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Abstract— In teleoperation systems, operator performance is
negatively affected by time-delayed visual feedback. Predictive
display (PD) compensates for delays by providing synthesized
visual feedback. While most existing PD methods rely on a
priori models (e.g., from laser range finding or stereo vision),
recent work on monocular SLAM and SFM makes it possible to
acquire PD models in single camera applications. In this work,
we evaluate operator performance of PD visual feedback based
on a coarse 3D model. We report the experimental results of
12 human tele-operators each performing 96 visual alignment
tasks with a 300ms delay. Four operating modes are considered:
delayed video (no PD), video-based PD using a stabilizing
plane (homography), 3D model-based PD, and no delay (ground
truth). The results indicate that vision-based PD (both plane
and 3D model-based) is significantly better than delayed video.
It reduced task completion time 40% and is nearly as good as
the no delay condition. PD based on a sparse a 3D model was
somewhat better than the simpler plane based method.

I. INTRODUCTION

Long-distance operation of robots (tele-operation) has

applications in space and deep-sea robotics, robot-assisted

surgery, or any task where an operator must interact with a re-

mote environment via a robot. A major issue in tele-operation

is performing tasks in the presence of communication de-

lay [1]. Early studies considering delayed visual feedback

have shown that “sensory-motor adaptation is essentially

impossible for delays as small as 0.3s”, leading to inefficient

“move and wait strategies” for accomplishing tasks such as

placing pegs into holes [2]. Predictive display (PD) attempts

to compensate for visual-feedback time delays by predicting

and displaying the appearance of the remote environment

before the remote signal has actually arrived. Prediction is

usually based on the operator’s motion control signals to

the robot. Since these are available at the master control

station, they can drive a simulation that returns predicted

visual feedback before the actual video feedback arrives from

the remote site.

Early PDs provide simple graphical markup, such as a

point indicating the predicted position of a target, or a vector

model of the remote robot overlayed on delayed video to

indicate a predicted pose change [3]. “Model-based” methods

rely on a priori models of the environment and/or robot to

provide PD [4] (both predicted visual feedback and predicted

force feedback).

Recent PD methods leverage computer vision and graphics

to produce high-fidelity predicted visual feedback without

requiring a priori models. Burkert, et al. incrementally

estimate a geometric model and a set of textures from

stereo image pairs [5]. Cobzas, et al. use a pan-tilt camera

and laser-rangefinder to estimate an accurate panorama-plus-

depth graphics model offline [6]. Both methods provide high-

fidelity graphics models that can be rendered from a novel

view at frame-rate, but require significant time to build the

model or to incorporate new images. Moreover, they are

not designed for monocular vision, which may be the only

available sensing modality due to cost/payload constraints in

mobile robotics or sensor damage in robust systems.

Reconstructing 3D graphics models from a single, moving,

monocular camera is a mature computer vision problem [7].

Modern methods [8], [9] provide estimates of camera pose,

sparse 3D structure, and keyframe images at frame-rate. With

such methods it is possible to concurrently acquire images

from a camera, reconstruct a coarse graphics model, and

visualize that model, all at frame-rate [10]. Previously, we

have used this concurrent method to efficiently collect data

for 3D modeling from monocular images [11]. In this work,

it provides predicted visual feedback for the vision-based PD

experiment.

In vision-based PD the model is built online from the

robot camera. This is based on (visual) camera pose tracking,

online building of a 3D geometry, and saving keyframe

images for use in texturing. When starting the robot in a new

place, there is no 3D model of that environment. Similarly,

when the robot viewpoint changes to an unexplored area,

there is no model. Yet the operator has to be supplied with

visual feedback at all times. This suggests a hierarchical

approach to PD, with three operating modes:

1) As a baseline, delayed video is available for the

operator.

2) Once a reasonably accurate camera pose is available

from visual tracking, basic PD can be generated by

forward warping the delayed video using a planar

homography.1

3) After some time when sufficient 3D geometry of the

scene has been computed, this geometry is used to

provide a richer PD by texturing from keyframes and

rendering from the current operator viewpoint.

Two additional advantages of the PD model are that a

wider field of view than that of the robot camera can be

rendered by texturing from several keyframes, and that it

decouples what the operator sees from the current robot

pose. The latter is useful in robots where the camera is

mounted to the robot and has no separate articulation. Here

1While for some robots, e.g. a calibrated manipulator, the robot camera
pose would be available, here we consider uncalibrated systems where vision
is also used to establish the robot motion
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a motion/pose trajectory for the robot task at hand may not

give good views to the operator, but using a PD model the

operator can visualize different viewpoints.

It is worth noting that while conventional computer graph-

ics require dense 3D models to render well from any view-

point, in this PD application keyframes from relatively close

viewpoints are transferred via the geometry to the operator

view. The geometry acts as a proxy and even very sparse

(10-100 points) models give sufficient results. The simpler

planar homography mode is equivalent to a four point model.

The visual quality of sparse models can be improved through

view-dependent “dynamic” (time and pose varying) texturing

for both a planar [12] or 3D mode [13].

We evaluate the three described operating modes (and

a ground truth mode) for participants performing a visual

alignment task. The task is to remotely move a robot-

controlled camera to a specific pose in a static environment

(e.g. in order to perform an inspection task, or initiate

a manipulation task). We compare time-to-completion and

trajectories for both novice and expert participants with no

delay (ground truth), delayed video, stabilizing plane, and 3D

model-based PD. Experimentally, we determine if a graphics

model computed at frame-rate from a single camera is useful

as a PD for overcoming communication delay.

II. EXPERIMENT DESIGN

In the experiment, participants operated a virtual robot

with a Phantom OMNI controller (Fig. 1a). The pose of the

OMNI pen-tip mapped directly to the desired pose of the

camera mounted on the end effector of the robot (eye-in-

hand). The user is provided with visual feedback from the

camera, which made this mapping natural. The participants

performed 6DOF alignment tasks, which required them to

move the robot to a specific pose in its environment. The

task environment consisted of circuit boards placed in a

workspace approximately 1m×50cm×50cm (Fig. 1b). Each

task consisted of aligning a target letter (A, B, C, or D)

in the scene with the silhouette of the target letter, which

was overlayed on the display (Fig. 2). To complete a task

the robot would have to remain within a small threshold

of the target pose for 500ms. Simplified robot dynamics

were modeled by limiting the maximum velocity and angular

velocity of the robot to 30cm/s and 45
◦/s, respectively.

Lastly, a communication delay of 300ms was applied to

the visual feedback (except in the ground truth case). This

delay was chosen since it is cited as the minimum time at

which simple task completion is impeded [2], and it also is

representative of typical networking latency over the Internet

or other commonly available networks due to a combination

of distance and network switches.

We compared the effect of four possible operating modes

on task completion time: delayed image (no PD), stabilizing

plane PD, model-based PD, and no communication delay

(ground truth). The delayed image (no PD) mode simply

presented the user with the image from the robot simulation

delayed by 300ms (Fig. 3a). In the stabilizing plane PD

mode, the delayed video frame was projected onto a plane

(a) Phantom OMNI controlling simulated robot

(b) Simulated task environment

Fig. 1: Predictive display experiment setup. Participants

move the simulated robot, via the Phantom OMNI haptic

device, to specified poses using four different operating

modes.

at mean depth to the scene (Fig. 3b). The plane was then

rendered from the operators current (non-delayed) viewpoint.

The stabilizing plane mode represents a simpler view predic-

tion that is possible without sparse geometry. (A version of

this is used in consumer camcorders for stabilization of shaky

hand-held imaging). This mode is evaluated to quantify

whether saving key-frames and triangulating a surface is

valuable in this application, or if the simpler approach is

adequate.

In the model-based PD mode, a sparse structure was pre-

estimated (∼500 points) and a view-dependent surface model

was estimated at frame-rate [11]. This pre-estimated 3D

structure consisted of a set of sparse 3D surface points that

were generated by back projecting feature points extracted

from renderings of the synthetic model. This sparse 3D

point structure is sufficiently different from the underlying

ground truth model, and it is intended to simulate the

output from a real-time vision subsystem (e.g., [8], [9]).

The corresponding surface model used in this PD mode is

based on a view-dependent Delaunay triangulation of the

surface points visible from the operator’s desired viewpoint.

In each trial, key-frame images were stored as the scene

was explored, and the surface model was textured using the

closest of the key-frames and the most recent video frame

(Fig. 3c).
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(a) searching for target (b) approaching the target

(c) overshooting the target (d) alignment task completed

Fig. 2: Visual feedback as the robot is moved to align the C

silhouette with the C target in the environment.

At the beginning of the experiment, participants were

instructed on the use of the OMNI controller and shown a

demonstration of the tasks they would be performing. They

were given 2 minutes to practice using the controller to direct

a simulated camera (no dynamics constraints) and were asked

to perform certain motions (e.g., look to the right or move

close to the yellow circuit board) to ensure a sufficient level

of competence with the controller. Next, to minimize the

effects of learning during the experiment, participants were

given 10 minutes to practice performing alignments with

each of the operating modes.

Tasks were organized into sequences of four alignments:

A, then B, then C, and then D. During the experiment, par-

ticipants performed 24 tasks with each of the four operating

modes, totaling 96 alignments. These were organized into

six batches of tasks, where in each batch the participant

performed four sequences of four tasks, each with a different

mode. To minimize the effects of ordering in the experiment,

mode orders within each batch were selected from a ran-

domized list of the possible mode-order permutations, while

satisfying the constraint that all sequences are performed

with all modes by the end of the experiment.

III. RESULTS AND DISCUSSION

Of the 12 participants, six had previously used the Phan-

tom OMNI controller in other contexts or had experience

with robotic alignment tasks. They had more consistent

performance, and are considered better representatives of real

tele-operators. We classify these participants as experts. The

resulting times to perform alignments during the experiment

are shown for all participants (Fig. 4), for experts (Fig. 5),

and for individual targets by experts (Fig. 6). The data

was first normalized, then a multiple comparison test was

performed with analysis of variance (ANOVA). For each

(a) No delay (ground truth) mode: images are shown directly from the
robot pose as specified by the user. Delayed image mode: delayed images
are shown, which do not reflect the desired pose of the robot.

(b) Stabilizing plane PD mode: the delayed image is back projected onto
a plane that is rendered from the desired pose.

(c) Model-based PD mode: the closest key-frames are back projected onto
the coarse surface model and then rendered from the desired pose.

Fig. 3: Diagram of simulation and operating modes.
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Delayed image

Stabilizing plane predictive display

Model−based predictive display

No communication delay

Fig. 4: Time to perform alignment for all subjects. Modes

with non-overlapping confidence intervals have significantly

different mean times. ∼48% longer to complete with delay

than no delay. ∼7% longer to complete with PD modes than

no delay.

participant, all times were normalized by the participant’s

mean time (i.e. each participant contributed to the results

equally). Similarly, for each task, all times were normalized

by the mean time of the task (i.e. each task contributed to

the results equally).

The results indicate that performing these alignment tasks

is impeded by communication delay (∼48% longer to com-

plete with delay than no delay), and predictive display almost

entirely compensates for the delay (only ∼7% longer to

complete with the PD modes than with no delay). For the

entire sample population, there is no significant difference

between model-based PD and the simpler stabilizing plane

PD (Fig. 4). For the expert sub-population, however, model-

based PD is better (less time to complete task) than stabiliz-

ing plane PD, and in fact there is no significant difference

between model-based PD and no delay (Fig. 5). One reason

for the similarity between times for PD modes is that the

local geometry of the alignment targets is nearly planar

(i.e. circuit boards) and hence is well approximated by the

stabilizing plane.

The results for aligning individual targets within each

sequence (Fig. 6) indicate that while there is no significant

difference between the PD modes for the first two targets (A,

B), model-based PD is better than stabilizing plane PD for

later targets (C, D). This can be explained by considering the

alignment task as two separate actions. First, the participant

searches for the target and performs a coarse alignment, and

then she performs a fine alignment. For tasks C and D,

the scene has already been somewhat explored (during the

alignment of A and B). The model-based PD then provides

the advantage of enabling the search and coarse alignment

using the model and key-frames. In contrast, the plane-
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Delayed image

Stabilizing plane predictive display

Model−based predictive display

No communication delay

Fig. 5: Time to perform alignment for six expert subjects,

who had previous experience using the Phantom OMNI.

Modes with non-overlapping confidence intervals have sig-

nificantly different mean times. Model-based PD is better

than stabilizing plane PD.

based PD mode uses only the most recent delayed image

and hence is still affected by communication delay. This is

evident in the comparison of residuals for a task representing

target C alignments (Fig. 7). During the coarse alignment

(up to ∼20cm of the target) the stabilizing plane PD is

similar to the delayed image, while the model-based PD

is similar to no delay; during the fine-scale alignment both

PD modes are similar to no delay. The benefit of model-

based PD increases for longer tasks with several movements

in sequence since the model is incrementally acquired and

becomes more detailed over time.

Residuals for a task representing all the trials (Fig. 8) show

the move-and-wait strategy (plateaus in the residual) and

overshooting (sinusoidal residual) expected in the delayed

image mode. Stabilizing plane PD shows some overshooting

because the stabilized image is still based on the most

recent delayed image. Model-based PD converges relatively

smoothly to the target. Some overshooting evident in the no

delay residual can be explained by the robot dynamics. The

maximum velocity of the robot has some of the same effect

as communication delay on task performance. Moving the

OMNI to a specific pose is not immediately reflected in the

displayed video resulting in overshooting. This also explains

why in some specific trials (especially for targets C and D,

as explained above), the model-based PD times are better

(less time to complete task) than times for no delay.

IV. CONCLUSION & FUTURE WORK

In tele-robotics, visual feedback is delayed, degrading

operator performance; PD compensates for this by imme-

diately rendering the operator’s desired viewpoint using a

graphics model. In this work, a monocular predictive display

system has been evaluated in the context of simulated robotic
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Delayed image

Stabilizing plane predictive display

Model−based predictive display

No communication delay

Fig. 6: Time to perform alignment for experts for the first

(A) through last (D) alignment target in all six four-target

sequences. Within each group, modes with non-overlapping

confidence intervals have significantly different mean times.
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Fig. 7: Position residual for “C target” representative. The

task shown is for a single participant and single alignment

with ratio of mode times that is closest to the mean ratio for

the target C group. The top graph shows all four modes; The

bottom four graphs show individual modes within 20cm of

the target; Vertical bars indicate when the task was finished

for each mode.
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Fig. 8: Position residual for “all trials” representative. The

task shown is for a single participant and single alignment

with ratio of mode times that is closest to the mean ratio for

the sample population. The top graph shows all four modes;

The bottom four graphs show individual modes within 20cm
of the target; Vertical bars indicate when the task was finished

for each mode.

alignment tasks with delayed visual feedback. A simulated

environment was chosen for practical reasons and to make

the experiments consistent over the many subjects and condi-

tions tested. Yet the simulated model was built to be similar

in density and quality to what can be obtained in a monocular

computer vision system. The results support the hypothesis

that predictive display using a coarse graphics model, of

a quality obtainable from computer vision and computed

at frame-rate, is useful in compensating for delay. The PD

reduced task completion times by 40% compared to delayed

feedback, and PD tele-operation performance approached

performance with no delay. The model-based approach was

shown to be somewhat better than the simpler stabilizing

plane approach, particularly for experts. Furthermore, as

more tasks were performed in the same visual workspace,

and hence a richer PD model was acquired, the advantages

of the model-based approach became increasingly significant.

In this work, we pre-estimate sparse structure, use a

fixed 300ms delay, provide only visual feedback, and use

a simulated static environment. In future work, it would be

meaningful to perform trials while concurrently estimating

5313



structure (although this would require significantly longer

trials, or many more participants). We would also like to

investigate the effect of differing amounts of delay and non-

uniform delay, as is common in network communication.

Initial investigation suggests that PD is almost mandatory

for these alignment tasks when delays exceed one second; It

took the authors ten times longer to complete tasks with such

delays. Participants were only provided with visual feedback

in this experiment; Would the proxy geometry estimated by

the model-based PD also be useful for providing haptic feed-

back via the OMNI controller? Moreover, a static environment

is considered in this experiment; Would the model-based

PD be made suitable for dynamic environments by purging

old key-frames and acquiring new frames whenever the

camera revisits specific poses? Finally, we have completed

preliminary tests of this OMNI and PD configuration with a

real camera mounted on a Whole Arm Manipulator robot; In

the future, we hope to overcome technical, cost, and safety

concerns and to perform trials with this robot.
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