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Abstract— This paper presents an adaptive foothold planning
method for a hexapod walking robot. A local terrain map
acquired with an inexpensive structured light sensor is exploited
as the information source for the planning algorithm, which
uses a polynomial-based approximation method to create a
decision surface. The robot learns from simulations, therefore
no a priori knowledge is required. The results show that the
method is general enough to work on various types of terrain.
The planned footholds enable the robot to walk more stable,
avoiding slippages and fall-downs.

I. INTRODUCTION

In the recent years walking robots are in the area of

high interest because of their ability to access unstructured

terrain – they are able to climb rocks, curbs, and thresholds.

However, to exhibit an autonomy in an unstructured terrain

a legged robot requires a relatively complicated control

algorithm. There are several problems to deal with in such

an algorithm: terrain model acquisition, foothold selection,

static and dynamic stability, and path planning. Terrain per-

ception/mapping and foothold selection are crucial, because

whenever the feet are placed improperly on the ground the

probability of slippage and the risk of fall increase rapidly.

On the other hand, reliable terrain mapping and careful

foothold selection simplify maintenance of the stability.

To achieve an autonomy, the robot requires a sensing sys-

tem that perceives the terrain profile ahead of it, and enables

to build a local map, which serves the purpose of safe/optimal

foot placement. However, the limited payload and energy

affect the sensing abilities and on-board computing power of

a walking robot. Considering these technological limitations,

and a limited budget of our small-scale Ragno hexapod robot

project [15], we have decided to equip the robot with a low-

cost monocular vision system supported by a laser stripe

projector, forming together a structured light sensor [11].

Once a terrain map is available, a foothold selection

method can be implemented. Although the robotics litera-

ture describes many walking robots with correctly working

foothold selection systems, these approaches are usually

heavily based on the domain knowledge, with a large number

of parameters that should be set by a human expert [12].

Hence, they are hardly adaptable to various gaits and differ-

ent types of terrain. In contrast, the algorithm proposed in

this paper allows to create a ground scorer which learns by

using results of experiments conducted on the real robot or
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Fig. 1. Ragno the robot on a rough terrain mockup (A) and simulated
robot (B)

its simulated model. A human expert is not necessary, as the

robot learns unsupervised how to walk on the rough terrain.

This concept, together with the terrain map acquisition

system, gives the robot a possibility to self-adapt the foothold

selection method to various terrain types.

II. RELATED WORK

The problem of terrain mapping has been considered many

times in the robotics literature. Ambler planetary rover [8]

was one of the first walking robots being able to map their

surroundings by means of a 3D laser scanner. The terrain

representation used was the elevation map, a grid-type 2 1

2
D

map, where each cell holds a value that represents the height

of the object at that cell. Other terrain representations used

with legged robots include an inference grid used by the

Lauron III robot [6], and a recent probabilistic technique

[9], which builds maps based on Gaussian process models,

and does not assume a fixed discretization of the space.

The Lauron robot is an example of a walking machine,

which uses occupancy and credibility map to make decision

about the appropriate footholds [13]. The chosen best po-

sition of a foot depends on the value of credibility and the

distance from the center of the local map (which is close to a

foothold for the “normal” walking behavior). Also [4] uses a

special map characterizing the perception uncertainty to plan

the motion of the robot on a rough terrain. Based on this

information a gait is planned by using ordinal optimization.

The quadruped LittleDog robot has been equipped with a

terrain scorer/classifier, which evaluates the potential foot

placement at a given point as acceptable or unacceptable,

taking into account the height of the considered point and

the adjacent points [12]. The scorer rejects points which are

located on too large slopes, are too close to the top edge or

the base of a cliff, or are inside of a hole.

Although a detailed terrain map gives the walking robot

much flexibility in taking the decisions about its further steps,
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including the possibility of larger obstacle negotiation and

feet trajectory planning, the foothold selection itself may

be based on a different principle. For example, a controller

that adapts to feet slippages by using force control has been

proposed in simulation by [10]. The adaptive controller of

a robot for walking on irregular terrain can be also based

on the Central Pattern Generators (CPG) and a system of

reflexes [5].

III. THE ROBOT AND THE SIMULATOR

The hexapod walking robot Ragno (cf. Fig. 1A) is used

in this research. Each leg has three joints that are driven by

integrated servomotors. They allow to set the desired angles

in joints and to generate movement of the robot. The robot is

relatively small. It weights 2.155kg without batteries and can

fit in box of 33 × 30cm. Its mechanical structure allows to

walk with the trunk from 15 to about 70 mm over the ground

(the maximal height of the trunk is 120 mm, however it is

the end of robot’s workspace and the horizontal movement

is not possible). The robot has been equipped with various

types of sensors including the MEMS accelerometers that

form an Inertial Measurement Unit (IMU) to measure the θ
(pitch) and φ (roll) angles [15].

The simulator is based on the Open Dynamics Engine

(ODE). This library allows to simulate rigid body dynamics.

It has methods for modeling various joints and for detecting

collisions with friction and softness [14]. The ODE solver

was set to be non-deterministic. As a result the same simu-

lations give slightly different results if repeated, what makes

the simulation more realistic. For object visualization the

OpenGL routines have been used. The robot is represented by

simple rigid objects connected by rotary joints (cf. Fig. 1B).

The model of the robot, which has been successfully used to

evolve feasible gaits [2], is designed to be simple because of

the simulation speed. Servomotors are simulated as simple

proportional controllers. They receive reference values αr on

input, what generates an appropriate torque to drive the joint.

An error between the desired foot position and the actual foot

position achieved, which is observed in the real robot, is also

present in the simulator.

IV. TERRAIN DESCRIPTION AND DECISION MAKING

A. Terrain mapping method

To select footholds for a walking robot it is necessary to

build a model of the environment. For that purpose we prefer

a grid-type map that is simple in implementation and easy

to update at a high rate, and may be directly used to select

proper footholds for the robot. However, a classic elevation

map has its drawbacks: it does not provide information about

the elevation uncertainty that can be utilized by the motion

planner [9], and it provides no means to compensate such

undesirable effects as missing data and range measurement

artifacts. Such effects occur in all types of range sensors, but

for the considered structured light sensor they may particu-

larly deteriorate the mapping performance, due to the high

probability of occlusions (missing data), and vulnerability of
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Fig. 2. Computation of K1 and K2 (A) and K3 (B) coefficients

the sensor to the environmental conditions (e.g. artifacts due

to light spots) [11].

Taking into account these considerations we have decided

to implement for our robot the CAS (Certainty Assisted Spa-

tial) filter based version of the elevation grid map proposed

by Ye and Borenstein [3]. In this approach the terrain map

consists of two grids of the same size: an elevation grid

and a certainty grid. The elevation grid holds values that

estimate the height of the terrain, while each cell in the

certainty map holds a value that describes the accuracy of

the corresponding cell’s estimate of the elevation. We use

robot-centered local grids with a cell size of 5× 5 mm. The

CAS-filter uses physical constraints on motion continuity of

the robot and spatial continuity of the terrain to identify

corrupted and missing data in the elevation grid. As in [3], we

assume that an estimate of the 6-dof robot pose is available.

Although for a legged robot such an estimate is not easy

to obtain, for small local maps centered in the robot co-

ordinates proprioceptive sensing is enough [7], while for

more challenging scenarios visual odometry may be used.

The quality of the resulting terrain map was discussed in

more detail in [11]. Although we have no ground truth data

(i.e. a perfect map) for the rocky terrain mockup we used

in the foothold selection experiments, mapping objects of

known size we have found that the errors are below 10% of

the measured height of an object in the worst case.

B. Control strategy

While walking on the rough terrain the robot uses a tripod

gait [2]. This gait has been chosen because it is the fastest

statically stable gait for a hexapod walking robot. During

the stance phase the robot maintains a constant average

height of the trunk above the ground. This average height

is computed by using the last six footholds. To stabilize the

robot orientation during walking the information about θ and

φ angles from the IMU is used.

At the end of the swing phase of the gait the robot searches

for three new footholds. This simple strategy enables to use

the same swing trajectory of a foot that is used in the nominal

gait, but it sporadically results in a necessity to move a

foot to a different position after its swing. We are working

on an adaptive foot trajectory planner that considers the

selected footholds in advance. With the new planner, foothold

selection will take place before the swing phase. Starting the

search the robot checks if the potential footholds are in the

workspace of the considered leg. The robot raises or lowers
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body, when no appropriate foothold is found. If there are

no appropriate footholds with the reach of one of the legs,

the height of the robot body is changed to reach a proper

support point. If this strategy fails the control system informs

the path planner module that the planned movement is not

achievable. The problem is being solved by the higher layers

of the control system, what is out of the scope of this paper.

However, in the reported experiments and simulations (cf.

Section VI) the reactions which change robot’s posture were

sufficient to deal with the problem.

C. Ground properties

The presented algorithm starts with the elevation map built

from the structured light sensor data, and computes four

coefficients to describe the potential footholds [1]. The K1

coefficient for the i and j grid co-ordinates is defined as:

K1(i, j) =
1

∑

k=−1

1
∑

l=−1

(zi,j − zi+k,j+l), (1)

where zi,j and zi+k,j+l are terrain levels of the correspond-

ing points of the grid map (Fig. 2A). This coefficient allows

to detect a top edge or a hole. For a top edge K1 is positive

and for a hole K1 is negative. The value of K1 gives

information about the local terrain extreme, however K1 is

ambiguous when its value is 0. Flat terrains as well as a

terrain with constant slope give the same results.

The K2 coefficient for i and j grid references is defined

as:

K2(i, j) =
1

∑

k=−1

1
∑

l=−1

|zi,j − zi+k,j+l|. (2)

The K2 coefficient provides an information about the slope

of a terrain. It returns different results for a constant slope

and for a flat terrain. On the other hand, top edges and

holes give the same results. Thus, K1 and K2 are ambiguous

separately, but together they give a fundamental information

about the structure of the terrain.

The K3 coefficient is defined by an angle α between

a vector f describing the foot movement and a vector n

normal to the surface. The normal vector n is computed

only for a part of the surface as it was shown in Fig. 2B. It

depends on the projection of the vector f on the surface xy.

Tangent vectors s1, ..., s5 are computed for points which are

neighbors of the quadrant where projection of the vector f

is located. Next, the vector n is computed as follows:

n =

4
∑

i=1

si × si+1. (3)

The angle α between the vectors n and f is computed as:

α = K3 = arccos

(

n · f

|n||f |

)

. (4)

The K4 coefficient is computed as a distance between the

considered point and the point being the center of the local

map (foothold for the “normal” walking behavior (x0,y0,z0)):

K4(i, j) =
√

(x0 − xi,j)2 + (y0 − yi,j)2. (5)

a) b)

d)

f)

c)

e) g)

Foothold

Fig. 3. The ground primitives

V. FOOTHOLD SELECTION ALGORITHM

The aim of the algorithm is to evaluate potential footholds

and to choose the best one. The best point for a foot stance

should minimize a risk of slippage. Slippage is defined by

the difference between the position of a foot at the beginning

and at the end of the stance phase. If the foot does not slip

at all, these positions should be the same. Thus, i-th foot

slippage ri is computed as ri = di/|fi|, where di is the

distance between the initial and the final position of this

foot during the stance phase, and |fi| (used as a normalizing

factor) is length of the vector that defines the intended i-
th leg movement with regard to the body. The algorithm

consists of three stages: (i) collecting data, (ii) learning –

approximation, (iii) regular operation.

A. Collecting data

At first, the robot collects the appropriate data for learning.

Two strategies of data acquisition were investigated. In the

first one the robot is walking on the rough terrain, randomly

selects footholds, saves coefficients corresponding to these

points and as a result of this selection – a foot slippage

measured after the stance phase. In the second approach the

robot tests seven previously prepared “ground primitives”

(shown in Fig. 3). Each of the robot’s foot is placed on the

same primitive. The robot executes a movement, and after

that a slippage of each foot is registered. This simulation is

repeated for all primitives. To test different ground types the

height of the primitives is changed during the acquisition

phase in the range of 4 cm, with a step of 1 cm, and the

primitives are rotated with the step of 45◦. After this stage the

robot has an appropriate data set to build the decision surface

and distinguish between the good and the poor footholds.

The point cloud shown in Fig. 4 was obtained in a situation

when only two coefficients were used (K1 and K2), and

when the primitives were used for data acquisition. Whenever

the input space has a higher dimensionality it is not possible

to show the results graphically.

B. Learning stage

In the second phase the robot forms its decision surface.

It is difficult to deduce information about usefulness of
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footholds from a raw point cloud. The data are very often

ambiguous. Selection of the same points (defined by the same

coordinates K1 and K2) gives different slippage values. To

deduce useful information from the point cloud a discretiza-

tion in a fixed grid is used. The input space K1, K2 and K3

is divided into regular grid (Fig. 4 for situation when only

K1 and K2 are used). For points whose projection lies in the

considered grid cell a mean value is computed. The result

is placed in the center of the considered grid cell. After this

discretization a group of points pf = [pf1, ..., pfk]T which

represent general trend is obtained.

A foothold selection method should be general, but it

is not possible to test all types of terrain. However, the

algorithm should have the ability to judge the usefulness

of the ground points, which haven’t been tested explicitly

in the data acquisition stage. To this end a least-squares

polynomial approximation is used [16]. The points are no

longer needed, because the knowledge is stored in the

approximation polynomial. The approximation assignment

requires a selection of an appropriate polynomial base:

P (K1,K2, ...,Kn) =
m

∑

i=0

ci · φi(K1,K2, ...,Kn), (6)

where K1,K2, ...,Kn are coefficients which characterize the

terrain and m is a number of elements in the polynomial.

The polynomial P allows to assess potential footholds repre-

sented by values of the K1, ...,Kn coefficients. To determine

the ci values, the Least-Squares Fitting method is applied on

the set of pf points obtained in the data acquisition stage.

The polynomial coefficients c are computed as follows:

c = (VT · V)−1 · VT · r, (7)

where

V =





φ1(pf1) φ2(pf1) ... φm(pf1)
... ... ... ...

φ1(pfk) φ2(pfk) ... φm(pfk)



 , (8)

is a Vandermonde matrix, and r is a vector of slippages

corresponding to the respective pf points.

Fig. 5. Decision surface

The obtained decision surface and approximation points

pf are shown in Fig. 5 (only K1 and K2 are used, for the

sake of clarity).

C. Regular operation

During the third phase the robot uses the approximated

polynomial to assess the potential footholds. Then, these

results are used to find the best place to put the foot on

it.

The first three coefficients are used as an input to compute

the polynomial (6). The fourth one (K4) is used to exclude

points of the ground which are too close to the boundaries

of the robot’s leg workspace. The final Q(i, j) coefficient

(interpreted as a prediction of slippage), which describes

the usefulness of the potential [i, j] foothold described by

K1,..,K4 features is given as:

Q(i, j) = P (K1(i, j),K2(i, j),K3(i, j))+k ·K4(i, j). (9)

The tuning constant k was set to 8. When this value is too

big the robot chooses points which are in the center of the

local map. When it is too small, there is a risk that the robot

will choose points which are very close to the boundaries

of the leg’s workspace, what might render the movement

impossible.

VI. RESULTS

During walking the robot uses the standard gait for walk-

ing on the flat terrain. This gait gives an expected foothold

for each leg of the robot. Around the expected foothold a

local grid map is defined. Its size is set to 15×15 cells

(7.5×7.5 cm). The computed polynomial is then used to

evaluate all the points of this local map. An example of

the local map with the assessment indicated is shown in

Fig. 6. There are cells which are excluded from the set of

the potential footholds because they are out of the range of

the robot’s legs. Cells are also excluded when the value of

Q is too big (such cells give a weak support to the leg’s tip)

or a cell is described by Ki values which are outside the

boundaries defined in the learning stage (properties of this

cell are unknown). The foothold selection algorithm searches
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for the minimum among the rest of the cells. The shorter

length of the bar (shown in Fig. 6) the more useful is the

given cell as a foothold. After a decision about foothold

selection the control system of the robot modifies trajectories

of the feet, and places them on the selected points of the

terrain.

Slippages during the whole simulation run have been

recorded to show results given by the proposed algorithm

(Fig. 7). Each simulation consists of a series of three tests.

Mean value of the accumulated slippage and its standard

deviation are shown. These results are compared to the

results of a simulation on a flat terrain, and a simulation when

the robot randomly selects footholds. Better results were

obtained when a point cloud acquired using the prepared

primitives was used. The results when three coefficients were

used for decision making are slightly better. When only K1

and K2 coefficients were used the robot had problems with

extensive hills of mild slope.

The algorithm has been verified in simulation, but using

a real map of a rocky terrain (an indoor mockup was used)
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Fig. 8. Body height variations resulting from the simulation

obtained by the Ragno robot equipped with the structured

light sensor. The map contains obstacles more than 13 cm

high, however the robot passes by the highest rocks and steps

obstacles only 6.5 cm high. During the simulation the robot

walked 0.5 m forward, traversed 0.06 m left, turned 45◦ left,

and then went 0.1 m ahead.

The changes of the trunk height with regard to the start

pose, and motion profiles for the feet are shown in Fig. 8. The

height of the robot’s trunk changes according to the terrain

profile. When the robot selects footholds which are located

on the obstacles it moves the trunk up. During walking down

the hills the robot moves its legs down, and it searches for

appropriate footholds. Usually the ground is out of the front

leg’s workspace and as a result the robot lowers the trunk to

find proper contact points.

The robot’s paths during the simulations have been shown

in Fig. 9. In the first case the robot does not use any

algorithm for foothold selection. As a result it places feet

on the edges of cliffs or on large slopes. When even one leg

has an insufficient support, the robot loses the stability and

falls down. It rapidly changes its orientation (here measured

as a module of error for two angles:
√

θ2 + φ2) as it is

shown in Fig. 10). Finally, the orientation in the horizontal

plane is −64◦ while the desired angle was 45◦. When

the control algorithm uses the proposed foothold planning

algorithm the trajectory of the robot’s trunk is much smoother

(cf. Fig 9B). The robot changes its position to adapt itself

to the terrain level. There are only small orientation changes

during walking. They are caused by few leg’s collisions with

the ground during the swing phase. The orientation error in

z axis after the simulation is only 5◦.

VII. CONCLUSIONS

This paper presents a foothold selection system for a small,

multi-legged walking robot. The system uses a terrain map

acquired by using an inexpensive structured light sensor,

and learns automatically without any a priori expert knowl-

edge. The robot acquires the ground surface characteristics

by walking on a known example terrain or by testing

5260



Fig. 9. Results – trajectories without (A) and with the foothold selection algorithm (B)
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Fig. 10. Results – orientation during simulation

ground primitives. Then it exploits this knowledge to build

a decision surface, which is used for assessment of the

candidate footholds. The decision surface reflects only ge-

ometric characteristics of candidate footholds, because these

characteristics are the only information provided by the range

sensor employed in our system. However, if any information

about other ground properties, e.g. terrain compressibility is

available, it may be included by adding coefficients to (6).

The simulations show that after learning the robot is able

to select the appropriate footholds to prevent slippages. The

same rules work on various types of terrain. The developed

decision unit has been tested on a map of the real terrain

and verified on the real robot Ragno1.

As a further development we plan to test it on our new,

bigger hexapod robot Messor, which is able to carry a

Hokuyo URG-04LX laser scanner.
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