objects facilitates the acquisition of traininig data
from public web sources. We base our category-level object
detectors on Adaboost classifiers operating on Gabor, HOG,
and grayscale features. Additionally, we enhance our pure vi-
sual based classifiers using geometrical information obtained
from a 3D range sensor that facilitates the implementation
of a focus of attention mechanism within a Monte Carlo
sampling scheme.

Accordingly, the main contributions of this work are: i)
A new probabilistic generative model for scene recognition
based on the detection of relevant common objects, ii) A new
focus of attention mechanism based on a 3D range sensor
that fully exploits the embedded nature of a mobile robot
by directly measuring physical properties of objects such as
size, height, and range disparity. iii) An empirical evaluation
of the proposed method showing significant advantages with
respect to previous state-of-the-art methods.

The rest of this paper is organized as follows. Section II
discusses relevant previous work on visual scene recognition.
Section III presents the mathematical framework behind our
model to achieve scene recognition. Section IV provides
details about the probabilistic models used in this work.
Section V presents an evaluation of the proposed method
and a comparison with state-of-the-art approaches. Finally,
Section VI presents the main conclusions of this work and
future avenues of research.

II. RELATED WORK

Early methods for scene recognition are based on global
image features. These approaches extract low-level features,
such as color or texture, and use those features to classify
different scene categories. Vailaya et al. [3] use this approach
for classifying city vs. landscape images. Later, they ex-
tend the method to the case of a hierarchical classification
scheme [16], where images are first classified as indoor or
outdoor. Chang et al. [4] estimate a belief or confidence
function among the available scene labels, also using low-
level global features for scene classification. During training,
one classifier is built for each available scene category, then,
all classifiers are applied to each test image, computing a
confidence value for that image belonging to each of the
categories. An important disadvantage of methods based on
global image features is a poor generalization capability
beyond training sets.

More reliable global approaches use low-level signatures
to summarize global image statistics or semantics. Ulrich and
Nourbakhsh [5] use color histograms as the image signature
and a k-nearest neighbors scheme for classification. They
apply their method to topological localization of an indoor
mobile robot, but re-training is needed for each specific

indoor environment. Oliva and Torralba [9] use an image
representation based on features such as naturalness or open-
ness, each of which corresponds to one dimension in a space
that they call spatial envelope. These features are computed
using coarsely localized spectral information. Siagian and Itti
[17] build image signatures by using orientation, color, and
intensity low-level visual saliency maps that are also shared
by a focus of attention mechanism [18]. They test their
approach by recognizing scenes using an outdoor mobile
robot.

In terms of methods based on local image features, early
approaches use a straightforward extension of low-level
global approaches, where the input image is broken into local
blocks or patches. Features and classifiers are applied to each
of the blocks and then combined through a voting strategy
[19], or a mixture of probabilistic classifier outputs [20]. The
problem with these techniques is that they share the same
limitations of their predecessors.

A second group of methods based on local image features
uses semantic image regions such as sky, grass, or mountains,
in order to classify the underlying scene. To obtain the
relevant regions, these methods use an image segmentation
procedure and afterward apply a classifier to each segmented
region [7] [8]. Limitations of these methods rely on obtaining
a good automatic image segmentation, a problem that is still
hard to solve in computer vision.

Recent approaches have achieved good results in scene
classification by using bag-of-words schemes. Fei-Fei and
Perona [11] recognize scenes using an automatically obtained
intermediate representation that is provided by an adapted
version of the Latent Dirichlet Allocation (LDA) model.
Bosch et al. [12] achieve scene classification by combining
probabilistic Latent Semantic Analysis (pLSA) with local
invariant features. Lazebnik et al. [21] modify bag-of-words
representations by using a spatial pyramid that partitions the
image into increasingly fine sub-regions. The main idea is to
capture spatial relations among different image parts.

Recently, Quattoni and Torralba [6] propose an indoor
scene recognition algorithm based on combining local and
global information. They test their approach using 67 indoor
image categories with results that outperform current ap-
proaches for the case of indoor scenes. Interestingly, although
they do not explicitly use objects in their approach, they
remark that some indoor scenes are better characterized by
the objects they contain, indicating that object detection
might be highly relevant to improve scene recognition for
the case of indoor environments. Unfortunately, given lack
of 3D information, we could not test our approach over the
indoor dataset used by this work.

In terms of robotics, besides the fact that some of the
already mentioned methods are applied to this field, extensive
work has been done in the case of topological localization
using visual landmarks [22] [23]. The main limitation of
these approaches is that landmarks are usually environment
specific, thus, generalization to different places usually pro-
duces poor results.

Finally, it is worth mentioning that Bosch et al. [2] provide
a full bibliographic review in the field of scene recogntion
(up to 2007), including a deeper description of some of the
methods mentioned above.
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III. PROBLEM FORMULATION

Next, we present the mathematical formulation behind our
method to use objects as an intermediate semantic represen-
tation between low-level features and high level scene con-
cepts. First, we present the core of our method considering
only visual features and leaving aside 3D properties. Then,
we show how 3D geometrical properties can be incorporated
to enhance our formulation. Finally, we provide a mathemat-
ical approximation that makes our method computationally
feasible.

A. Scene recognition using visual features

In order to model our scene recognition approach, we
include the following terms:
• Define ξ to be a scene type, ξ ∈ Ξ.
• Define s ∈ {1, . . . , S} to be an object class.
• Let os ∈ [0, 1] indicate the presence/absence of in-

stances of objects of class s in a given scene.
• Let p(ξ|os) be the probability that ξ is the underlying

scene, given that an object of class os is present in the
scene.

• Define I to be an image.
• Define wi, i ∈ {1, . . . , L} to be a rectangular window

that covers a specific part of image I that defines an
object location.

• Let cwi ∈ {0, . . . , S} indicate the output of an object
classifier c when applied to image location wi. Output
0 indicates that no object is found.

• Let c1:wL
be a vector describing the outputs of L

classifiers calculated over a set of L windows.
• Define f j

wi
to be the output of feature j on window wi.

• Let ~fwi
be a vector describing the output of all the

image features calculated over wi.
• Let ~f1:wL

be the complete set of features calculated over
the set of L windows.

Given these terms, the probability of a place ξ given a set
of features ~f1:wL

is:

p(ξ|~f1:wL
) =

∑
o1:S

∑
c1:wL

p(ξ|o1:S , c1:wL
, ~f1:wL

)...

...p(o1:S , c1:wL
|~f1:wL

)

=
∑
o1:S

∑
c1:wL

p(ξ|o1:S)p(o1:S |c1:wL
)p(c1:wL

|~f1:wL
)

(1)

Let’s now consider p(o1:S |c1:wL
) in Equation (1), using

the Naive Bayes approximation that objects are independent
given the classifier outputs, we have:

p(o1:S |c1:wL
) =

∏
s

p(os|c1:wL
) (2)

Also, let’s assume that we have detector models relating
the presence of an object of class s to the output of a classifier
c in any possible window, such that:

p(os = 1|cw(·) = ok) = pos,cok
= 1− pōs,cok

(3)

Then, considering that p(os|c1:wL
) = p(os,w1 ∪ . . . ∪

os,wL
|c1:wL

) and assuming that windows are independent,

we have:

p(o1:S |c1:wL
) =

∏
s

[1−
∏
k

(pōs,cok
)nk ]os [

∏
k

(pōs,cok
)nk ]1−os

(4)

where k ∈ {0, . . . , S} ranges over the possible classifier
outputs and nk is the number of classifications in c1:wL

with
an output value ok. k = 0 represents the case of no-object in
the respective image window. The assumption of independent
windows is very strong and leads to overconfident posteriors,
however, in practice we have not observed significant failures
due to this approximation.

As an alternative to Equation (4), when particular error
models are not available for each possible classifier output,
one can establish general error terms, such as:

p(os = 1|c(·) = os) = pos,cos

p(os = 1|c(·) 6= os) = pos,cōs
(5)

In this case, Equation (4) is given by:

p(o1:S |c1:wL
) =

∏
s

[1− (pōs,cos
)ns(pōs,cōs

)(L−ns)]os ...

...[(pōs,cos
)ns(pōs,cōs

)(L−ns)]1−os

(6)

Let us now consider p(c1:wL
|~f1:wL

) in Equation (1), as-
suming independence among the visual information provided
by each window, we have:

p(c1:wL
|~f1:wL

) =
∏

i

p(cwi
|~fwi

) (7)

Therefore, using Equation (4), we can finally express
Equation (1) as:

p(ξ|~f1:wL
) =

∑
o1:S

∑
c1:wL

p(ξ|o1:S)
∏
s

[1−
∏
k

(pōs,cok
)nk ]os ...

...[
∏
k

(pōs,cok
)nk ]1−os

∏
i

p(cwi |~fwi)

(8)

Note that this formulation can operate with any object de-
tector able to classify objects from low-level visual features.

B. Adding 3D geometric information

In order to include 3D geometric information, we add the
following terms to our model:

• Let D be a set of routines that calculate 3D geometric
properties of an image.

• Define dj
wi

be the output of property j on window wi.
• Let ~dwi

be a vector describing the output of all the 3D
geometric properties calculated over wi.

• Let ~d1:wL
be the complete set of geometric properties

calculated over a set of L windows.

Given this information, our original problem in Equation
(1) becomes
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p(ξ|~f1:wL
, ~d1:wL

) =
∑
o1:S

∑
c1:wL

p(ξ|o1:S , c1:wL
, ~f1:wL

, ~d1:wL
)...

...p(o1:S , c1:wL
|~f1:wL

, ~d1:wL
)

=
∑
o1:S

∑
c1:wL

p(ξ|o1:S)p(o1:S |c1:wL
)p(c1:wL

|~f1:wL
, ~d1:wL

)

(9)

In this case, p(ξ|o1:S) and p(o1:S |c1:wL
) are as before. In

terms of p(c1:wL
|~f1:wL

, ~d1:wL
) we have:

p(c1:wL
|~f1:wL

, ~d1:wL
) =

∏
i

p(cwi
|~fwi

, ~dwi
) (10)

Using Bayes Rule and a conditional independence assump-
tion, we can transform Equation (10) into

p(c1:wL
|~f1:wL

, ~d1:wL
) =

∏
i

αp(~dwi
|cwi

)p(cwi
|~fwi

) (11)

In our case, we use depth information to calculate three
geometric properties: object size, object height, and object
depth dispersion. We respectively denote these properties as:
dswi

, dhwi
, and ddwi

. Then, ~dwi
= {dswi

, dhwi
, ddwi

}, so
Equation (11) becomes:

p(c1:wL
|~f1:wL

, ~d1:wL
) =

∏
i

αp(dswi
, dhwi

, ddwi
|cwi

)...

...p(cwi
|~fwi

) (12)

Assuming conditional independence among the different
geometric priors,

p(c1:wL
|~f1:wL

, ~d1:wL
) =

∏
i

αp(dswi
|cwi

)p(dhwi
|cwi

)...

...p(ddwi |cwi)p(cwi |~fwi)
(13)

Finally, Equation (8) becomes

p(ξ|~f1:wL
, ~d1:wL

) =
∑
o1:S

∑
c1:wL

p(ξ|o1:S)
∏
s

[1− ...

...
∏
k

(pōs,cok
)nk ]os [

∏
k

(pōs,cok
)nk ]1−os

∏
i

αp(dswi
|cwi

)...

...p(dhwi
|cwi

)p(ddwi
|cwi

)p(cwi
|~fwi

)
(14)

The geometric properties are independent from visual
information, thus, they can be used in combination with any
chosen object classifier to enhance detection performance.

C. Reducing dimensionality
As can be seen, our mathematical formulation depends

on two nested summations over combinations of objects
and windows. In computational terms, we can estimate the
complexity of our method as follows:
• The inner summation considers the presence of all

possible objects in all possible windows, thus, its com-
plexity is Nobj

Nwin , where Nobj is the number of
objects being used, and Nwin is the number of windows.

• The outer summation considers the presence of all
possible objects in the scene, thus, its complexity is
2Nobj .

• Considering both summations, the complexity of the
method is 2Nobj ∗Nobj

Nwin .
A complexity of 2Nobj ∗Nobj

Nwin is intractable, particularly
when Nobj may grow to the order of tens and Nwin is in the
order of thousands. Fortunately, many of the cases considered
in these summations are highly unlikely. For example, some
of the cases may include non-realistic object combinations,
or may consider objects that according to the classifiers are
not present in the current image. Furthermore, we can use the
3D information to discard unlikely object locations and sizes.
Considering this, we can effectively reduce the computational
complexity by focusing processing in likely cases. To achieve
this goal, we use Monte Carlo techniques to approximate
the relevant summations in Equation (14) using a sampling
scheme based on a focus of attention principle.

For the outer summation we have

p(ξ|~f1:wL
, ~d1:wL

) =
∑
o1:S

∑
c1:L

p(ξ|o1:S)p(o1:S |c1:wL
)...

...p(c1:wL
|~f1:wL

, ~d1:wL
) (15)

We can take the first term out of the inner summation and
using Bayes Rule we obtain:

p(ξ|~f1:wL
, ~d1:wL

) =
∑
o1:S

p(o1:S |ξ)p(ξ)
p(o1:S)

∑
c1:wL

p(o1:S |c1:wL
)...

...p(c1:wL
|~f1:wL

, ~d1:wL
)

(16)

This is equivalent to:∑
o1:S

p(o1:S |ξ)F (o1:S) (17)

where

F (o1:S) =
p(ξ)
p(o1:S)

∑
c1:wL

p(o1:S |c1:wL
)p(c1:wL

|~f1:wL
, ~d1:wL

)

(18)

We solve the summation by sampling from p(o1:S |ξ) and
evaluating the samples in F (o1:S). In the evaluation, we need
to solve the inner summation.

For the inner summation we have∑
c1:wL

p(o1:S |c1:wL
)p(c1:wL

|~f1:wL
, ~d1:wL

) (19)

Again, we approximate the summation using a Monte
Carlo scheme by sampling from p(c1:wL

|~f1:wL
, ~d1:wL

) and
evaluating the samples in p(o1:S |c1:wL

). Here, we use
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the combination o1:S that comes from the current sam-
ple of the outer summation. In order to sample from
p(c1:wL

|~f1:wL
, ~d1:wL

), we use our assumption of indepen-
dence among windows:
• A combination x ∈ c1:wL

can be seen as a binary array
of length L, where each element in the array represents
the object that is present in one particular window (zero
if nothing is present).

• A sample xk can be obtained by getting a sample for
each of the windows, xk = {x1

k, x
2
k, ..., x

L
k }, where each

element xi
k is obtained according to the probability dis-

tribution of the presence of objects in the corresponding
window.

• For each window wi, we build a multi-class probability
distribution for the presence of objects in the window
by joining a set of two-class object classifiers and
normalizing afterwards.

IV. BUILDING THE SCENE DETECTOR
Next, we show how we compute each of the terms in the

previous probabilistic model.

A. Category-level object detection
In this sub-section, we present our approach to

category-level object detection and show how we compute
p(c1:wL

|~f1:wL
, ~d1:wL

). As shown before, this term can be
expressed as αp(~dwi |cwi)p(cwi |~fwi), therefore, we focus on
these two sub-terms.

1) Computing p(cwi
|~fwi

): First, we apply an offline train-
ing procedure to obtain classifiers for each object class. We
collect a representative dataset using selected images from
3 main sources: Label Me [24], Caltech 101, and Google
images. Then, we extract a group of features for each training
instance. Following [25], we explore an extremely large set
of potentially relevant features to increase the hypothesis
space, and rely on learning to select features relevant to
each object model. Specifically, we use a pyramidal de-
composition similar to the approach in [26], computing the
same features at different image patches within a single
image. This allows us to extract global and local information
from each object instance. In our approach we use a 3-level
pyramid, obtaining a total of 21 image patches per object
instance. For each of these 21 patches, we extract 3 types of
features:

1) Grayscale features given by the mean and standard
deviation of the intensity value within each patch (2
features).

2) Gabor features given by 2-D Gaussian-shaped band-
pass filters with dyadic treatment of the radial spatial
frequency range and multiple orientations. We use 8
different scales and 8 different orientations and calcu-
late the mean and standard deviation of the convolved
region (128 features total).

3) Histogram of oriented gradients (HOG) [27] given by
the magnitude of the gradients of a patch in different
orientations. We use histograms with 4 different num-
ber of bins (36, 18, 8 and 4 bins), and consider each
bin as one feature (66 features total).

Using these features, we learn models for each object
class using AdaBoost, with weak classifiers that use linear
separation of a single feature. We use the feature selection

properties of AdaBoost, so from the original set of 4116
available features, each final classifier uses fewer than 100.

At execution time, we apply the classifiers using a sliding
window procedure that allows us to compute p(cwi

|~fwi
). For

efficiency, similarly to previous approaches [13], we arrange
the AdaBoost voting scheme in a cascade that only uses each
further weak classifier if the performance of the previous
classifier is above a suitable threshold. For each window,
we approximate a probability distribution that considers the
aggregated votes of the ensemble of weak classifiers that
have operated so far over the window. At each stage of
the cascade, any window with classifier response below the
corresponding threshold receives a probability value of zero
for the presence of the corresponding object, allowing to
discard unlikely image places quickly. Windows that suc-
cessfully reach the end of the cascade receive an estimation
of p(cwi |~fwi)

2) Computing p(~dwi
|cwi

): To obtain this term we use a
3D swiss ranger that provides a pixel level estimate of the
distance from the camera to the objects in the environment
(depth map). Given an image and its corresponding depth
map, we use the camera parameters and standard projective
geometry to calculate features ~d = {ds, dh, dd} for each
candidate window containing a potential object, where ds is
the object size given by its width and height, dh is the object
altitude given by its distance from the floor plane, and dd is
the object internal disparity given by the standard deviation
of the distances inside the object. Each of these individual
properties has its associated term in our equations and their
probabilities take the form of a Gaussian distribution with
mean and covariance that is learned from data,

dsi|cwi ∼ N(µds,Σds)
dhi|cwi ∼ N(µdh, σ

2
dh)

ddi|cwi
∼ N(µdd, σ

2
dd)

Note that ds includes the height and width of the detection
window, therefore is estimated using a 2-dimensional Gaus-
sian.

In order to take full advantage of 3D information, we
use the geometric properties described before as a focus
of attention mechanism. As seen in Equation (12), the
probability for the presence of an object in a window is
a multiplication of a term that depends on 3D geometric
features and a term that depends on visual features. We take
advantage of this fact by using geometric properties at the
initial steps of the cascade of classifier, quickly discarding
windows that contain inconsistent 3D information, such as
a door floating in the air. In our experiments, we found that
by using geometric properties as an initial filtering step, we
were able to reduce processing time by an average of 51.9%
with respect to the case using just visual attributes.

B. Classifiers confidence
Given that an object has been detected at a specific

window, we require an estimate of the confidence of that
detection. These confidence values correspond to the term
p(o1:S |c1:wL

) in our model. We estimate this term by count-
ing the number of true-positives and false-positives provided
by our classifiers on test datasets. Actually, as stated in
Equation (4), we estimate the probability that each classifier
can confuse an object with each of the other objects.
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(a) DCC-PUC (b) CSAIL-MIT (c) Focus of Attention for CSAIL-MIT

Fig. 1. a-b) Executions at two different office scenes. c) Focus of attention mechanism applied to image in b).

(a) Execution 1 (b) Execution 2

Fig. 2. Two different executions for the same image in a conference room scene. We can see that both executions are slightly different because of the
sampling effect.

(a) Hall is the most likely place (b) Office is the most likely place

Fig. 3. Two different executions where doors are detected.

C. Prior of objects present in a scene

It is well known that some object configurations are more
likely to appear in certain scene types than in others. As
we show in [15], this contextual prior information can be
inferred from huge datasets, such as Flickr. In our method,
we follow this approach by using representative images
from this dataset (in the order of hundreds for each scene
type), computing the frequency of each object configuration
in these images according to their tags, and normalizing
to obtain the probability distributions included in the term
p(ξ|o1:S) of our model. See [15] for more details.

V. RESULTS

Our method was tested in two different indoor envi-
ronments: i) Computer Science Department at Pontificia
Universidad Católica de Chile (DCC-PUC), and ii) Computer
Science and Artificial Intelligence Lab at Massachusetts
Institute of Technology (CSAIL-MIT). In both environments,
we defined four different scenes or places for which the
method should compute a probability distribution given an
input image: Office, Hall, Conference Room, and Bathroom.
We use seven different objects to estimate place probabilities:
PC-Monitor, Door, Railing, Clock, Screen, Soap dispenser,
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and Urinal. Clearly, different objects are more or less related
to different places. These relationships are reflected in the
corresponding priors.

In all tests, we used a sliding window procedure that
considers five different window shapes, including square
windows, two different tall rectangular windows (height
bigger than width in two different proportions), and two
different wide rectangular windows (width bigger than height
in two different proportions). All windows were applied
using seven different image scales that emulate different
window sizes. The total number of windows per image,
considering all shapes and scales, was ≈ 50000.

A. Scene recognition

Figure 1 shows two different cases where PC-Monitors are
detected, at DCC-PUC (figure 1.a) and CSAIL-MIT (figure
1.b). As monitors are more related to offices than to other
places, Office is the most likely label for the corresponding
scenes. We can see that the method makes a good decision
when it finds a single object instance (DCC-PUC case) as
well as when it finds more than one instance (CSAIL-MIT
case). Due to our sliding window procedure, some of the
instances are found inside square windows, while others are
found inside wide rectangular windows. Additionally, Figure
1.c provides a view of the focus of attention mechanism
applied to the case of Figure 1.b. We can see that the method
discards unlikely places using only geometric properties,
focusing processing in areas that are highly likely to contain
monitors.

Figure 2 shows an example image where different exe-
cutions produce slightly different results. This is due to the
sampling procedure. In order to estimate a suitable number
of samples, we tested our approach using different numbers
of samples and we evaluated the variance over identical
executions. As expected, increasing the number of samples
reduces the variance. In our tests, we found that good results
can be achieved by using a number of samples in the order of
hundreds for each summation. In our final implementation,
we use ≈ 1000 samples for the external summation and
≈ 100 for the internal summation in Equation (14).

Figure 3 shows that some objects, such as doors, are
not very good for deciding between different places. In this
example, both images were taken in Hall scenes. Figure 3.a
shows an image where a door is detected and Hall becomes
the most likely place, while Figure 3.b shows a case where
a door is detected and Office becomes the most likely place.
In our experiments, we have found that when only doors are
detected, Hall is slightly more likely than other places, which
is consistent with our object-scene priors. Figure 4 shows a
scenario where no objects are detected, thus, the resulting
place probability distribution is almost flat depending only
on the priors.

B. State-of-the-art comparison

Next, we provide an experimental comparison of our
method with respect to two alternative state-of-the-art ap-
proaches: i) Oliva and Torralba Gist approach (OT-G) [9],
which is the same approach used as baseline for comparisons
in [6], and ii) Lazebnik et al. spatial pyramid approach (LA-
SP) [21]. In both cases we use an SVM for classification.
For our approach, we use the most likely place as the scene

Fig. 4. Example image where no objects are detected.

detected for each image. We train all the methods using
similar data obtained from the web. For testing, we use
a total number of ≈ 100 images per class where at least
one object is detected, mixing examples from both of our
available environments (DCC-PUC and CSAIL-MIT). Tables
1-3 show the detection rates (confusion matrices) for each
of the methods in each of the available scenes. We can see
that our method outperforms the alternative approaches. In
particular, we can see that the alternative methods tend to
confuse Office and Conference Room, as both places may
look very alike. Our approach present good performance for
these scenarios, as it can use highly distinguishing objects,
such as a proyector screen. Figure 5 shows an example where
our method makes a good decision by assigning Conference
Room to the underlying scene, despite partial occlusion of
the only detected object. In this case, both OT-G and LA-SP
detect the place as Office.

VI. CONCLUSIONS
In this work, we present an indoor scene recognition

approach based on a semantic intermediate representation
given by the explicit detection of common objects. During
our development, we noticed the convenience of using such
a high level representation, that not only facilitates the
acquisition of training data from public web sites, but also
provides an easy interpretation of the results, in the sense
that we can easily identify failure cases where some relevant
objects are not detected. This is not the case for current
state-of-the-art LDA type of models, where the intermedi-
ate representation does not provide an easy interpretation.
Furthermore, we believe that our representation can also
facilitate the implementation of high-level task planners on
mobile robots.

In terms of object detection, we show the relevance of
using reliable 3D information, such as the one provided by
a swiss ranger. In our case, the focus of attention mechanisms
provided by the 3D geometrical properties is a key element
to achieve an efficient window sampling scheme.

In terms of testing using training and test data not coming
from an specific indoor environment, our approach clearly
outperforms the alternative methods. This demonstrates the
limitation of current state-of-the-art approaches to achieve
good performance for the case of indoor scenes. Furthermore,
we also test the alternative methods in the case of using
testing images from the same environments used for training.
In this case, the alternative methods are more competitive,
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Fig. 5. Unlike alternative methods, our approach successfully
detects a Conference Room scene.

although our method still presents the best results. This
shows the limitations of current state-of-the-art methods to
generalize their performance to new indoor environments.

Confusion matrix for the proposed method
Scene Office Hall Conference Bathroom
Office 91% 7% 2% 0%
Hall 7% 89% 4% 0%
Conference 7% 7% 86% 0%
Bathroom 0% 6% 0% 94%

Confusion matrix for OT-G
Scene Office Hall Conference Bathroom
Office 56% 12% 26% 6%
Hall 13% 52% 15% 20%
Conference 72% 7% 14% 7%
Bathroom 0% 9% 15% 76%

Confusion matrix for LA-SP
Scene Office Hall Conference Bathroom
Office 44% 14% 31% 11%
Hall 19% 51% 17% 13%
Conference 38% 16% 41% 5%
Bathroom 2% 7% 13% 78%

One limitation of our approach is that images where no
objects are detected cannot be identified. We claim that this
is not a key problem for an indoor mobile robot because
such images are usually the result of failed object detections
due to artifacts such as viewpoint or illumination; the robot
can move around to generate many images of a single scene
with recognized objects. Additionally, a robot can use active
perceptual behaviors that can guide its motions in order to
find good views of key objects. This is an interesting research
area for future work.

A second limitation of our method arises from the fact
that running several object detectors, in addition to the scene
recognition model, may result in a large execution time.
Currently, depending of how many windows are discarded at
early stages of the cascade of classifiers, our (non-optimized)
implementation takes in the order of seconds to process each
image in a regular laptop computer. Given that our method
is highly parallelizable, we believe that is feasible to build a
real time implementation, for example using GPU hardware.
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