

Abstract— This paper presents a thorough analysis of the
computational complexity of optimal reconfiguration planning
problem for chain-type modular robots, i.e. finding the least
number of reconfiguration steps to transform from the initial
configuration into the goal configuration. It establishes a formal
proof that this problem is NP-complete, even if the
configurations are acyclic. This result gives a compelling reason
that a polynomial algorithm for optimal reconfiguration plan is
unlikely to exist. To facilitate future evaluation of
reconfiguration algorithms, the paper also provides the lower
and the upper bounds for the minimum number of
reconfiguration steps for any given reconfiguration problem.

I. INTRODUCTION
omposed of multiple modular robotic units,
self-reconfigurable modular robots are metamorphic

systems that can autonomously rearrange the modules and
form different configurations for dynamic environments and
tasks. For example, in the search and rescue scenario, the
self-reconfigurable robot can become a wheel to run quickly
on the flat terrain to reach the place, change to a spider to
climb over the rubble pile, and then morph into a snake shape
to penetrate the cracks to reach the victim.

Self-reconfiguration is to solve how to change connectivity
among modules to transform the robot from the current
configuration into the goal configuration within the
restrictions of physical implementation. Depending on the
hardware design, reconfiguration algorithms fall into two
groups: reconfiguration for lattice-type modular robot and
reconfiguration for chain-type modular robot. In lattice-type
robot, modules lie in 2D or 3D grids, and the reconfiguration
is achieved through discrete movements of modules
detaching from the current lattice location, moving along and
surface of the robot and docking at the adjacent cells.
Example reconfiguration work includes Pamecha[1], Yim[2],
Kurokawa and Murata [3], Hosokawa[4], Rus[5], Walter[6],
Khosla[7], Slee[8], Aloupis[9] etc. In chain-type robots,
modules can form moving chains and loops of any graph
topology, and the reconfiguration is achieved through
“connect” and “disconnect” operations between modules
along with the joint motion of chains composed of several
modules. Due to its difficulty, the chain-type reconfiguration
has received less attention. Existing algorithms include
Yim[10], Nelson[11], Gay[12], Shen[13,14].

The different geometric arrangement of modules between
lattice-type and chain-type modular robots makes their
reconfiguration planning mechanisms fundamentally

Feili Hou, Wei-Min Shen are with Information Sciences Institute,
University of Southern California, 4676 Admiralty Way, Suite 1001, Marina
del Rey, CA 90292,USA. (e-mail: fhou@usc.edu, , shen@isi.edu).

different. The work in this paper is more focused on
chain-type reconfiguration. For simplicity, we will use the
term “modular robots” or simply “robots” to denote “the
chain-type modular robots.”, and use “reconfiguration” to
denote “chain-type reconfiguration” in the following.

The existing reconfiguration algorithms used different
methods, such as divide-and-conquer [10], graph matching
[11] etc, to reduce the reconfiguration cost. However, the
optimal solution with least reconfiguration steps has never
been reached. Can we achieve the optimal solution
efficiently? How hard is it to find out the least number of
reconfiguration steps? It is commonly agreed that this
problem is computationally intractable, but a concrete support
for this belief is still lacking. One widely used explanation is
that the configuration space is exponential [1, 10, 12], but that
alone is not enough to show that the problem cannot be solved
efficiently in polynomial time. Actually, many optimization
problems can be solved efficiently even if the search space is
exponential. For example, the shortest- path problem for
graphs without negative cycles can be solved efficiently, but
the number of paths between two nodes can grow
exponentially with the number of nodes in the graph.

The aim of this paper is to provide computational
complexity analysis of optimal reconfiguration for modular
robots. To our knowledge, this paper is the first one that
provides a theoretical proof to the problem. We have proved
that the optimal reconfiguration planning problem of finding
the least number of reconfiguration steps to transform
between two configurations is NP-complete, i.e., a
polynomial algorithm is unlikely to exist. This result
demonstrates that suboptimal solutions in current literature
are satisfactory, and provides a compelling reason to stop
searching for a polynomial algorithm for optimal
reconfiguration plan in the future. Furthermore, we have
established the lower bounds and upper bounds of the
minimum number of reconfiguration steps, which can be used
to facilitate future evaluation of reconfiguration algorithms.

 The rest of paper is organized as follows. Section II
defines the problem of optimal reconfiguration planning,.
Section III gives an analysis of the computational complexity,
and proves that it is NP-complete. The lower and upper
bounds analysis is given in section IV, and conclusions are
drawn in section V.

II. OPTIMAL RECONFIGURATION PLANNING PROBLEM

A. Configuration Representation
Before defining the optimal reconfiguration planning

On the Complexity of Optimal Reconfiguration Planning for
Modular Reconfigurable Robots

Feili Hou, Wei-Min Shen

C

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 2791

problem, we would describe our representation of robot’s
configuration first. Two robots with the same graph topology
can function differently if the modules are connected via
different connectors. For example, Fig.1-a is a SuperBot
module with six connectors. We name the connectors as a, b,
c, d, e, and f (Figure 1-d). Three SuperBot modules can form a
T-shaped robot (Fig.1-b) or a snake robot (Fig.1-c), although
topologically both of them are in a “line” shape if we view
modules as nodes and connections as edges (Figure 1-e and
1-f). To fully represent a robot’s configuration, a special
graph called C-Graph (Connector-Graph) is proposed here.
C-Graph is the extension of normal graph with differentiated
connecting points. Each node has a finite number of ports that
are internally labeled corresponding to the connectors of a
module. A connection between module u’s connector i and
module v’s connector j corresponds to an edge ‘i⟷j’ between
u and v, or ‘j⟷i’ between v and u. Fig. 1-e and 1-f are the
C-Graphs representation for our T-shaped robot and snake
robot in Fig. 1-b and 1-c. In the following, we will call “node”
or “module”, “edge” or “connection” interchangeably. Two
configurations are regarded as equivalent if and only if their
C-Graphs are isomorphic.

(a) A SuperBot module

c

e
d

b

a
f

(d) C-Graph of SuperBot module

(b) The T-shape robot

(e) C-Graph of T-shape robot

(c) The snake robot

(f) C-Graph of snake robot

Fig. 1 Modular robots and their C-Graph representation

B. Reconfiguration Actions
The two elementary reconfiguration actions are: (1)

making new connections or (2) disconnecting current
connections between modules for connectivity
rearrangement. The robot can bend its body through module
joints, so any two modules with free connectors can
potentially be aligned and dock with each other. Also, any
existing connections can potently be disconnected. Fig. 2
shows an instance of reconfiguring process.

Execution of reconfiguration actions depends on many
factors such as degree of freedom, motor forces, robot
geometries etc, which vary among different module designs.
However, one reasonable assumption can be made as: an
open chain with three or more modules can always dock the

two ends and form a loop. Moreover, it is preferred that the
robot keeps connected throughout the reconfiguration
process.

Fig. 2 Example of reconfiguration process

C. Optimal Reconfiguration Planning Problem
The reconfiguration planning problem is defined as how

modules in one configuration rearrange into another using
several sets of reconfiguration actions. Basically, what
connections to make and what connections to disconnect so as
to reconfigure from arbitrary one shape to another? Without
loss of generality, we will always assume that the number of
modules in the initial configuration is the same as that in the
goal configuration.

During the reconfiguration process, the reconfiguration
actions are most time- and energy-consuming, so it is a
common practice to aim at minimizing the number of
reconfiguration steps, i.e. the number of “connect” actions
plus the number of “disconnect” actions. Therefore, the
optimal reconfiguration planning problem is to find the least
number of reconfiguration steps to transform from the initial
configuration into the goal configuration.

Since the number of physical connections is predefined in
the initial and goal configurations, the number of “connect”
actions is fixed once the number of “disconnect” action is
known, and vice versa. So we get

Lemma 1: The optimal reconfiguration planning problem
is to find the either one of the following metrics:
 (1) Least number of “connect” actions,
(2) Least number of “disconnect” actions,
(3) Least number of reconfiguration steps (i.e., the number of
“connect” actions plus the number of “disconnect” actions).

III. COMPUTATIONAL COMPLEXITY OF OPTIMAL
RECONFIGURATION PLANNING

A. A Short Review of NP-Completeness
A problem X is defined as NP-complete if:
1) X is in NP: X can be shown to be in NP by

demonstrating that a candidate solution to X can be verified in
polynomial time.

 2)X is NP-hard: X is NP-hard if there is an already known
NP-complete problem Y such that Y is polynomial reducible
to X, and we write Y<pX. Y< pX means that if we have a black
box capable of solving X, then an arbitrary instance of
problem Y could be solved by first reducing to X using a
polynomial number of standard steps, and then by a
polynomial number of calls to that black box that solves

Connector (a)

Connector (b)

Connector (f) Connector(e)

Connector (c)

Connector (d)

2792

problem X. So, X is at least as hard as Y with respect to
polynomial time.

Usually, if X is an optimization problem, it is always
reformulated into a decision problem to explore its
reducibility from Y. From the view of polynomial-time
solvability, there is no significant difference between them.
An optimization problem is NP-complete if its corresponding
decision problem is NP-complete [15].

The general strategy to prove Y <p X is: given an arbitrary
instance Sy of Y, and show how to construct, in polynomial
time, an instance Sx of problem X, such that the answer to the
question whether Sx is a “yes” instance of X if and only if the
answer to the question whether Sy is a “yes” instance of Y.

B. NP-Completeness of Optimal Reconfiguration
Planning Problem
Intuitively, reconfiguration cost is low when initial and

goal configurations are similar, and high when they are quite
different. This drives us to relate the reconfiguration planning
problem to graph similarity and matching problem. As we
know, many graph similarity problems, such as largest
common subgraph etc, are NP-complete, but they become
polynomial-time solvable when the underlying graphs are
acyclic. This leads to an expectation that the optimal
reconfiguration planning may also be solved efficiently when
the initial and goal configurations are acyclic. To be short, we
refer this problem as ACYCLIC OPTIMAL
RECONFIGURATION problem. Unfortunately, based on
our study, we find that even for acyclic configurations, the
optimal reconfiguration problem is still NP-complete.

Note that when both the initial configuration and goal
configuration are acyclic, the number of “connect” actions
must be equal to that of “disconnect” actions, so the decision
version of ACYCLIC OPTIMAL RECONFIGURATION
problem is reformulated as

 Given acyclic configurations I and G, and a given integer
n, whether there exists a reconfiguration plan with at most 2n
reconfiguration steps, i.e. n “connect” and n “disconnect”
actions?

The proof that this is a NP-complete problem is as follow:
Step 1: Show that it is in NP. Given any reconfiguration

plan with at most 2n steps, it is obvious that we could check in
polynomial time that whether I can be transformed into G.

Step 2: Prove that it is NP-hard by reducing from the
3-PARTITION problem, and show that 3-PARTITION<p
ACYCLIC OPTIMAL RECONFIGURATION.

The 3-PARTITION problem is to decide whether a given
multiset of integers can be partitioned into subsets that all
have the same sum [15]. More precisely, it is defined as :

3-PARTITION: Given a set of positive integers with 3m
elements, S ={X1,...,X3m), where∑ = mK , and each
element Xi satisfy K/4 < Xi <K/2.(i=1,…, 3m). Can S be
partitioned into m disjoint subsets S1, …, Sm such that the sum
of the numbers in each subset is equal, i.e.=K (j=1…m) ?

For an arbitrary given instance S={X1,...,X3m} in a
3-PARTITION problem, we construct an initial configuration

I and a goal configuration G as shown in Fig.3. The
connectors are labeled alphabetically as a b c d. In the initial
configuration I, we start with 3m branches with each branch i
has Xi number of nodes connected in a line by edge ‘a⟷b’.
Then, we connect these line branches consecutively by their
rightmost nodes via edge ‘d⟷c’. In the goal configuration G,
there are m equal-length branches, where each branch has K

(K=
∑

) nodes connected in a line by edge ‘a⟷b’. These
m branches are connected consecutively by their leftmost
nodes via edge ‘b⟷c’.

a
b

a
b

a
b

x1

x2

x3m

3m

a
b

d cb

b

b

c

Bran
ch

 1

Bran
ch

2

Bran
ch

 3m

…
…

(a) Initial Configuration I

(b) Goal Configuration G

Fig. 3 Constructed instance of initial and goal configurations

To be precise, it actually takes pseudo-polynomial instead
of polynomial time to construct I and G, since the
configuration of I and G has size ∑ , and this is
polynomial in the magnitude of the numbers in S, but not
polynomial in the size of the representation of S. However,
this does not affect our proof of NP-hardness, because
3-PARTITION problem is NP-complete in the strong sense in
that it is NP-complete even when all of the integers in S are
bounded by a polynomial in the size of S [15].

Now, to prove 3-PARTITION <p ACYCLIC OPTIMAL
RECONFIGURATION, we will show that an arbitrary
instance of set S is solvable for 3-PARTITION problem if and
only if the correspondingly constructed I can be transformed
to G in at most 6m-2 steps.

Lemma 2 (Soundness): Let S be an arbitrary instance in
the 3-PARTITION problem, and initial configuration I and
goal configurations G are constructed as above. If the
3-PARTITION problem with instance S has a solution, then I
can be transformed to G in at most 6m-2steps.

2793

Proof: If a 3-PARTITION problem with instance S has a
solution, then S can partitioned into m disjoint subsets S1,...
Sm. It has been proved that if 3-PARTITION has a solution,
each subsets Sj must be a triple with exactly three elements
[15]. Using a given solution to the 3-PARTITION, we can
reconfigure I into G as follows. We first disconnect all the
connection ‘d⟷c’ in I, which requires 3m-1 “disconnect”
actions. This results in 3m line branches where branch i has Xi
nodes. Then, for each triple Si={ , , }, we connect the
corresponding branches i1 i2 and i3 consecutively into a single
line branch by connecting the rightmost node of branch i1 with

the leftmost node of branch i2 by edge ‘a⟷b’, and also the
rightmost node of branch i2 with the leftmost node of branch i3

by edge ‘a⟷b’. Bolded lines in Fig. 4 show this process,
which takes 2 “connect” actions. Since Xi

1 + Xi
2 + Xi

3=K, the
generated line branch has K nodes. By this way, we end up
with m length-K line branches after 2m “connect” actions.
After this, we will connect these m lines consecutively by
their leftmost nodes with edge ‘b⟷c’, which needs m-1
“connect” actions. The goal configuration G is thus reached
in the end. We can see that the whole reconfiguration process
takes 3m-1 “disconnect” actions of ‘d⟷c’, 2m “connect”
actions of ‘a⟷b’, and m-1 “connect” actions of ‘b⟷c’, i.e.
6m-2 reconfiguration steps in total. Therefore, I can be
transformed to G in at most 6m-2 steps.

1

2

3

Fig. 4 Example of connecting three line branches into one

Lemma 3 (Completeness): Let S be an arbitrary instance in
the 3-PARTITION problem, and initial configuration I and
goal configurations G are constructed as above. If I can be
transformed to G in at most 6m-2steps, then the
3-PARTITION problem with instance S has a solution.

Proof: The main idea of proving completeness is: if it can
be shown that the reconfiguration process must consist of
connecting the 3m line branches in I into m length-K branches
without breaking the edges inside those 3m line branches,
then for each “connecting” action between a branch i and a
branch j, we put integer Xi and Xj into same subset. This
defines a partition of set S into m subsets with equal sum K.
 Let’s first compare the number of edges in each type
between I and G. Take the edge of type ‘a⟷b’ as example. In
I, each branch i has Xi-1 edges of ‘a⟷b’, and thus ∑ -3m
edges of ‘a⟷b’ in total for 3m line branches. Similarly, we

can get the number of edges of all types in I and G, and their
difference as shown in table I.

Table I The number of edges of each type in I and G
 # of edge ‘a⟷b’ # of edge

‘b⟷c’
of edge
‘d⟷c’

 Configuration I ∑ -3m 0 3m-1
 Configuration G mK-m m-1 0
 Configuration G
– Configuration I

(mK-m)-(∑ -
3m) = 2m

(m-1)-0
=m-1

0-(3m-1)
=-(3m-1)

Based on the values in the third row of table I, it can be

seen that to reconfigure I into G, it is a must-have to make 2m
new connections of ‘a⟷b’, m-1 new connections of ‘b⟷c’,
and disconnect 3m-1 existing connections of ‘d⟷c’. This is
(2m)+(m-1)+(3m-1)=6m-2 reconfiguration steps in total.

Therefore, if there is a reconfiguration plan from I to G
with at most 6m-2 steps, it must be the actions stated above.
By examining the edges in I, we can find that the
“disconnect” action of ‘d⟷c’ will disconnect I into 3m line
branches without breaking the ‘a⟷b’ edges within any one
the 3m line branches. Also, since the two-end modules in each
line branch are the only ones that have free connector a or b,
the “connect” action of ‘a⟷b’ must be that of connecting the
two branches into one without interfering the inner modules.
Since the goal configuration has m branches, where each
branch has K nodes connected in a line by ‘a⟷b’, the 2m
“connect” actions must produce m length-K branches. The
goal configuration is thus reached by connecting these m
branches consecutively by the connect actions of ‘b⟷c’.

For each connect action ‘a⟷b’ between branch i and
branch j, we put integer Xi and Xj into same subsets.
Corresponding to the m length-K branches in G, we end up
with m subsets, with the sum of the numbers in each set is
equal to K. Namely, the 3-PARTITION problem with
instance S has a solution. This completes proof of lemma 4.

Lemma 4: When the initial and goal configurations are
acyclic, optimal reconfiguration planning is still NP-complete

Proof: In the above discussion, step 1) shows that
ACYCLIC OPTIMAL RECONFIGURATION is in NP.
Lemma 2 and lemma3 demonstrate that ACYCLIC
OPTIMAL RECONFIGURATION is NP-hard. So, the
problem is NP-complete.

One thing to clarify before completing the proof of lemma
4 is: we describe the “disconnect” actions before “connect”
actions during our proof of lemma 2 and lemma 3 just for easy
understanding, and it doesn’t mean the robot has to execute
all the “disconnect” actions first and be separated apart into
several lines. Since the order of reconfiguration actions will
not affect the configuration to be reached, we can have the
robot always execute one ‘connect’ action followed by one
‘disconnect’ action in the reconfiguration process. The
‘disconnect’ action will always break the loop resulting
from the previous “connect” action, so that the robot can keep
connected all the time. All the “connect” actions are also
compatible with the hardware design since it always involves
three or module modules in an open chain.

Since ACYCLIC OPTIMAL RECONFIGURATION
problem is a special case of the optimal reconfiguration

2794

planning problem for all configurations, it is obvious that:

Lemma 5: Optimal reconfiguration planning of finding the
least number of reconfiguration steps for chain-type modular
robots is NP-complete.

IV. BOUNDS OF LEAST RECONFIGURATION STEPS
Though it is hard to find the least number of reconfiguration

steps, knowing the bounds where the optimal solution lies
will be invaluable for evaluating future algorithms. This can
help to estimate the “distance” between the initial and the
goal configurations, and provide a criterion to evaluate a
non-optimal reconfiguration solution. We desire that these
bounds can be computed quickly.

A. The lower bound of the least reconfiguration steps
It is known that two isomorphic configurations are exactly

the same in terms of the number of connections of each type.
So the lower bounds can be quickly derived by comparing
and counting edges in the initial and goal configurations. For
each connection type ‘ci⟷cj’, if the number of ci⟷cj in I,
#I(ci⟷cj), is less(or more) than that in G, #G(ci⟷cj), it
needs at least #G(ci⟷cj) − #I(ci⟷cj) “connect” (or #I(ci⟷cj)
− #G(ci⟷cj) “disconnect”) actions to reach the goal
configurations. . Our proof process in lemma 3 is an example
of computing the lower bound of reconfiguration steps. More
precisely, it can be expressed as:

Lemma 6 For a given module design with q connectors as
c1,…,cq, assume that for each connection ‘ci⟷cj’ initial
configuration I has #I(ci⟷cj) edges, and goal configuration G
has #G(ci⟷cj) edges, then the lower bound of least number of
“connect” actions is #G ci ⟷ cj #I ci ⟷ cj… , …#G ⟷ #I ⟷

 2

, the lower bound of the least number of “disconnect” actions
are #I ci ⟷ cj #G ci ⟷ cj 3… , …#G ⟷ #I ⟷

, and the lower bound of total number of the least
reconfiguration steps is |#G ci ⟷ cj #I ci ⟷ cj… , … | 4

B. The upper bound of the least reconfiguration steps
The upper bound of the reconfiguration steps is inspired

from MorphLine algorithm [14]. Since MorphLine can
always find a solution for arbitrary initial and goal
configurations, the number of reconfiguration steps it takes
can serve as an upper bound of the least reconfiguration steps.

The main idea of MorphLine is to first transform the initial
configuration I into an acyclic (tree) configuration Ia by
spanning tree algorithm, and then transform Ia into a line
Il. The goal configuration G can grow from an acyclic (tree)
configuration Ga embedded in G by closing the
corresponding loops, and Ga can be transformed from another
line configuration Gl by reversing the steps from Ga to Gl.

The two line configurations of Il and Gl may be different in
terms of the connectors used by modules. So, the whole
process to transform I to G is: I->Ia->Il->Gl->Ga->G.

The procedure of transforming an acyclic (tree)
configuration Ia to a line Il is: in a bottom up traversal,
whenever a node has more than one children branches, it will
keep merge one branch into another until it only has one child
branch. Each merging step consists of a “connect” action and
a “disconnect” action. Fig. 5-a shows an example of
reconfiguring an acyclic configuration into a line.

The process of growing to an arbitrary acyclic (tree)
configuration Ga from a line Gl is the reversion of the process
of Ga->Gl. Fig. 5-b shows an example of this.

b d

b
 a b d

b d

b

 a

b d

b
 a b d

c d

a b
* *

* *
b a

b

 a

b d

b

a
*

*

c d

c d

Fig. 5 (a) Example of reconfiguring an acyclic configuration into a line
 (b) Example of reconfiguring a line into an acyclic configuration

In the process of Il->Gl, a temporary loop may be formed to
ensure that the robot keeps connected. Fig. 6 shows an
example of transforming between two lines.

 Actually, we can efficiently compute this upper bound
without executing the MorphLine algorithm. Suppose there
are N modules in I and G, and the number of edges in I and G
is E(I) and E(G), respectively. Since Ia and Ga are acyclic
(tree) configurations with N-1 edges, we know that it takes

E(I)-(N-1) (5)
“disconnect” actions in the process of I->Ia, and

 E(G)-(N-1) (6)
“connect” actions in the process of Ga -G.

During the process of Ia->Il, since every merging process
reduce the degree of a bifurcation module by one (Here,
degree of a module is the number of edges incident to it. A
module with degree greater than 2 is called bifurcation
module), and our goal is to have every module’s degree to be
no larger than 2, it can be derived that the number of
“connection” actions is the same as that of ‘disconnection’
actions, and is equal to Deg V 7 V I

Where Deg V = Deg(V)-2>0? Deg(V)-2:0 .

2795

Since the process of Gl ->Ga is the reverse of Ga ->Gl, the
number of “connect” and ‘disconnect’ pairs in Gl->Ga is Deg V V G 8

Based on (7) and (8), we know that out of the N-1 edges in
Il, ∑ Deg V V I edges are newly formed and not exist in Ia.
In other words, these ∑ Deg V V I edges can be controlled
in the process of Ia->Il so as to make them consistent with the
edges in Gl. Similarly, out of the N-1 edges in Gl, ∑ Deg V V G edges is to be disconnected during Gl->Ga.
Namely, these ∑ Deg V V G edges do not affect the
configuration Ga that can be reached.

So the worst case is that there are

 Min[N-1-∑ Deg V V I , N-1-∑ Deg VV G] (9)

edges that are inconsistent between Il and Gl and needs to be
changed. Counting the pair of “connect” and “disconnect”
actions to form the temporary loop in Il-Gl, the total number
of “connect” and “disconnect” action pairs in Ia->Il is no
greater than

Min[N-∑ Deg V V I , N-∑ Deg VV G] (10)
Also, since ∑ Deg VV I <∑ Deg VV I , ∑ Deg VV G <∑ Deg VV G

(11)
We get the upper bounds in summary as follow:

Lemma 7 For a given initial configuration I and a goal
configuration G, the upper bound of the least number of
“connect” actions is
 E(G)-(N-1)+∑ Deg V V I +∑ Deg VV G
 + Min[N-∑ Deg V V I , N-∑ Deg VV G]
=E(G)+1+Min ∑ Deg VV I , ∑ Deg VV G]
≤ E(G)+1+Min ∑ Deg VV I , ∑ Deg VV G] (12)

, the upper bound of the least number of “disconnect” actions
is

E(I)-(N-1)+∑ Deg VV I +∑ Deg VV G
 Min[N-∑ Deg V V I , N-∑ Deg VV G]
= E(I)+1+Min ∑ Deg VV I , ∑ Deg VV G]
≤ E(I)+1+Min ∑ Deg VV I , ∑ Deg VV G] (13)

, the upper bound of the number of reconfiguration actions is

E(G)+1+Min ∑ Deg VV I , ∑ Deg VV G]
 + E(I)+1+Min ∑ Deg VV I , ∑ Deg VV G]
= E(I)+E(G)+2+2Min ∑ Deg VV I , ∑ Deg VV G] (14)

, where Deg V = Deg(V)-2>0? Deg(V)-2:0 .

Fig. 6 Example of reconfiguring between two line configurations

V. CONCLUSION
This paper provides a thorough complexity analysis of the

optimal reconfiguration planning for chain-type modular
robots. We have proved that the optimal reconfiguration
planning problem of finding the least number of
reconfiguration steps is NP-complete, and presented an
efficient procedure to estimate the lower and upper bound for
the optimal solution. The findings in this paper provide a
theoretical foundation for guiding the search for future
reconfiguration algorithms and propose an objective criterion
to evaluate the performance of reconfiguration algorithms for
modular and reconfigurable robots.

REFERENCES
[1] Pamecha A, Ebert-Uphoff I, Chirikjian G: Useful metrics for modular

robot motion planning. IEEE Trans. on Robotics and Automation
13(4): 531-545, 1997

[2] Sergei Vassilvitskii, Jeremy Kubica, Eleanor G. Rieffel, John W. Suh,
Mark Yim: On the General Reconfiguration Problem for Expanding
Cube Style Modular Robots. ICRA 2002: 801-808

[3] Haruhisa Kurokawa, Kohji Tomita, Akiya Kamimura, Eiichi Yoshida,
Shigeru Kokaji and Satoshi Murata. Distributed Self-reconfiguration
Control of Modular Robot M-TRAN, Proceedings of 2005 IEEE
International Conference on Mechatronics and Automation
(ICMA2005), pp. 254-259, 2005

[4] K. Hosokawa, T. Fujii, H. Kaetsu, H. Asama, Y. Kuroda, I. Endo,
“Self-organizing collective robots with morphogenesis in a vertical
plane,” JSME Intl. Journal Series C Mechanical Systems Machine
Elements and Manufacturing 42(March 1999):195-202

[5] Zack Butler, Satoshi Murata, Daniela Rus, Distributed Replication
Algorithms for Self-Reconfiguring Modular Robots, Proceedings of
DIstributed Autonomous Robotics Systems 5, 2002

[6] J. Walter, E. Tsai, and N. Amato, Algorithms for Fast Concurrent
Reconfiguration of Hexagonal Metamorphic Robots, IEEE
Transactions on Robotics, Vol. 21, No. 4, pages 621-631, 2005

[7] Ünsal, C., and Khosla P. K. A Multi-layered Planner for
Self-Reconfiguration of a Uniform Group of I-Cube Modules, IEEE
International Conference on intelligent Robots and Systems (IROS),
October 2001.

[8] Reif J. H., Slee S. Optimal Kinodynamic Motion Planning for 2D
Reconfiguration of Self-Reconfigurable Robots, Robotics: Science and
Systems Conference, Georgia Institute of Technology, Atlanta, GA,
June 27-30, 2007.

[9] Greg Aloupis, Sébastien Collette, Erik D. Demaine, Stefan Langerman,
Vera Sacristán, and Stefanie Wuhrer, “Reconfiguration of Cube-Style
Modular Robots Using O(log n) Parallel Moves”, in Proceedings of the
19th Annual International Symposium on Algorithms and Computation
(ISAAC 2008), Gold Coast, Australia, December 15–17, 2008, pages
342–353.

[10] Casal, A. and Yim, M. (1999). Self-Reconfiguration Planning For a
Class of Modular Robots, Proceedings of SPIE Sensor Fusion and
Decentralized Control in Robotic Systems II, Sept. 1999.

[11] Nelson C.A, “A framework for self-reconfiguration planning for
unit-modular robots”, Phd Thesis, Purdue University, Department of
Mechanical Engineering, 2005

[12] Gay S., Roombots: Toward Emancipation of Furniture. A
Kinematics-Dependent Reconfiguration Algorithm for Chain-Type
Modular Robots, Master Thesis, Ecole Polytechnique, Department of
Computer Science, 2007

[13] Wei-Min Shen, Behnam Salemi, and Peter Will. Hormone-Inspired
Adaptive Communication and Distributed Control for CONRO
Self-Reconfigurable Robots. IEEE Trans. on Robotics and Automation,
18(5):700–712, October 2002.

[14] Feili Hou, Wei-Min Shen, "Distributed, Dynamic, and Autonomous
Reconfiguration Planning for Chain-Type Self-Reconfigurable
Robots", Proc. 2008 IEEE International Conference on Robotics and
Automation (ICRA 2008),Pasadena, CA, May 2008.

[15] Garey, Michael R. and David S. Johnson. Computers and Intractability:
A Guide tothe Theory of NP-Completeness. New York: W. H. Freeman
and Company, 1979

2796

