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Abstract— Typical industrial assembly tasks require an ac-
curacy that cannot be realized by only feedback control if
a minimum speed is given by a conveyor. Feed-forward has
proven to be advantageous, using predictions of the desired
trajectory which will be computed from sensor values. These
predictions are improved by a model based classification of
the sensor data to typical scenarios. In contrast to linear
controllers this assures the fastest possible response to external
disturbances, in spite of large dynamical delays. The method is
demonstrated by assembling wheels to a car body that is moved
by a conveyor, fusing sensor data using an extended Kalman
filter.

I. INTRODUCTION

This paper is related to industrial assembly of parts to
objects that are moved by a conveyor. A typical application
is the assembly of wheels to a car body that is being moved
by a power-and-free conveyor (see Fig. 1). In this set-up each
car body is transported by a conveyor unit that autonomously
moves within the conveyor.

For such tasks the desired robot trajectory is online com-
puted from sensors that track the conveyed object. Strictly
speaking, the area in which the assembly is intended, has
to be tracked, not the suspension of the moving object
within the conveyor [1]. Instead, [2] off-line senses the
assembly pose with respect to the conveyor unit and then
uses a conveyor-based sensor to propagate the pose of the
designated assembly point. This approach works well with
a smooth conveyor motion, but in case of accelerations of
the conveyor unit the accuracy is not sufficient. Then the
conveyed object may swing around its suspension, which
cannot be perceived by the position of the conveyor unit.
Such oscillations may be tracked by [3] but there the object
may be occluded when approaching to it.

The usual alternative besides manual assembly is to stop
the conveyor unit and to fix the object by clamps or fixing
pins. Then the assembly may be executed in a traditional
way, i.e. by an optimized program without online modi-
fications. This is called assembly at clocked cycles. This
is applied, e.g. for the insertion of the windshield or a
retractable roof. The disadvantage is the amount of time and
space that is required.

Therefore in [4] a set-up has been presented that provides
the sensors that are required to ensure an accurate assembly
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Fig. 1. Set-up at iwb for mounting wheels to a moving car body.

in motion and really track the designated assembly point
of the conveyed object. The bottleneck is control, since
an accuracy of about 1 mm is desired in presence of
disturbances or uncertainties of some tens or hundreds of
millimeters and changes of about a millimeter per sampling
interval.

Since with feedback control there is always a delay or
a bias when disturbances vary, this paper primarily uses a
feed-forward approach where a feed-forward controller is
understood as a filter that weights future desired poses. Thus
the applicability depends on the availability of reliable pre-
dictions of the future desired trajectory. These are improved
by sensor fusion for the detection of the current pose and
by classification methods which select one of several model-
based scenarios for prediction.

This paper is organized as follows. Next, the overall struc-
ture of control is outlined (Sect. II), followed by the two main
parts: the sensor-based determination of the desired robot
trajectory (Sect. III) and the predictive approach for control
(Sect. IV). Thereby, Sect. III includes the sensor fusion and
the classification for prediction. Finally, the performance is
demonstrated by real experiments with the wheel assembly
of Fig. 1 (Sect. V).

II. GENERAL APPROACH

We distinguish between the position-based control of the
robot and the determination of the desired trajectory where
the latter is based on sensory data [5]. Similar concepts are
known as inner loop - outer loop methods. The inner loop or
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Fig. 2. Signal flow for predictive trajectory control of the robot.

lower level is represented by position control and the outer
loop or upper level is realized by feedback of the sensed
control error. Our approach is somewhat different, as we do
not use pure feedback but a computation of the desired pose
and the prediction of its trajectory.

This gives the opportunity to modularize the system. There
is the robot dependent trajectory execution (green region
in Fig. 2, see Sect. IV for more details) and the task
dependent computation of the desired trajectory (Sect. III).
Both modules communicate by a predictive interface, which
allows for high accuracy during motion.

The separation facilitates independent optimizations, e.g.
to consider end-effector oscillations or joint compliance in
the control module. Similarly, the determination of the de-
sired robot motion may be extended to reproduce a potential
swinging of the conveyed object, or to model the speed ramp
of the conveyor unit in the first seconds after stopping or
restarting the conveyor unit. Besides, the modularization is
advantageous when the setup is modified, e.g. by removing
the linear axis that moves the robot parallel to the conveyor,
or when the task is changed.

The input to the module for the computation of the
desired motion is the task description in terms of a reference
trajectory xr(k) and the corresponding nominal poses of the
target object xnomo (k), both given for all sampling steps k. In
addition the current robot pose xa(k) and the current sensed
values of the object pose x̂o(k) are sampled in parallel.

The output to the robot interface are the commanded joint
angles qc(k). This interface is available for most robots
[6]. The interface between the computation of the desired
trajectory and the control is implemented as a list of frames
xt(k, i), which in each sampling step k predict the desired
poses of the tool center point (tcp)1 in time-steps k+ i with
i = 0, · · ·n. In Sect. IV these predictions are used to improve
tracking. Their generation is a challenge for the computation
of the desired trajectory of Sect. III.

III. SENSOR-BASED COMPUTATION OF THE DESIRED
TRAJECTORY

Since a reference trajectory with a given velocity profile
is present, there is no trajectory planning required but only
a spatial modification of an existing trajectory.

As proposed in [1], we use three different types of sensors.
The contact phase can only be controlled by a tactile sensor,

1The tcp is understood not only as a point but as a part of the tool,
represented by position and orientation.

in our case a compliant force-torque sensor with 6 degrees
of freedom (dof) which is mounted at the suspension of
the end-effector to the robot. Before the contact phase, the
designated assembly point of the conveyed object is tracked
by a CCD camera that is mounted on the robot, within the
assembly tool. Fig. 3 shows an image from this camera. The
third sensor is a distance sensor that gives the 1 dof position
of the conveyor unit with respect to the robot base. It is
required initially to activate the vision system and later, when
no other sensor data are available, to detect irregularities
in the conveyor motion, i.e. the motion of the suspension
of the conveyed object. The latter is important since there
is still a risk of collision when the robot retreats from the
car after completion. In addition, tracking of the position of
the conveyor unit can help to distinguish such irregularities
from oscillations of the conveyed object with respect to its
suspension. This will be discussed in a further paper.

Except for this distinction, the sensors are used sequen-
tially. At least tactile and non-contact sensors are mutually
exclusive. Nevertheless, it is emphasized to apply a fusion
method in order to inhibit biases when the sensor is changed.

A. Sensor Fusion

Sensor fusion is implemented by a Kalman filter that
weights all sensor data with their corresponding accuracies.
In this way a Kalman filter is used for implicit data driven
sensor selection. The speed of the target and thus the basis
for the predictions that are needed in Sect. IV are obtained
without extra effort. In addition, a Kalman filter can process
more detailed model information, e.g. a prediction of the

Fig. 3. Typical image of the robot mounted camera when measuring the
pose of the wheel hub from greater distance.
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swinging of the conveyed object.
In the basic version of our method the Kalman state x(k) is

a vector of 7 components. The first 6 components are defined
by the fused sensed desired Cartesian pose of the tcp rxf (k),
while the 7th component represents the target speed in the
conveyed direction. All variables are expressed with respect
to the reference system (i.e. the frame aligned to the current
reference pose of the tcp) and in the reference system. Thus
the measurement equation for a single component of one of
the sensors is

x′oi = hT
i x (1)

with hi being a vector that selects the appropriate component
of the state vector2, and x′oi the sensed component of the
sensor correction3.

The Kalman filter correction equations when processing
the component i of a sensor vector x′o(k + 1) are

x(k + 1/k + 1) = x(k + 1/k) + K(k + 1)

(x′oi(k + 1)− hT
i (k + 1) x(k + 1/k))

(2)

with Kalman gain4

K(k + 1) = P(k + 1/k)hi(k + 1)

(hT
i (k + 1)P(k + 1/k)hi(k + 1) + σi(k + 1))−1

(3)

and

P(k + 1/k + 1) = P(k + 1/k)−
K(k + 1)hT

i (k + 1) P(k + 1/k),
(4)

where P(k + 1/k) denotes the covariance matrix of the
estimation errors at step k+1, given the measurements up to
step k. σi(k) is the current variance of the noise of the sensed
component i. Like this, all sensors are weighted according
to their assumed accuracy. If a sensor is not available, e.g. a
force sensor without contact, σi(k) =∞.

The estimation of rxf at future time-steps is considered
in the Kalman prediction equations

x(k + 1/k) = A(k) x(k/k) + b(k) (5)

and

P(k + 1/k) = A(k) P(k/k)AT (k) + Q(k), (6)

where Q(k) is the covariance matrix of the non-modeled
changes of x(k + 1/k + 1) with respect to x(k + 1/k).

A and b represent the modelled state equation for x. If no
model of the motion is available, we take

2When using the camera for sensing in the conveying direction, a nonzero
value hi7 = −τ is required additionally to account for the delay since the
time instant of the exposure.

3Since all variables are expressed with respect to the reference system,
x′o = rxo − rxnom

o where rxo is computed from the sensed object pose
x̂o. (Strictly speaking, a product of homogeneous transformation matrices
is used instead of the sum of vectors, since the orientational deviations may
be substantial.)

4In contrast to the usual notation, K is not a matrix but a vector.
5For a suspension of the conveyed object as in Fig. 1 all swinging besides

oscillations around the direct axis may be neglected.

A = I7×7 +

 0
06×7 1

01×5

 and b = 01×7 (7)

assuming y as the conveying direction. Otherwise A and b
can contain a model for the pendulum motion around the
direct axis of the car5, with an extended state vector.

Alternatively, the non-diagonal components of the mea-
surement equations (1) may be changed to

x′o1(k) = x1(k) + a1 cos(ω(k − τ(k))T0)x8(k)
+ a1 sin(ω(k − τ(k))T0)x9(k)

x′o2(k) = x2(k)− τ(k)x7(k)
x′o3(k) = x3(k) + a3 cos(ω(k − τ(k))T0)x8(k)

+ a3 sin(ω(k − τ(k))T0)x9(k)
x′o5(k) = x5(k) + cos(ω(k − τ(k))T0)x8(k)

+ sin(ω(k − τ(k))T0)x9(k),

(8)

where the additional states x8 and x9 implicitly represent
the amplitude and the phase of the oscillation. The lengths
a1 and a3, and the frequency ω are previously identified
constant parameters, and τ(k) is the individually measured
time delay of the vision system, or zero when (8) is used to
include the tactile sensor.

When using the approach of (8) the prediction of the
Kalman states is with (7) but the desired poses are computed
from

rxf1(k + i) = x1(k) + a1 cos(ω(k + i)T0)x8(k)

+ a1 sin(ω(k + i)T0)x9(k)
rxf2(k + i) = x2(k) + ix7(k)
rxf3(k + i) = x3(k) + a3 cos(ω(k + i)T0)x8(k)

+ a3 sin(ω(k + i)T0)x9(k)
rxf5(k + i) = x5(k) + cos(ω(k + i)T0)x8(k)

+ sin(ω(k + i)T0)x9(k).

(9)

A further state may be introduced to represent the offset
between the distance sensor at the conveyor and the other
sensors that really survey the designated contact point. This
offset should be known a priori. But because of calibration
errors or an uncertain position of the car with respect to the
conveyor fixture it is proposed to estimate its value x10(k) =
x10 too. This yields

x′o2(dist.sens.)(k) = x2(k) + x10(k) (10)

B. Classification to Typical Scenarios

Sect. III-A gives an optimal estimate of the current pose
of the assembly point at the conveyed object. For control
purposes it is required however (see Sect. IV), to compute
not only a pose but a trajectory that covers some tenth of a
second, beginning with the time instant of the estimation. For
steady state conveyor motion this will be done by predictions
(9) assuming that the current speed x7(k) = x7 will be
constant and that the oscillation parameters x8 and x9 do
so as well.
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In contrast, in reality it happens that a conveyor unit is
stopped in order to prevent a collision with a preceding
car. After being stopped, the conveyor unit will restart again
when there is free space, maybe already in the deceleration
phase. Since the robot control is not connected with the
autonomously acting conveyor units, a stop or a restart
has to be perceived from sensor data. A classification is
advantageous, since otherwise the predictions will be far
from the required accuracy.

So there are three classes, i.e. continuous motion with
the current speed, conveyor stop with a known deceleration
(104 mm/s2 in our experiments) until speed is zero, and
conveyor start with a known acceleration (13 mm/s2) until
speed is nominal (106 mm/s).

The classification takes into account that the sensors have a
limited resolution and that there are outliers. The challenge
is to detect a changing class as early as possible. This is
realized rule based by:
• The selected class switches if a certain prediction error

is exceeded when using the old class for prediction.
Then the class with the least prediction error is selected
as a candidate and applied tentatively.

• The change of class is confirmed when the prediction
error further increases when predicting with the old
class.

• It will be cancelled if the new class is inferior than the
old class. Then an outlier is assumed.

Since the distance sensor on hand has a poor resolution,
a conveyor start is detected about 1.5 s after its beginning
which can be determined afterwards. It is confirmed 0.3 s
later. This is quite fast since the whole acceleration phase
lasts about 8 s. A conveyor stop is perceived after 0.16 s
and confirmed 0.12 s later, 0.74 s before coming to a stop.
The classification is faster if the other sensors are active.

Like this, prediction errors and thus control errors are
inevitable. But they are much less than without classification.

C. Computation of a Feasible Trajectory

The computation of the desired trajectory is performed
in two steps. Firstly, the sensor correction is computed from
the sensed contact point of the conveyed object, as described
above. Secondly, the resulting fused sensed trajectory xf is
revised in order to guarantee a feasible trajectory xt for the
real motion of the tcp. For example, the robot is stopped in
the beginning, when the conveyed object is still not close
enough.

After that, Sect. III-A yields tracking of the sensed target
at a pre-programmed, time-varying distance in order to
approximate to the target at the given speed. In this phase, a
nonlinear heuristic scheme defines the transient motion from
the sensed desired trajectory xf to the trajectory xt that the
tcp is desired to execute. This avoids the typical step response
from the programmed to the sensor controlled motion when
first image data are received. A quadratic approach further
assures that the sensed desired trajectory is reached smoothly,
without exciting oscillations of the robot end-effector. This
takes place before the pre-programmed path reaches the

nominal target object, which, in the case of accurate control,
coincides with the moment of the real impact.

All this computation of the desired trajectory is revised
at every sampling step. Therefore the trajectory which is
interface to the feed-forward controllers of Sect. IV remains
always up-to-date. The computed trajectories are represented
by the Cartesian poses at the current and subsequent sam-
pling steps, with a time horizon of some tenths of a second.
This enables the robot to follow the desired motion smoothly
and in the presence of limited actuation torques.

IV. PREDICTIVE TRAJECTORY CONTROL

The trajectory control is realized using model-based pre-
dictions of the smoothed desired trajectory xs of the tcp, as
input to a two-stage feed-forward filter (Fig. 2). Its upper-
level part considers the elastic mounting of the end-effector,
which is caused by compliance in the force-torque sensor.
Such elasticity is required in the contact phase but may
cause oscillations when moving in free space. Its damping
is outlined in Sect. IV-A. The lower-level part concerns the
dynamical control of the robot joints. This will be explained
in Sect. IV-B.

This approach allows for very small control errors in spite
of the end-effector’s and the robot’s dynamics as long as
the motion predictions for the end-effector trajectory do not
change. This means e.g. that the sensed trajectory of the
designated assembly point of the conveyed object is correct.

Assuming that the predictions of Sect. III are accurate
enough, there is no feedback controller required besides
the standard position controller of the robot manufacturer.
Instead, control concentrates on feed-forward modules. Thus
the system is inherently stable [5].

Smoothing of this trajectory is required since a controller
that guarantees small control errors is very sensitive to the
noise of a sensed trajectory. In Sect. III-C, discontinuities of
the desired path have been prevented, but discontinuities of
the desired speed still occur. Their smoothing is shown in
Sect. IV-C.

For dynamical reasons the control concentrates on the 6
axes of the robot arm. The speed of the redundant linear axis
is not manipulated as long as the conveyor unit does not stop.
In that case the robot completes the assembly while its base
is stopped, if needed. This is demonstrated in Sect. V.

A. Damping of the End-Effector Oscillations

Oscillations caused by compliance at the suspension of
the end-effector are best compensated in Cartesian space
since such deflections are independent of the robot joints
(see Fig. 2).

Oscillation damping is designed as an input shaping filter
[7], which means feed-forward with the smoothed desired
tcp trajectory xs as input. This yields a desired trajectory xd

of a virtual robot with a rigidly modelled end-effector.

xd(k+i) = xs(k+i)+
nu∑

j=−nl

Rosc
j ( xs(k+i+j)−xs(k+i)).

(11)
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Rosc
j are matrices of the controller parameters that are

computed off-line from the measured deflections of the force-
torque sensor. See [7] for details on the controller design.

Feedback of the actual deflections is possible but not used
since its benefit is highly restricted by the limited actuator
torques.

B. Joint-Based Feed-Forward Control

Since robot controllers that are supplied by a robot man-
ufacturer typically control positions instead of trajectories,
we use an adaptive feed-forward controller that supplements
the standard feedback controller. Both controllers are im-
plemented on joint level, since in this level there are less
couplings between the individual dofs.

qc(k) = qd(k) +

nrob∑
i=1

Rrob
i ( qd(k + i)− qd(k)), (12)

where qc is the vector of commanded joint values that are
input to the standard control system of the robot manufac-
turer. Rrob

i are diagonal matrices with the parameters, each
matrix operating with the individual joint motions in a certain
prediction period of i time steps. Details on the structure and
the adaptation of the Rrob

i can be found in [8]. A similar
approach is reported in [9].

C. Trajectory Smoothing

Smoothing of the desired trajectory may be assigned either
to the control part or to the computation of the desired
trajectory. It is designed similar to impedance control by
defining the characteristics of the desired trajectory by a mass
Md, a damper Dd, and a spring Ed, where Ed = 0 inhibits

static deviations. This impedance law is desired with respect
to the reference, in order to smooth the deviations from the
reference path and not the programmed motion itself.

As explained in more detail in [10], the system of equa-
tions

(I + Ed)
r xs(k + i) = rxt(k + i) (13)

Dd

rxs(k+i+1)−rxs(k+i−1)
2T0

= 0 (14)

Md

rxs(k+i+1)−2rxs(k+i)+rxs(k+i−1)
T 2
0

= 0 (15)

is optimized beginning from the current time-step k with
i = 0, until a prediction horizon i = nimp that is chosen
large in order not to restrict the smoothing. Since (13) - (15)
are linear, the optimization can be executed off-line, yielding
a feed-forward filter as (11) or (12).

xs(k+ i) = xt(k+ i)+
nimp∑
j=1

Rimp
j ( xt(k+ i+ j)−xt(k+ i))

(16)
The matrices Rimp

j represent the smoothing parameters.
Altogether a prediction horizon of n = nrob + nu + nimp

time steps has to be provided by the computation of the
desired trajectory. This is about 0.5 s for our system, where
small changes in future predictions have only a little effect.

V. EXPERIMENTS

A typical experiment with the setup of Fig. 1 is demon-
strated in Fig. 4. The plot displays the fused estimate for the
pose xf of the wheel hub6 and the robot trajectory xt that
is computed from this. The left hand diagram represents the
position while the right hand side concerns the orientation
which is about 23 degrees off from the nominal value.

The plot begins when the car reaches the start position.
Then, within about a second, the pose and the orientation
of the wheel hub is perceived and a smooth trajectory is
computed that reaches the hub pose at time 6 s. In the
conveyed direction (y) a constant speed of the car is detected
(see black dash-dotted line), until at time 5 s the conveyor
unit is stopped. After the deceleration phase the conveyor
unit stands still. At time 9 s the conveyor unit continues its
motion. At time 16 s the old speed is reached. In parallel,
the robot approaches (z direction) to the wheel hub, and a
wheel is mounted and fixed. At time 9.5 s the screws are
fixed, which can be seen by a small orientational step. The
linear axis is stopped from time 6 s to 10 s. At time 15 s
the robot retreats from the conveyor.

In spite of the accelerations the control errors are less than
1 mm (2 mrad) during the approaching phase and during
contact (see Fig. 5). They become larger when the robot
retreats from the conveyor. Note the different scale with
respect to the computed motion.

The attached video clip displays the robot motion and
the images of the used camera. There are small prediction
errors visible since the conveyor unit stops just before
contact is reached. Nevertheless the assembly is finished
robustly. Similar video clips can be found at our web site
www.robotic.de/212/.

Without prediction, the robot follows the wheel hub with
delay, such that assembly fails, at least if the conveyor speed
differs from the nominal speed. Without classification, a
conveyor stop is not allowed since it would damage the setup,
unless contact is released by an emergency retraction.

VI. CONCLUSION AND FUTURE WORK

The paper explains the computation of a feasible robot
trajectory and its control such that all accuracy requirements
are kept. The computation of the desired robot pose is done
by fusing the estimated poses of the designated assembly
point from different kinds of sensors, taking into account that
the conveyed object may swing around its suspension. Then a
desired robot trajectory is predicted, using a classification of
the fused poses to select one of three possible scenarios for
the conveyor motion. These predictions give the opportunity
for a very precise control of the robot pose, such that the
desired robot trajectory is executed properly. The control
comprises an oscillation damping of the elastically mounted
end-effector and a feed-forward control of the robot joints.
Like this, a dynamic model of the conveyed setup and a
proper calibration of the camera [11] can prevent a hard

6Strictly speaking, xf includes the desired distance between the robot
and the wheel hub, such that both curves correspond.
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Fig. 4. Fused sensed trajectory xf (dashed) and computed desired robot trajectory xt (solid).
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Fig. 5. Control error during the wheel assembly.

impact. The remaining prediction errors are within the range
of compliance of the sensor.

Future work will, firstly, replace the position sensor at
the conveyor, such that a changed scenario can be detected
earlier. Secondly, oscillations will be modeled around other
than the direct axis. This is designed in order to tolerate
disturbances that act on the conveyed object if a second robot
or even a human has contact to it as well. In this case the
evaluation and prediction of sensor data has to include a
distinction between a jerk caused by contact forces and a
conveyor stop that accelerates the same dof.
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