
  

  

Abstract— This paper presents a thorough analysis of the 
computational complexity of optimal reconfiguration planning 
problem for chain-type modular robots, i.e. finding the least 
number of reconfiguration steps to transform from the initial 
configuration into the goal configuration.  It establishes a formal 
proof that this problem is NP-complete, even if the 
configurations are acyclic. This result gives a compelling reason 
that a polynomial algorithm for optimal reconfiguration plan is 
unlikely to exist. To facilitate future evaluation of 
reconfiguration algorithms, the paper also provides the lower 
and the upper bounds for the minimum number of 
reconfiguration steps for any given reconfiguration problem. 

I. INTRODUCTION 
omposed of multiple modular robotic units, 
self-reconfigurable modular robots are metamorphic 

systems that can autonomously rearrange the modules and 
form different configurations for dynamic environments and 
tasks. For example, in the search and rescue scenario, the 
self-reconfigurable robot can become a wheel to run quickly 
on the flat terrain to reach the place, change to a spider to 
climb over the rubble pile, and then morph into a snake shape 
to penetrate the cracks to reach the victim.  

Self-reconfiguration is to solve how to change connectivity 
among modules to transform the robot from the current 
configuration into the goal configuration within the 
restrictions of physical implementation. Depending on the 
hardware design, reconfiguration algorithms fall into two 
groups: reconfiguration for lattice-type modular robot and 
reconfiguration for chain-type modular robot. In lattice-type 
robot, modules lie in 2D or 3D grids, and the reconfiguration 
is achieved through discrete movements of modules 
detaching from the current lattice location, moving along and 
surface of the robot and docking at the adjacent cells. 
Example reconfiguration work includes Pamecha[1], Yim[2], 
Kurokawa and Murata [3], Hosokawa[4], Rus[5], Walter[6], 
Khosla[7], Slee[8], Aloupis[9] etc. In chain-type robots, 
modules can form moving chains and loops of any graph 
topology, and the reconfiguration is achieved through 
“connect” and “disconnect” operations between modules 
along with the joint motion of chains composed of several 
modules. Due to its difficulty, the chain-type reconfiguration 
has received less attention. Existing algorithms include 
Yim[10], Nelson[11], Gay[12], Shen[13,14]. 

The different geometric arrangement of modules between 
lattice-type and chain-type modular robots makes their 
reconfiguration planning mechanisms fundamentally 
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different.  The work in this paper is more focused on 
chain-type reconfiguration. For simplicity, we will use the 
term “modular robots” or simply “robots” to denote “the 
chain-type modular robots.”, and use “reconfiguration” to 
denote “chain-type reconfiguration” in the following. 

The existing reconfiguration algorithms used different 
methods, such as divide-and-conquer [10], graph matching 
[11] etc, to reduce the reconfiguration cost. However, the 
optimal solution with least reconfiguration steps has never 
been reached. Can we achieve the optimal solution 
efficiently? How hard is it to find out the least number of 
reconfiguration steps? It is commonly agreed that this 
problem is computationally intractable, but a concrete support 
for this belief is still lacking. One widely used explanation is 
that the configuration space is exponential [1, 10, 12], but that 
alone is not enough to show that the problem cannot be solved 
efficiently in polynomial time. Actually, many optimization 
problems can be solved efficiently even if the search space is 
exponential. For example, the shortest- path problem for 
graphs without negative cycles can be solved efficiently, but 
the number of paths between two nodes can grow 
exponentially with the number of nodes in the graph. 

The aim of this paper is to provide computational 
complexity analysis of optimal reconfiguration for modular 
robots. To our knowledge, this paper is the first one that 
provides a theoretical proof to the problem. We have proved 
that the optimal reconfiguration planning problem of finding 
the least number of reconfiguration steps to transform 
between two configurations is NP-complete, i.e., a 
polynomial algorithm is unlikely to exist. This result 
demonstrates that suboptimal solutions in current literature 
are satisfactory, and provides a compelling reason to stop 
searching for a polynomial algorithm for optimal 
reconfiguration plan in the future. Furthermore, we have 
established the lower bounds and upper bounds of the 
minimum number of reconfiguration steps, which can be used 
to facilitate future evaluation of reconfiguration algorithms. 

 The rest of paper is organized as follows. Section II 
defines the problem of optimal reconfiguration planning,. 
Section III gives an analysis of the computational complexity, 
and proves that it is NP-complete. The lower and upper 
bounds analysis is given in section IV, and conclusions are 
drawn in section V. 

II. OPTIMAL RECONFIGURATION PLANNING PROBLEM 

A. Configuration Representation 
Before defining the optimal reconfiguration planning 
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problem, we would describe our representation of robot’s 
configuration first. Two robots with the same graph topology 
can function differently if the modules are connected via 
different connectors. For example, Fig.1-a is a SuperBot 
module with six connectors. We name the connectors as a, b, 
c, d, e, and f (Figure 1-d). Three SuperBot modules can form a 
T-shaped robot (Fig.1-b) or a snake robot (Fig.1-c), although 
topologically both of them are in a “line” shape if we view 
modules as nodes and connections as edges (Figure 1-e and 
1-f). To fully represent a robot’s configuration, a special 
graph called C-Graph (Connector-Graph) is proposed here. 
C-Graph is the extension of normal graph with differentiated 
connecting points. Each node has a finite number of ports that 
are internally labeled corresponding to the connectors of a 
module. A connection between module u’s connector i and 
module v’s connector j corresponds to an edge ‘i⟷j’ between 
u and v, or ‘j⟷i’ between v and u. Fig. 1-e and 1-f are the 
C-Graphs representation for our T-shaped robot and snake 
robot in Fig. 1-b and 1-c. In the following, we will call “node” 
or “module”, “edge” or “connection” interchangeably. Two 
configurations are regarded as equivalent if and only if their 
C-Graphs are isomorphic.  

(a) A SuperBot module 
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(d) C-Graph of SuperBot module 

 
(b) The T-shape robot 

 

(e) C-Graph of T-shape robot 

 
(c) The snake robot 

 

 
 

(f) C-Graph of snake robot 
 

Fig. 1 Modular robots and their C-Graph representation 

B. Reconfiguration Actions 
The two elementary reconfiguration actions are: (1) 

making new connections or (2) disconnecting current 
connections between modules for connectivity 
rearrangement. The robot can bend its body through module 
joints, so any two modules with free connectors can 
potentially be aligned and dock with each other. Also, any 
existing connections can potently be disconnected. Fig. 2 
shows an instance of reconfiguring process. 

Execution of reconfiguration actions depends on many 
factors such as degree of freedom, motor forces, robot 
geometries etc, which vary among different module designs. 
However, one reasonable assumption can be made as: an 
open chain with three or more modules can always dock the 

two ends and form a loop. Moreover, it is preferred that the 
robot keeps connected throughout the reconfiguration 
process.  

Fig. 2  Example of reconfiguration process 

C. Optimal Reconfiguration Planning Problem 
The reconfiguration planning problem is defined as how 

modules in one configuration rearrange into another using 
several sets of reconfiguration actions.  Basically, what 
connections to make and what connections to disconnect so as 
to reconfigure from arbitrary one shape to another? Without 
loss of generality, we will always assume that the number of 
modules in the initial configuration is the same as that in the 
goal configuration. 

During the reconfiguration process, the reconfiguration 
actions are most time- and energy-consuming, so it is a 
common practice to aim at minimizing the number of 
reconfiguration steps, i.e. the number of “connect” actions 
plus the number of “disconnect” actions. Therefore, the 
optimal reconfiguration planning problem is to find the least 
number of reconfiguration steps to transform from the initial 
configuration into the goal configuration.  

Since the number of physical connections is predefined in 
the initial and goal configurations, the number of “connect” 
actions is fixed once the number of “disconnect” action is 
known, and vice versa. So we get 

Lemma 1: The optimal reconfiguration planning problem 
is to find the either one of the following metrics:  
 (1) Least number of “connect” actions,  
(2) Least number of “disconnect” actions, 
(3) Least number of reconfiguration steps (i.e., the number of 
“connect” actions plus the number of “disconnect” actions). 

III. COMPUTATIONAL COMPLEXITY OF OPTIMAL 
RECONFIGURATION PLANNING 

A. A Short Review of NP-Completeness 
A problem X is defined as NP-complete if: 
1) X is in NP: X can be shown to be in NP by 

demonstrating that a candidate solution to X can be verified in 
polynomial time. 

 2)X is NP-hard: X is NP-hard if there is an already known 
NP-complete problem Y such that Y is polynomial reducible 
to X, and we write Y<pX. Y< pX means that if we have a black 
box capable of solving X, then an arbitrary instance of 
problem Y could be solved by first reducing to X using a 
polynomial number of standard steps, and then by a 
polynomial number of calls to that black box that solves 
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problem X. So, X is at least as hard as Y with respect to 
polynomial time.  

Usually, if X is an optimization problem, it is always 
reformulated into a decision problem to explore its 
reducibility from Y. From the view of polynomial-time 
solvability, there is no significant difference between them. 
An optimization problem is NP-complete if its corresponding 
decision problem is NP-complete [15].   

The general strategy to prove Y <p X is: given an arbitrary 
instance Sy of Y, and show how to construct, in polynomial 
time, an instance Sx of problem X, such that the answer to the 
question whether Sx is a “yes” instance of X if and only if the 
answer to the question whether Sy is a “yes” instance of Y. 

B. NP-Completeness of Optimal Reconfiguration 
Planning Problem 
Intuitively, reconfiguration cost is low when initial and 

goal configurations are similar, and high when they are quite 
different. This drives us to relate the reconfiguration planning 
problem to graph similarity and matching problem. As we 
know, many graph similarity problems, such as largest 
common subgraph etc, are NP-complete, but they become 
polynomial-time solvable when the underlying graphs are 
acyclic.  This leads to an expectation that the optimal 
reconfiguration planning may also be solved efficiently when 
the initial and goal configurations are acyclic. To be short, we 
refer this problem as ACYCLIC OPTIMAL 
RECONFIGURATION problem. Unfortunately, based on 
our study, we find that even for acyclic configurations, the 
optimal reconfiguration problem is still NP-complete. 

Note that when both the initial configuration and goal 
configuration are acyclic, the number of “connect” actions 
must be equal to that of “disconnect” actions, so the decision 
version of ACYCLIC OPTIMAL RECONFIGURATION 
problem is reformulated as  

 Given acyclic configurations I and G, and a given integer 
n, whether there exists a reconfiguration plan with at most 2n 
reconfiguration steps, i.e. n “connect” and n “disconnect” 
actions?  

The proof that this is a NP-complete problem is as follow: 
Step 1: Show that it is in NP. Given any reconfiguration 

plan with at most 2n steps, it is obvious that we could check in 
polynomial time that whether I can be transformed into G. 

Step 2: Prove that it is NP-hard by reducing from the 
3-PARTITION problem, and show that 3-PARTITION<p 
ACYCLIC OPTIMAL RECONFIGURATION.  

The 3-PARTITION problem is to decide whether a given 
multiset of integers can be partitioned into subsets that all 
have the same sum [15]. More precisely, it is defined as : 

3-PARTITION: Given a set of positive integers with 3m 
elements, S ={X1,...,X3m), where∑ = mK , and each 
element Xi satisfy K/4 < Xi <K/2.(i=1,…, 3m). Can S be 
partitioned into m disjoint subsets S1, …, Sm such that the sum 
of the numbers in each subset is equal, i.e.=K (j=1…m) ?   

For an arbitrary given instance S={X1,...,X3m} in a 
3-PARTITION problem, we construct an initial configuration 

I and a goal configuration G as shown in Fig.3. The 
connectors are labeled alphabetically as a b c d. In the initial 
configuration I, we start with 3m branches with each branch i 
has Xi number of nodes connected in a line by edge ‘a⟷b’. 
Then, we connect these line branches consecutively by their 
rightmost nodes via edge ‘d⟷c’. In the goal configuration G, 
there are m equal-length branches, where each branch has K 

(K=
∑

) nodes connected in a line by edge ‘a⟷b’. These 
m branches are connected consecutively by their leftmost 
nodes via edge ‘b⟷c’. 
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(a) Initial Configuration I 

 
(b) Goal Configuration G 

Fig. 3 Constructed instance of initial and goal configurations 

To be precise, it actually takes pseudo-polynomial instead 
of polynomial time to construct I and G, since the 
configuration of I and G has size ∑ , and this is 
polynomial in the magnitude of the numbers in S, but not 
polynomial in the size of the representation of S. However, 
this does not affect our proof of NP-hardness, because 
3-PARTITION problem is NP-complete in the strong sense in 
that it is NP-complete even when all of the integers in S are 
bounded by a polynomial in the size of S [15]. 

Now, to prove 3-PARTITION <p ACYCLIC OPTIMAL 
RECONFIGURATION, we will show that an arbitrary 
instance of set S is solvable for 3-PARTITION problem if and 
only if the correspondingly constructed I can be transformed 
to G in at most 6m-2 steps.  

Lemma 2 (Soundness): Let S be an arbitrary instance in 
the 3-PARTITION problem, and initial configuration I and 
goal configurations G are constructed as above. If the 
3-PARTITION problem with instance S has a solution, then I 
can be transformed to G in at most 6m-2steps. 
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Proof: If a 3-PARTITION problem with instance S has a 
solution, then S can partitioned into m disjoint subsets S1,... 
Sm.   It has been proved that if 3-PARTITION has a solution, 
each subsets Sj must be a triple with exactly three elements 
[15]. Using a given solution to the 3-PARTITION, we can 
reconfigure I into G as follows. We first disconnect all the 
connection ‘d⟷c’ in I, which requires 3m-1 “disconnect” 
actions. This results in 3m line branches where branch i has Xi 
nodes. Then, for each triple Si={ , , }, we connect the 
corresponding branches i1 i2 and i3 consecutively into a single 
line branch by connecting the rightmost node of branch i1 with 

the leftmost node of branch i2 by edge ‘a⟷b’, and also the 
rightmost node of branch i2 with the leftmost node of branch i3 

by edge ‘a⟷b’. Bolded lines in Fig. 4 show this process, 
which takes 2 “connect” actions. Since Xi

1 + Xi
2 + Xi

3=K, the 
generated line branch has K nodes.  By this way, we end up 
with m length-K line branches after 2m “connect” actions. 
After this, we will connect these m lines consecutively by 
their leftmost nodes with edge ‘b⟷c’, which needs m-1 
“connect” actions. The goal configuration G is thus reached 
in the end. We can see that the whole reconfiguration process 
takes 3m-1 “disconnect” actions of ‘d⟷c’, 2m “connect” 
actions of ‘a⟷b’, and m-1 “connect” actions of ‘b⟷c’, i.e. 
6m-2 reconfiguration steps in total. Therefore, I can be 
transformed to G in at most 6m-2 steps. 

1

2

3

 
Fig. 4 Example of connecting three line branches into one 

Lemma 3 (Completeness): Let S be an arbitrary instance in 
the 3-PARTITION problem, and initial configuration I and 
goal configurations G are constructed as above.  If I can be 
transformed to G in at most 6m-2steps, then the 
3-PARTITION problem with instance S has a solution.  

Proof:   The main idea of proving completeness is: if it can 
be shown that the reconfiguration process must consist of 
connecting the 3m line branches in I into m length-K branches 
without breaking the edges inside those 3m line branches, 
then for each “connecting” action between a branch i and a 
branch j, we put integer Xi and Xj into same subset. This 
defines a partition of set S into m subsets with equal sum K. 
 Let’s first compare the number of edges in each type 
between I and G. Take the edge of type ‘a⟷b’ as example. In 
I, each branch i has Xi-1 edges of ‘a⟷b’, and thus ∑ -3m 
edges of ‘a⟷b’ in total for 3m line branches. Similarly, we 

can get the number of edges of all types in I and G, and their 
difference as shown in table I. 

Table I The number of edges of each type in I and G 
 # of edge ‘a⟷b’ # of edge 

‘b⟷c’ 
# of edge 
‘d⟷c’ 

   Configuration I ∑ -3m 0 3m-1
   Configuration G mK-m m-1 0 
   Configuration G 
– Configuration I 

(mK-m)-(∑ -
3m)  = 2m 

(m-1)-0 
=m-1 

0-(3m-1) 
=-(3m-1) 

 
Based on the values in the third row of table I, it can be 

seen that to reconfigure I into G, it is a must-have to make 2m 
new connections of ‘a⟷b’, m-1 new connections of ‘b⟷c’, 
and disconnect 3m-1 existing connections of ‘d⟷c’. This is 
(2m)+(m-1)+(3m-1)=6m-2 reconfiguration steps in total.  

Therefore, if there is a reconfiguration plan from I to G 
with at most 6m-2 steps, it must be the actions stated above. 
By examining the edges in I, we can find that the 
“disconnect” action of ‘d⟷c’ will disconnect I into 3m line 
branches without breaking the ‘a⟷b’ edges within any one 
the 3m line branches. Also, since the two-end modules in each 
line branch are the only ones that have free connector a or b, 
the “connect” action of ‘a⟷b’ must be that of connecting the 
two branches into one without interfering the inner modules. 
Since the goal configuration has m branches, where each 
branch has K nodes connected in a line by ‘a⟷b’, the 2m 
“connect” actions must produce m length-K branches.  The 
goal configuration is thus reached by connecting these m 
branches consecutively by the connect actions of  ‘b⟷c’. 

For each connect action ‘a⟷b’ between branch i and 
branch j, we put integer Xi and Xj into same subsets.  
Corresponding to the m length-K branches in G, we end up 
with m subsets, with the sum of the numbers in each set is 
equal to K.  Namely, the 3-PARTITION problem with 
instance S has a solution. This completes proof of lemma 4. 

Lemma 4:  When the initial and goal configurations are 
acyclic, optimal reconfiguration planning is still NP-complete  

Proof: In the above discussion, step 1) shows that 
ACYCLIC OPTIMAL RECONFIGURATION is in NP. 
Lemma 2 and lemma3 demonstrate that ACYCLIC 
OPTIMAL RECONFIGURATION is NP-hard. So, the 
problem is NP-complete. 

One thing to clarify before completing the proof of lemma 
4 is: we describe the “disconnect” actions before “connect” 
actions during our proof of lemma 2 and lemma 3 just for easy 
understanding, and it doesn’t mean the robot has to execute 
all the “disconnect” actions first and be separated apart into 
several lines. Since the order of reconfiguration actions will 
not affect the configuration to be reached, we can have the 
robot always execute one ‘connect’ action followed by one 
‘disconnect’ action in the reconfiguration process. The 
‘disconnect’ action will always break the loop resulting 
from the previous “connect” action, so that the robot can keep 
connected all the time. All the “connect” actions are also 
compatible with the hardware design since it always involves 
three or module modules in an open chain. 

Since ACYCLIC OPTIMAL RECONFIGURATION 
problem is a special case of the optimal reconfiguration 
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planning problem for all configurations, it is obvious that: 

Lemma 5: Optimal reconfiguration planning of finding the 
least number of reconfiguration steps for chain-type modular 
robots is NP-complete. 

IV. BOUNDS OF LEAST RECONFIGURATION STEPS 
Though it is hard to find the least number of reconfiguration 

steps, knowing the bounds where the optimal solution lies 
will be invaluable for evaluating future algorithms. This can 
help to estimate the “distance” between the initial and the 
goal configurations, and provide a criterion to evaluate a 
non-optimal reconfiguration solution. We desire that these 
bounds can be computed quickly. 

A. The lower bound of the least reconfiguration steps 
It is known that two isomorphic configurations are exactly 

the same in terms of the number of connections of each type. 
So the lower bounds can be quickly derived by comparing 
and counting edges in the initial and goal configurations. For 
each connection type  ‘ci⟷cj’, if the number of ci⟷cj in I,  
#I(ci⟷cj), is less(or more) than that in G, #G(ci⟷cj), it 
needs at least #G(ci⟷cj) − #I(ci⟷cj) “connect” (or #I(ci⟷cj) 
− #G(ci⟷cj) “disconnect”) actions to reach the goal 
configurations. .  Our proof process in lemma 3 is an example 
of computing the lower bound of reconfiguration steps. More 
precisely, it can be expressed as: 

Lemma 6 For a given module design with q connectors as 
c1,…,cq, assume that for each connection ‘ci⟷cj’ initial 
configuration I has #I(ci⟷cj) edges, and goal configuration G 
has #G(ci⟷cj) edges, then the lower bound of least number of 
“connect” actions is  #G ci ⟷ cj #I ci ⟷ cj… , …#G ⟷ #I ⟷

         2  

, the lower bound of the least number of “disconnect” actions 
are #I ci ⟷ cj #G ci ⟷ cj            3… , …#G ⟷ #I ⟷

 

, and the lower bound of total number of the least 
reconfiguration steps is |#G ci ⟷ cj #I ci ⟷ cj… , … |               4  

B. The upper bound of the least reconfiguration steps 
The upper bound of the reconfiguration steps is inspired 

from MorphLine algorithm [14]. Since MorphLine can 
always find a solution for arbitrary initial and goal 
configurations, the number of reconfiguration steps it takes 
can serve as an upper bound of the least reconfiguration steps. 

The main idea of MorphLine is to first transform the initial 
configuration I into an acyclic (tree) configuration Ia by 
spanning tree algorithm, and then transform Ia into a line 
Il.  The goal configuration G can grow from an acyclic (tree) 
configuration Ga embedded in G by closing the 
corresponding loops, and Ga can be transformed from another 
line configuration Gl by reversing the steps from Ga to Gl. 

The two line configurations of Il and Gl may be different in 
terms of the connectors used by modules. So, the whole 
process to transform I to G is: I->Ia->Il->Gl->Ga->G. 

The procedure of transforming an acyclic (tree) 
configuration Ia to a line Il is: in a bottom up traversal, 
whenever a node has more than one children branches, it will 
keep merge one branch into another until it only has one child 
branch. Each merging step consists of a “connect” action and 
a “disconnect” action. Fig. 5-a shows an example of 
reconfiguring an acyclic configuration into a line. 

The process of growing to an arbitrary acyclic (tree) 
configuration Ga from a line Gl is the reversion of the process 
of Ga->Gl. Fig. 5-b shows an example of this.  
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Fig. 5 (a) Example of reconfiguring an acyclic configuration into a line 
        (b) Example of reconfiguring a line into an acyclic configuration 

In the process of  Il->Gl, a temporary loop may be formed to 
ensure that the robot keeps connected. Fig. 6 shows an 
example of transforming between two lines. 

 Actually, we can efficiently compute this upper bound 
without executing the MorphLine algorithm. Suppose there 
are N modules in I and G, and the number of edges in I and G 
is E(I) and E(G), respectively. Since Ia and Ga are acyclic 
(tree) configurations with N-1 edges, we know that it takes 

E(I)-(N-1)         (5) 
“disconnect” actions in the process of I->Ia, and 

 E(G)-(N-1)                   (6) 
“connect” actions in the process of Ga -G.  

During the process of Ia->Il, since every merging process 
reduce the degree of a bifurcation module by one (Here, 
degree of a module is the number of edges incident to it. A 
module with degree greater than 2 is called bifurcation 
module), and our goal is to have every module’s degree to be 
no larger than 2, it can be derived that the number of 
“connection” actions is the same as that of ‘disconnection’ 
actions, and is equal to Deg V                                     7   V I  

Where Deg V = Deg(V)-2>0? Deg(V)-2:0 . 
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Since the process of Gl ->Ga is the reverse of Ga ->Gl, the 
number of “connect” and ‘disconnect’ pairs in Gl->Ga is Deg V       V G                                 8  

Based on (7) and (8), we know that out of the N-1 edges in 
Il, ∑ Deg V  V I edges are newly formed and not exist in Ia. 
In other words, these  ∑ Deg V  V I edges can be controlled 
in the process of Ia->Il so as to make them consistent with the 
edges in Gl. Similarly, out of the N-1 edges in Gl, ∑ Deg V  V G edges is to be disconnected during Gl->Ga. 
Namely, these ∑ Deg V  V G edges do not affect the 
configuration Ga that can be reached.  

So the worst case is that there are  

 Min[ N-1-∑ Deg V  V I , N-1-∑ Deg VV G  ]       (9) 

edges that are inconsistent between Il and Gl and needs to be 
changed. Counting the pair of “connect” and “disconnect” 
actions to form the temporary loop in Il-Gl, the total number 
of “connect” and “disconnect” action pairs in Ia->Il is no 
greater than 

Min[ N-∑ Deg V  V I , N-∑ Deg VV G  ]      (10)  
Also, since  ∑ Deg VV I <∑ Deg VV I ,   ∑ Deg VV G <∑ Deg VV G  

(11) 
We get the upper bounds in summary as follow: 

Lemma 7 For a given initial configuration I and a goal 
configuration G, the upper bound of the least number of 
“connect” actions is  
  E(G)-(N-1)+∑ Deg V  V I +∑ Deg VV G  
  + Min[ N-∑ Deg V  V I , N-∑ Deg VV G  ]  
=E(G)+1+Min ∑ Deg VV I , ∑ Deg VV G ] 
≤ E(G)+1+Min ∑ Deg VV I , ∑ Deg VV G  ]                (12) 
 
, the upper bound of the least number of “disconnect” actions 
is  

E(I)-(N-1)+∑ Deg VV I +∑ Deg VV G  
   Min[ N-∑ Deg V  V I , N-∑ Deg VV G  ] 
= E(I)+1+Min ∑ Deg VV I , ∑ Deg VV G ] 
≤ E(I)+1+Min ∑ Deg VV I , ∑ Deg VV G  ]                 (13) 
 
, the upper bound of the number of reconfiguration actions is 

E(G)+1+Min ∑ Deg VV I , ∑ Deg VV G ]                  
    + E(I)+1+Min ∑ Deg VV I , ∑ Deg VV G ]          
=  E(I)+E(G)+2+2Min ∑ Deg VV I , ∑ Deg VV G ]        (14) 
 
, where Deg V = Deg(V)-2>0? Deg(V)-2:0 . 

   

 
Fig. 6 Example of reconfiguring between two line configurations 

V. CONCLUSION 
This paper provides a thorough complexity analysis of the 

optimal reconfiguration planning for chain-type modular 
robots. We have proved that the optimal reconfiguration 
planning problem of finding the least number of 
reconfiguration steps is NP-complete, and presented an 
efficient procedure to estimate the lower and upper bound for 
the optimal solution. The findings in this paper provide a 
theoretical foundation for guiding the search for future 
reconfiguration algorithms and propose an objective criterion 
to evaluate the performance of reconfiguration algorithms for 
modular and reconfigurable robots.   
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