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Abstract— The paper deals with a general class of leader-
follower formations of unicycle robots induced by a constraint
function that depends on the position and the orientation of the
vehicles. We study the flexibility of such formations by intro-
ducing the notion of formation internal dynamics, characterize
its equilibria and give sufficient geometric conditions for their
existence. In particular, we show that the displacement and the
relative orientation of each follower with respect to the leader’s
reference frame are fixed if and only if the robots either move
along circular paths or parallel straight lines. These equilibrium
configurations always exist if the trajectory of the leader is a
circle of sufficiently small curvature or a straight line.

I. INTRODUCTION

Multiagent systems and cooperative control are nowa-

days research topics of increasing popularity, as witnessed

by several monographs and books on the subject [1]–[4].

The research in this area has been stimulated by the recent

technological advances in wireless communications and pro-

cessing units, and by the observation that a team of agents

offers numerous advantages over a single unit, such as, e.g.,

increased fault tolerance, greater area coverage, lower costs,

greater accuracy, faster goal achievement.

One of the fundamental tasks of any multiagent system is

the ability to achieve and maintain a desired formation. There

is a large body of work on formation control in the literature,

where a wide range of issues have been addressed: a list

of key references, yet far from being complete is [5]–[8].

In the past few years, the interest in formation control has

been awakened by the introduction of the original notion

of rigidity, that essentially measures how much a formation

can be deformed by a smooth motion without affecting

the distance between neighboring agents. Moving from [9],

Anderson and coworkers have started to systematically apply

the rigid graph theory to the analysis of formations of

autonomous robots and shown the relevance of the notion of

rigidity in several branches of engineering (see [10] and the

references therein). In [11], [12], graph rigidity ideas have

been used to design decentralized gradient control laws for

the stabilization of a group of kinematic points to a target

formation. Recently, in [13], a distributed algorithm that

stabilizes the shape of a relative sensing network to a desired

formation has been proposed: the algorithm overcomes the

main drawback in [11], [12], and relies on the global
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minimization of the stress majorization function (a tool from

multidimensional scaling theory) associated to the network.

As it is apparent from the previous literature review, most

of the research in the rigidity framework has focused, up to

today, on graph theoretical issues and little attention has been

devoted to the physical constraints of the agents. In this

respect, two challenging open issues include the characteri-

zation of rigidity for formations of nonholonomic robots and

the definition of general classes of such formations sharing

the same rigidity properties. This last problem appears of

special practical interest, since real-world applications gene-

rally require a specific degree of flexibility of the formation.

This paper builds upon previous contributions of the au-

thors on leader-follower formation control [14] and addresses

the previous open issues from a nonlinear control perspec-

tive. A general definition of formation for unicycles with a

single leader robot, is introduced: the formation is induced

through a constraint function F , that depends on the position

and the orientation of the vehicles. We state conditions on F
that guarantee that the followers’ controls (i.e., their linear

and angular velocities) are uniquely defined. In this setting,

the relative position and orientation of the followers with

respect to the leader’s reference frame is not fixed (i.e., the

formation is not rigid). The original notion of formation

internal dynamics is introduced to study the flexibility of

the robotic network. The equilibrium configuration of the

internal dynamics is characterized by two main geometric

results. A first theorem states that the displacement and

the relative orientation of each follower with respect to the

leader’s reference frame are fixed if and only if the robots

either move along circular paths or parallel straight lines.

A second theorem shows that such equilibrium configura-

tions always exist if the trajectory of the leader is a circle of

sufficiently small curvature or a straight line.

The work is organized as follows: Sect. II presents the

main theoretical results of the paper. In Sect. III the theory

is applied to two specific constraint functions, and in Sect. IV

conclusions are drawn.

The following notation will be used through the paper :

S1 denotes the quotient space S1 = R/2πZ, where Z is

the set of the integer numbers; ∀x = (x1, x2, . . . , xn)T ,

y = (y1, y2, . . . , yn)T ∈ R
n (n ≥ 1), 〈x, y〉 =

∑n

i=1 xi yi,

‖x‖ =
√
〈x, x〉; ∀ θ ∈ S1, τ(θ) = (cos θ, sin θ)T , η(θ) =

(− sin θ, cos θ)T ; Given a differential manifold M, Tx M
denotes the tangent plane of M at x ∈ M; Given two

functions f(t) and g(t), f(t) ◦ g(t) = f(g(t)) indicates

their composition.
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Fig. 1. Variables of the unicycle robot.

II. FORMATIONS OF UNICYCLE ROBOTS

Consider the following definition of robot as a velocity

controlled unicycle model [14]:

Definition 1 (Unicycle robot): A function r = (x, y, θ) ∈
C1([0, +∞) , R

2 × S1) is called a unicycle robot (or a

robot, for short) if there exists a control function (v, ω) ∈
C0([0, +∞) , R

2) such that,





ẋ = v cos θ,

ẏ = v sin θ,

θ̇ = ω.

For any t ∈ [0, +∞), denote by (x(t), y(t)) the position

of the robot at time t, θ(t) its heading, τ(θ(t)) the nor-

malized velocity vector and η(θ(t)) the normalized vector

orthogonal to τ(θ(t)). Hence, {τ(θ(t)), η(θ(t))} represents

the robot reference frame at time t (see Fig. 1).

The next definition introduces an ordered set of n + 1
robots, with n ≥ 1.

Definition 2 ((n + 1)-tuple of robots): Let

X = (R2 × S1)n+1 = {ξ = (ξ0, . . . , ξn) |

ξi = (xi, yi, θi) ∈ R
2 × S1, ∀ i = 0, . . . , n}.

A C1 map R : [0, +∞) −→ X , defined by R(t) =
(r0(t), . . . , rn(t)), where ri = (xi, yi, θi), i = 0, 1, . . . , n,

is a robot, is called an (n + 1)-tuple of robots. The set

X is called the configuration space, r0 the leader and

r1, r2, . . . , rn the followers.

Definition 3 (Constraint function): Let F be the C1 map

defined on X given by F = (F1, F2, . . . , Fn), where Fi :
X −→ R

2, ∀ i = 1, . . . , n. The map F is called a constraint

function if,

∂ξj
Fi(ξ) = 0, ∀ ξ ∈ X , i = 1, . . . , n − 1, j = i + 1, . . . , n,

(1)

i.e., every Fi depends only on (ξ0, . . . , ξi).
Definition 4 (Constraint set):

The set F = {ξ ∈ X |F (ξ) = 0} is called the constraint set:

it is the set of the configurations ξ compatible with the

constraints F1, F2, . . . , Fn.

The constraint function F on the ordered set of (n + 1)-
robots, or (n+1)-tuple of robots, imposes a structure on the

set of constraints: in fact, constraint Fi depends only on the

position and the orientation of robots that have index less or

equal than i.

The following definition introduces the notion of

F -formation used through the paper.

Definition 5 (F -formation): Let F be a constraint func-

tion. An (n+1)-tuple of robots R is said in F -formation if,

F (R(t)) = 0, ∀ t ≥ 0 ,

i.e., if R(t) ∈ F , ∀ t ≥ 0.

Set vf = (v1, v2, . . . , vn), ωf = (ω1, ω2, . . . , ωn), where

(vi, ωi) is the control function of i-th follower. In this way

the kinematic equations of the n + 1 robots can be written

in a compact form as,

ξ̇ = g(ξ, v0, ω0, vf , ωf ), (2)

where (v0, ω0) is the control of the leader and

g = (g0, g1, . . . , gn) is such that ∀ i = 0, . . . , n:

gi(ξ, v0, ω0, vf , ωf ) = (vi cos θi, vi sin θi, ωi).

Proposition 1: Let F be a constraint function and suppose

that ∀ i = 1, . . . , n, ∀ ξ ∈ F :

det(cos θi ∂xi
Fi(ξ) + sin θi ∂yi

Fi(ξ), ∂θi
Fi(ξ)) 6= 0. (3)

Then the following facts hold:

i) F is a differential manifold of dimension n + 3.

ii) For each ξ ∈ F and for each (v0, ω0) ∈ R
2, there exist

unique controls vf (ξ, v0, ω0), ωf(ξ, v0, ω0) such that,

g(ξ, v0, ω0, vf (ξ, v0, ω0), ωf (ξ, v0, ω0)) ∈ Tξ F .

Proof: Denote by F ′(ξ) the Jacobian matrix of F . Since

rank(F ′(ξ)) = 2n by (3), we get that i) holds by the implicit

function theorem. To prove ii), set ∀ i = 1, . . . , n, ∀ j =
0, . . . , n, ∂ξj

F (ξ) = (∂xj
Fi(ξ), ∂yj

Fi(ξ), ∂θj
Fi(ξ)), which

is a 2 × 3 matrix, and ∀ i = 1, . . . , n,

Ai,j(ξ) = ∂ξj
Fi(ξ)




cos θj 0
sin θj 0

0 1




= (cos θj ∂xj
Fi(ξ) + sin θj ∂yj

Fi(ξ), ∂θj
Fi(ξ)).

Then, by hypothesis (3), ∀ (v0, ω0) ∈ R
2, vf =

(v1, v2, . . . , vn), ωf = (ω1, ω2, . . . , ωn) are given by the

unique solution of the following triangular system:

Ai,i(ξ)

(
vi

ωi

)
= −

i−1∑

j=0

Ai,j(ξ)

(
vj

ωj

)
, i = 1, . . . , n. �

Remark 1: Condition (3) in Proposition 1 guarantees that

if the vehicles are in F -formation at time t = 0, then there

exist unique controls vf , ωf for the followers such that they

remain in F -formation for all t ≥ 0, independently on the

leader’s controls v0, ω0, i.e., independently on the trajectory

of the leader.

Definition 6 (Regular constraint function): Let F be a

constraint function. We say that F is regular if condition (3)

is satisfied.

Remark 2: In Definition 3 we introduced 2n scalar con-

straints for the followers on the (n+1)-tuple of robots. This is

a necessary condition for the uniqueness of the controls

vf , ωf , and it is not a loss of generality since with less
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constraints it is always possible to restate the problem by

adding a suitable number of virtual ones.

To properly study the relative position and orientation

between the robots, we introduce the following definition.

Definition 7 (Rototranslation invariance): For any pa-

rameter p = (x̄, ȳ, θ̄) ∈ R
2 × S1, define the map Hp :

R
2 × S1 −→ R

2 × S1 as,

Hp(x, y, θ) =
(
R(θ̄)

(
x + x̄
y + ȳ

)
, θ + θ̄

)
,

where matrix R(θ) = (τ(θ), η(θ)). For any ξ =
(ξ0, . . . , ξn) ∈ X , set Hp(ξ) = (Hp(ξ0), . . . , Hp(ξn)).
A map G ∈ C1(X , Rm), is called rototranslation invariant if

G(ξ) = G(Hp(ξ)), ∀ ξ ∈ X , ∀ p ∈ R
2 × S1.

In other words, a function of the configuration space X
is rototranslation invariant when its value does not change

when any rototranslation Hp is applied to its argument.

Remark 3: Let F be a rototranslation invariant constraint

function and suppose that the (n + 1)-tuple of robots R =
(r0, . . . , rn) is in F -formation. Therefore for any λ ∈
C1([0, +∞), R), R̃(t) = R ◦ λ is in F -formation. Hence if

‖v0(t)‖ 6= 0, ∀ t ≥ 0, taking λ(t) =
∫ t

0
v−1
0 (τ) dτ , it follows

that the forward velocity of the leader of R̃ is always 1.

This justifies the following assumption:

Assumption 1: We will henceforth suppose that the for-

ward velocity v0 of the leader r0 is equal to 1.

As a consequence, ω0(t) represents the curvature of the

path (x0(t), y0(t)) followed by the leader r0 at time t.
Let us now introduce the following equivalence relation

“∼” on X .

Definition 8: Given two vectors ξ, ϑ ∈ X , ϑ ∼ ξ if

∃ p ∈ R
2 × S1 such that ϑ = Hp(ξ).

We denote by JξK = {ϑ ∈ X | ϑ ∼ ξ} and by X/ ∼ =
{JξK | ξ ∈ X} the quotient set.

Note that G is a rototranslation invariant function if and

only if for any ξ ∈ X , G is constant on the set JξK.

In the case of rototranslation invariant constraint functions,

it is natural to define a reduced constraint set as follows:

Definition 9 (Reduced constraints set): The reduced con-

straints set Fr is the set: Fr = F/∼.

In this way, each element of Fr represents a set of configu-

rations for the formation that differ only by a rototranslation.

Proposition 2: Let F be a regular rototranslation con-

straint function and R1, R2 be two (n + 1)-tuples of robots

in F -formation. Suppose that,

R1(0) ∼ R2(0), (4)

then

R1(t) ∼ R2(t), ∀ t ≥ 0 . (5)

Proof: By (4) there exists p ∈ R
2 × S1, such that

Hp(R
1(0)) = R2(0). Proving (5) is equivalent to show that,

Hp(R
1(t)) = R2(t) , ∀ t ≥ 0. (6)

In fact F (Hp(R
1(t))) = 0 since F is rototranslation invari-

ant: moreover Hp(R
1(t)) is still an (n + 1)-tuple of robots.

Then (6) holds by part ii) of Proposition 1.

Let ω0 ∈ C([0, +∞) , R) be the control for the leader.

As a consequence of Proposition 2 the following map is well

defined: Φω0
: [0, +∞)×Fr −→ Fr, (t, JζK) ; Φω0

(t, JζK),
where,

Φω0
(t, JζK) = Jξ(t)K , (7)

being ξ the only solution of the following system,

ξ̇ = g(ξ, 1, ω0, vf (ξ, 1, ω0), ωf (ξ, 1, ω0)), ξ(0) = ζ,

where g is given by (2).

Remark 4: Let F be a rototranslation invariant constraint

function. Set,

Γ = {ξ = (ξ0, . . . , ξn) ∈ X | ξ0 = 0, F (ξ) = 0}. (8)

Then the map,

Fr −→ Γ
JξK ; H−ξ0

(ξ) ,
(9)

is a bijection. Moreover an (n + 1)-tuple of robots R is in

F -formation if and only if H−r0(t)(R(t)) ∈ Γ, ∀ t ≥ 0.

As suggested by (9), Fr is the set of all configurations of

followers in the leader’s reference frame that are compatible

with the constraint function.

Definition 10 (Reduced motion): Given an (n + 1)-tuple

of robots R, the reduced motion of R is the map JRK :
[0, +∞) −→ X/∼ defined by,

JRK(t) = JR(t)K, ∀ t ≥ 0.

Note that JRK describes the motion of the followers in the

leader’s reference frame.

Remark 5: Let R = (r0, . . . , rn) be an (n + 1)-tuple of

robots. JRK is constant if and only if there exists ξ̄ ∈ Γ
such that,

H−r0(t)(R(t)) = ξ̄, ∀ t ≥ 0 .

Since Fr is the quotient set of F by the equivalence

relation ∼, it has a lower dimension than F as specified

by the following proposition.

Proposition 3: If F is a regular rototranslation invariant

constraint function, Fr is a differential manifold of dimen-

sion n, diffeomorphic to Γ.

Proof: By (3) and the implicit function theorem, the

subset of F given by Γ (see equation (8)) is a submanifold

of X of dimension n. Since the map (9) is a bijection, this

induces a natural structure of differential manifold on Fr.

Remark 6 (Flexibility of F -formations): A consequence

of Proposition 3 is that the F -formations are not rigid. This

is due to the fact that we are dealing with robots described

by 3 configuration variables, but function F introduces only

2 constraints for each robot: this results in a residual degree

of freedom for each vehicle. More precisely, a formation is

rigid if the set Fr is composed by only one equivalence

class: this is not true in our case, since Fr is a manifold of

dimension n.

Definition 11 (Formation internal dynamics):

Suppose F is a regular and rototranslation invariant

constraint function such that, ∀ ξ ∈ Γ,

det(∂x1
F (ξ), ∂y1

F (ξ), . . . , ∂xn
F (ξ), ∂yn

F (ξ)) 6= 0 . (10)
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Set βi = θi − θ0. By the implicit function theorem,

there exists a C1 diffeomorphism γ : T n −→ Γ, β =
(β1, . . . , βn) ; γ(β), where T n is the n-torus. Let us

identify Fr with Γ and ∀ ζ ∈ Γ, ∀ω0 ∈ C([0, +∞), R),
let Φω0

: [0, +∞) × Γ −→ Γ, (t, ζ) ; Φω0
(t, ζ), be the

map given by (7). Then for any β̄ ∈ T n, set,

β(t, β̄, ω0) = γ−1(Φω0
(t, γ(β̄))) , ∀ t ≥ 0,

which belongs to C1([0, +∞), R
n). Then β(t, β̄, ω0) is the

unique solution of the following system,
{

β̇(t) = h(β(t), ω0),

β(0) = β̄,
(11)

where, ∀ t ∈ [0, +∞), ∀β ∈ T n: h(β, ω0) =
d
dτ

(γ−1(Φω0
(τ, γ(β))))(0). Equation (11) is called forma-

tion internal dynamics.

System (11) represents the motion of the followers in the

reference frame of the leader. Note that the equilibria of

function h are the configurations that are constant in the

leader’s reference frame.

The following theorem states that if property (12)

(see below) holds, then the displacement and the relative

orientation of each follower with respect to the leader’s

reference frame are fixed if and only if the robots either move

along circular paths or parallel straight lines. The proof of

the theorem is omitted due to space limitations.

Theorem 1: Suppose that F is a regular rototranslation

invariant constraint function and that:




F does not contain any point of the set:
{

ξ ∈ X | 〈

(
xi − x0

yi − y0

)
, τ(θ0)〉 = 0,

θi ∈ {θ0, θ0 + π
}
, ∀ i = 1, . . . , n

}
.

(12)

Suppose that an (n+1)-tuple of robots R is in F -formation.

The following properties are equivalent:

i) JRK is constant.

ii) ω0 is constant, moreover:

a) if ω0 = 0, then θ0(t) = θ̄0, ∀ t ≥ 0, and ∀ i =
1, . . . , n, θi(t) = {θ̄0, θ̄0 + π}, ∀ t ≥ 0.

b) if ω0 6= 0, then there exists (x̄, ȳ)T ∈ R
2 such that

∀ i = 0, . . . , n:

〈

(
xi(t)
yi(t)

)
−

(
x̄
ȳ

)
, τ(θi(t))〉 = 0, ∀ t ≥ 0. �

. . . .

r0
r1

rn

τ(θ0)

Fig. 2. Forbidden configuration in the manifold F .

From a geometric viewpoint, condition (12) means that

the manifold F must not contain configurations in which all

followers are placed on the straight line passing through the

leader and orthogonal to the leader’s heading direction τ(θ0),
with the robots all oriented in the same direction (see Fig. 2).

Definition 12 (Nice constraint function): Let F be a con-

straint function. F is called a nice constraint if it satisfies the

following properties:

i) F is regular,

ii) F is rototranslation invariant,

iii) F verifies property (12),

iv) F verifies property (10).

The following theorem provides a sufficient condition for

the existence of the equilibrium configurations introduced in

Theorem 1, when the angular velocity ω0 of the leader is

constant and sufficiently small. For any i = 1, . . . , n, let

Πi : X −→ R
2 be the linear function defined by Πi(ξ) =

(xi, yi)
T .

Theorem 2: Let F be a nice constraint function. Set,

ρ̄ = sup {‖Πi(ξ)‖ | ∀ ξ ∈ Γ, ∀ i = 1, . . . , n} . (13)

Then ρ̄ > 0 and for any ω̄ such that,

−1/ρ̄ < ω̄ < 1/ρ̄, (14)

there exists an (n + 1)-tuple of robots R such that JRK
is constant, ω0(t) = ω̄ and |θi(t) − θ0(t)| < arcsin(ω̄ρ̄),
∀ t ≥ 0.

Proof: First of all ρ̄ > 0, since F verifies property (12).

Suppose that ω̄ 6= 0. Since the n-torus T n is compact

and (10) holds, there exists a map γ : T n −→ Γ such that

β = (β1, . . . , βn) ; γ(β), which is a global diffeomor-

phism. Let J : [−π, π]n −→ T be the canonical continuous

immersion and α : Γ −→ [−π, π]n be the map defined by

α(ξ) = (arg(Π1(ξ) − (0, 1/ω̄)T ) + π/2, . . . , arg(Πn(ξ) −
(0, 1/ω̄)T )+π/2). Note that α is a continuous well defined

map since, Πi(ξ) − (0, 1/ω̄)T 6= 0, ∀ ξ ∈ Γ, ∀ i = 1, . . . , n,

because, by hypothesis (14), vector (0, 1/ω̄)T /∈
⋃

i Πi(Γ).
Then define the continuous map α ◦ γ ◦ J : [−π, π]n −→
[− arcsin(ω̄ρ̄), arcsin(ω̄ρ̄)]n, where β̄ =, (the fact that the

image set is [− arcsin(ω̄ρ̄), arcsin(ω̄ρ̄)]n can be obtained

from (14) by simple geometrical considerations). This map

has a fixed point, i.e., there exists β̄ = (β̄1, . . . , β̄n) such that,

β̄i = arg(Πi(γ(β̄))) − (1, 1/ω̄)T + π/2, ∀ i = 1, . . . , n.
(15)

Let r0 = (x0, y0, θ0) be the leader robot which has the

constant controls v0(t) = 1, ω0(t) = ω̄, ∀ t ≥ 0 and

initial condition x0(0) = 0, y0(0) = 0, θ0(0) = 0,

and set ∀ i = 1, . . . , n, ri(t) = (xi(t), yi(t), θi(t)), where

(xi(t), yi(t))
T = (x0(t), y0(t))

T + R(θ0(t))Πi(ξ(β̄)), and

θi(t)− θ0(t) = β̄i. First of all, ri are robots, ∀ i = 1, . . . , n.
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In fact, by (15) it follows that:

d

dt

(
xi(t)
yi(t)

)
= R(θ0(t))(1, 0)T+ ω̄R(θ0(t)+ π/2)Πi(γ(β̄))

= ω̄ R(θ0(t) + π/2)Πi(γ(β̄) − (0, 1/ω̄)T )

= ρi ω̄ R(θ0(t) + π/2)R(β̄i − π/2)(1, 0)T

= ρi ω̄ R(θi(t))(1, 0)T,

where ρi = ‖Πi(γ(β̄)) − (0, 1/ω̄)T ‖. Then R =
(r0, r1, . . . , rn) is an (n + 1)-tuple of robots which is in

F -formation and JRK is constant by Remarks 3 and 5, since,

H−r0(t)(R(t)) = γ(β̄) ∈ Γ, by construction.

Let us recall the following definition [15, Prop. III.2]:

Definition 13 (Cooperative system): System (11) is coop-

erative on B with control in W ⊂ R if, ∀β ∈ B, ∀ω0 ∈ W ,

∂βj
hi(β, ω0) ≥ 0, ∀ i 6= j and ∂ω0

hi(β, ω0) ≥ 0, ∀ i.

The condition of the next proposition ensures that the

formation internal dynamics (11) lies in the interior of a

box when ω0 is bounded: this means that the variations in

shape of the formation are limited. The symbol � is used to

denote componentwise inequality between vectors.

Proposition 4: Let βl, βu ∈ B and ωl, ωu ∈ W be such

that

h(βl, ωl) = 0, h(βu, ωu) = 0 ,

and βl � βu, ωl ≤ ωu. Set S = {β ∈ B |βl � β � βu}.

If system (11) is cooperative in S and if ω0(t) ∈ [ωl, ωu],
∀ t ≥ 0, then S is invariant for system (11).

Proof: Is a consequence of the definition of cooperative

controlled systems (see Sect. 3 and Proposition III.2 of [15]).

III. SOME EXAMPLES

In this section, the theory presented in Sect. II is applied

to a specific constraint function, which induces the type of

hierarchical formation introduced in [14]. More precisely,

we suppose that for i = 1, . . . , n, the robot ri follows the

(relative leader) rli , where li ∈ {0, 1, . . . , i − 1}, in such a

way that rli is constant in the relative frame of ri, that is the

distance between rli and ri is equal to a constant di and ri

sees rli with a constant visual angle φi (see Fig.(3) (a)). To

this end, given d1, . . . , dn > 0, φ1, . . . , φn : |φi| < π
2 , we

set ∀i = 1, . . . , n

Fi(ξli , ξi) =

(
xli

yli

)
−

(
xi

yi

)
− di τ(θi + φi). (16)

F is a regular constraint function since (1) and (3) are

satisfied: in fact det(cos θi ∂xi
Fi + sin θi ∂yi

Fi, ∂θi
Fi) =

di cosφi and |φi| < π/2 by hypothesis. Clearly F is

rototranslation invariant and it verifies properties (12) and

(10). Therefore F is a nice constraint function and we can

apply the theory developed in Sect. II. In particular, from

Proposition 1, we have that if R is an (n+1)-tuple of robots

which is in F -formation at the initial time (i.e., F (R(0)) =
0), then for any trajectory of the leader, there exist and are

unique the controls vf = (v1, . . . , vn), ωf = (ω1, . . . , ωn)

φ1

r1

d1

r0

d2

φ2

r2

d3

φ3

r3

(a)

φ1

r1

d1

r0

d2

φ2

r2

d3

φ3

r3

(b)

Fig. 3. (a) Sample formation with 4 robots; (b) General formation with
4 robots and λi,k = 1/i, i = 1, 2, 3, k = 0, . . . , i − 1.

for the followers such that R is in F -formation for any t ≥ 0
(i.e., F (R(t)) = 0, ∀ t ≥ 0). These controls are given by:

vi = vli

cos(θli − θi − φi)

cosφi

, ωi = vli

sin(θli − θi)

di cosφi

.

In particular from Theorem 1 we have that an (n + 1)-
tuple of robots R in F -formation has fixed configurations

in the leaders reference frame (i.e., JRK is constant) if and

only if all robots move along straight lines or circles. From

Theorem 2 we have that such a fixed relative configuration

exists when the angular velocity of the leader ω0 is constant

and |ω0| < 1/ρ̄, where ρ̄ is given by (13).

Let us define the weighted digraph G = (V, E, Q) asso-

ciated to (16), where V = {0, 1, . . . , n} is the set of indices

of the n + 1 robots, E = {(li, i), i = 1, . . . , n} and Q is

an (n + 1) × (n + 1) weighted adjacency matrix with the

following properties: for k, j = 0, . . . , n, the entry qkj = dj

if (k, j) ∈ E, and qkj = 0 otherwise. By definition G is a

directed tree and Q is upper triangular.

With the previous graph theoretic notions in hand, it is

easy to prove that ρ̄ ≤ max{weighted distG(0, u) |u ∈ V } =
weighted depth of the directed tree G [4, p. 20].

Let us choose βi = θ0 − θi: the formation internal dynam-

ics is then given by, ∀i = 1, . . . , n,

β̇i = hi(β, ω0) = ω0 +
vli(β)

di cosφi

sin(βli − βi). (17)

where, ∀i = 1, . . . , n

vi(β) = vli(β)
cos(βi − βli − φi)

cosφi

. (18)

Let us assume that ω0(t) ∈ [a, b], where a, b are such that,

∀ i = 1, . . . , n,

−
π

2
< arcsin(aρ̄) − φi < arcsin(bρ̄) − φi <

π

2
, (19)

(this condition can always be satisfied by choosing |a| and

|b| sufficiently small). Let βa, βb be the equilibrium values
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for the formation internal dynamics when ω0 = a and

ω0 = b, respectively (these equilibria exist by Theorem 2).

Then h(βa, ωa) = h(βb, ωb) = 0 and, since, by Theorem 2

and (19) |βi − βli − φi| < π
2 , ∀i = 1, . . . , n, then,

by (18), vi(β) > 0, ∀i = 1 . . . , n. Therefore system (17)

is cooperative on S = {β |βa � β � βb} with control ω0

in [a, b] and, by Proposition 4, set S is invariant for (17).

Note that we have already addressed the problem of deter-

mining an invariant set for (17) in [14, Th. 1] using a different

method, that did not rely on the notion of cooperativity.

Let us now consider the following generalization of (16).

This time robot ri is required to follow an assigned convex

combination of the positions of the preceding i − 1 robots

at a fixed distance di > 0 and with a fixed visual angle

|φi| < π/2:

Fi(ξ0, ξ1, . . . , ξi) =

i−1∑

k=0

λi,k

(
xk

yk

)
−

(
xi

yi

)
−di τ(θi +φi),

(20)

where for any i = 1, . . . , n, λi,0, . . . , λi,i−1 > 0 and∑i−1
k=0 λi,k = 1, (see Fig. 3(b)). This particular function may

be useful to describe formations occurring in nature, such as,

e.g., bird flocks, where is believed that each animal follows

an average of the position of the preceding birds. F in (20)

inherits the same properties of (16): in fact, it is a nice con-

straint function. The unique control inputs for the followers

are in this case: vi = 1
cos φi

∑i−1
k=0 λi,k vk cos(θk − θi − φi)

and ωi = 1
di cos φi

∑i−1
k=0 λi,k vk sin(θk − θi). This time we

can bound ρ̄ as follows,

ρ̄ ≤ max
i=1,...,n

[
di +

i−1∑

k=0

λi,k ρ̄k

]
, (21)

where ρ̄0 = 0. Let us select βi = θ0 − θi and set β0 = 0:

the formation internal dynamics is then given by,

β̇i = ω0 −
1

di cosφi

i−1∑

k=0

λi,k vk(β) sin(βi − βk).

In the simulation experiment shown in Fig. 4, the for-

mation of Fig. 3(b) with (di, φi) = (1, π/4), i = 1, 2, 3,

has been considered. We have set λi,k = 1/i, i = 1, 2, 3,

k = 0, . . . , i − 1: in this way robot i follows exactly the

average of the positions of the preceding i − 1 vehicles in

the formation. The leader r0 moves along a circular trajectory

with constant curvature ω0(t) = 0.25 rad/s (a circle of radius

4 m). At the initial time t = 0 the robots are in formation

and all aligned with the x-axis (i.e., θi(0) = 0). The robots

asymptotically reach an equilibrium configuration in which

they all move along circles with the same center and each

follower occupies a fixed position in the leader’s reference

frame. This equilibrium condition exists as a consequence

of Theorem 2, since in this case, applying (21), we obtain

1/ρ̄ = 0.546.

IV. CONCLUSIONS AND FUTURE WORK

The paper defines general formations of unicycle robots.

One of the robots plays the role of the leader and the forma-

tion is induced through a constraint function F that depends

on the pose of the vehicles. We have studied the flexibility of
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Fig. 4. Trajectory of the robots for the general formation in Fig. 3(b).

such formations with respect to the leader’s reference frame

by introducing the notion of formation internal dynamics,

have characterized its equilibria and given sufficient geo-

metric conditions for their existence (Theorems 1 and 2).

The theory is illustrated on two constraint functions F , one

of which induces the hierarchical formation type introduced

in [14].
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