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Abstract— Model-based control methods can be used to
enable fast, dexterous, and compliant motion of robots with-
out sacrificing control accuracy. However, implementing such
techniques on floating base robots, e.g., humanoids and legged
systems, is non-trivial due to under-actuation, dynamically
changing constraints from the environment, and potentially
closed loop kinematics. In this paper, we show how to compute
the analytically correct inverse dynamics torques for model-
based control of sufficiently constrained floating base rigid-
body systems, such as humanoid robots with one or two
feet in contact with the environment. While our previous
inverse dynamics approach relied on an estimation of contact
forces to compute an approximate inverse dynamics solution,
here we present an analytically correct solution by using an
orthogonal decomposition to project the robot dynamics onto a
reduced dimensional space, independent of contact forces. We
demonstrate the feasibility and robustness of our approach on
a simulated floating base bipedal humanoid robot and an actual
robot dog locomoting over rough terrain.

I. INTRODUCTION

A dexterous and skillful humanoid robot that can coexist

and interact with humans in our own environment has been a

major dream of robotics researchers. Such robots would not

only need to be fast and agile, but also compliant enough to

be considered safe for human interaction. Robots controlled

with traditional joint position control techniques typically

require too high stiffness levels in order to maintain accuracy.

Greater compliance can be achieved, without sacrificing

accuracy, using model-based techniques such as inverse

dynamics control. In these approaches, an estimated model

of the robot’s dynamics is used to proactively apply control

forces required to track joint or task space trajectories.

Such model-based controllers have been well studied in the

realm of manipulator robotics (see [1] for a recent review).

However, humanoid systems complicate matters since they

are typically not fixed to their environments and are free to

move about. As a consequence, these floating-base systems

have under-actuated dynamics with respect to an inertial

reference frame, as well as dynamically changing contact

states, potential closed loop kinematics, and contact forces

that may not be known.

In recent literature, there has been notable progress to-

wards understanding these high-dimensional floating base

systems. The works of [2],[3] have extended Khatib’s op-

erational space framework [4] to the control of floating base

humanoid robot systems in contact with their environments.

The advantage of Khatib’s framework is that it computes the
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control forces that decouple task and null-space dynamics.

Thus secondary tasks can be achieved without interfering

dynamically with higher priority tasks. Additionally, as it

is a force control method, it does not use joint position

references, and thus does not require explicit inverse kine-

matics computation. However, these methods rely heavily on

accurate modeling, in particular the inertia matrix which is

required for pseudoinverse computations and projections.

The work of [5] has applied passivity based approaches to

floating base humanoid control and balance, by controlling

for optimal contact forces at the feet. They have demon-

strated robust disturbance rejection on a real humanoid plat-

form, and have recently shown [6] improved balancing via

integration of static and dynamic strategies in a biologically

plausible manner.

In this work, we propose a relatively simple technique for

full-body model-based control of humanoid robots. Using

an orthogonal decomposition of rigid-body dynamics, we

are able to express the complete inverse dynamics equations

of the robot independently of contact forces. While use of

orthogonal decomposition of rigid-body dynamics is not new

([7],[8]), in this work we show how the technique can be used

to cope with the under-actuation and dynamically chang-

ing contact state inherent in these floating base systems.

Additionally, since the decomposition uses only kinematic

variables, it avoids the pitfalls of relying on difficult-to-model

dynamic projections.

First, we will introduce floating base rigid-body dynamics

and notation. We will then show how an orthogonal de-

composition can be used to eliminate constraint forces, and

produce a simple inverse dynamics control equation. We will

evaluate our method on a simulated biped humanoid, as well

as an actual robot dog walking over rough terrain. In both

cases, our approach increases movement accuracy, allows for

the reduction of feedback gains, and enhances compliance

and robustness towards perturbations.

II. FLOATING BASE DYNAMICS

The floating base framework provides the most general

representation of a rigid-body system unattached to the

world, and is necessary to describe the complete dynamics

of the system with respect to an inertial frame. The system

configuration is represented as:

q =
[

qT
r xT

b

]T
(1)

where qr ∈ R
n is the joint configuration of the rigid-body

robot with n joints and xb ∈ SE(3) is the position and

orientation of the coordinate system attached to the robot
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base, and measured with respect to an inertial frame. Figure

1 illustrates this representation by showing the 6 virtual

degrees of freedom attached from inertial frame to the robot

base frame.

Inertial Frame

Robot 

Base 

Frame

6 Virtual DOFs

Fig. 1. The base frame attached to the robot is connected to the inertial
frame via 6 unactuated virtual DOFs

When the robot is in contact with the environment, the

equations of motion with respect to an inertial frame are

given by:

M(q)q̈ + h(q, q̇) = ST τ + JT
C(q)λ (2)

with variables defined as follows:

• M(q) ∈ R
n+6×n+6: the floating base inertia matrix

• h(q, q̇) ∈ R
n+6: the floating base centripetal, Coriolis,

and gravity forces.

• S =
[

In×n 0n×6

]

: the actuated joint selection

matrix

• τ ∈ R
n: the vector of actuated joint torques

• JC ∈ R
k×n+6: the Jacobian of k linearly independent

constraints

• λ ∈ R
k: the vector of k linearly independent constraint

forces

By constraints, we mean locations on the robot in environ-

mental contact, where external forces or torques are applied,

and no motion is observed with respect to the inertial frame.

Calling xC the positions and orientations of these locations,

we will have:

ẋC = JC q̇ = 0 (3)

ẍC = JC q̈ + J̇C q̇ = 0 (4)

Note that the structure and units of JC and λ may depend

on the particular kinematic structure used to model the robot.

For example, a flat foot in surface contact with the ground

can be equivalently represented as a plane contact (with

3 forces and 3 moments), or as a lattice of several point

contacts. Without loss of generality, we assume that JC and

λ represent k linearly independent constraint forces. For

example, a humanoid robot with one flat foot on the ground

has 6 linearly independent constraints. With two flat feet on

the ground, it will have 12 linearly independent constraints.

For the purpose of our model and derivation, we will

assume that all constraints are multilateral, and friction is

sufficient such that (3) and (4) hold for all desired motion.

However, it is often acceptable for these assumptions to be

violated in practice, as will be discussed in the next section.

III. FLOATING BASE INVERSE DYNAMICS CONTROL

Given some desired joint motion we wish for our robot

to perform (qd, q̇d, q̈d), and a model of robot dynamics (2),

we would like to compute the actuated joint torques, τ that

will realize the desired motion. While such inverse dynamics

control methods have been used extensively for fixed base

robot manipulators, the problem is ill-posed for floating base

systems. Solving for τ using (2) requires full knowledge of

the constraint forces, λ. However, these constraint forces

depend on the actuation torques applied. Due to this co-

dependance between λ and τ , there are potentially infinitely

many solutions for τ , and because of under-actuation, certain

values of q̈d may yield no solution at all.

A. Inverse Dynamics with Contact Force Feedback

In order to resolve these issues, we can attempt to project

the equations of motion into actuated joint space [2]. If we

assume that the contact points do not move with respect to

the inertial frame (i.e. (3) and (4)), then contact forces can

be uniquely determined in the following way. We multiply

(2) by JCM−1, replace JC q̈ with ẍC − J̇C q̇, and solve for

ẍC :

ẍC = J̇C q̇ − JCM−1
(

h − ST τ
)

+ JCM−1JT
Cλ (5)

Thus the only λ for which ẍC = 0 is:

λ =
(

JCM−1JT
C

)−1
(

JCM−1
(

h − ST τ
)

− J̇C q̇
)

. (6)

Inserting (6) into (2) and projecting the result into actuated

joint space (by multiplying by S̄T =
(

SM−1ST
)

−1
SM−1)

results in the equations of constrained dynamics in actuated

joint space:

(

SM−1ST
)−1

q̈r + S̄T
(

I − JT
C J̄T

C

)

h + S̄T MJ̄C J̇C q̇

= S̄T
(

I − JT
C J̄T

C

)

ST τ
(7)

where J̄T
C =

(

JCM−1JT
C

)

−1
JCM−1. Note that the result

is independent of the constraint forces, λ. If the expression

S̄T
(

I − JT
C J̄T

C

)

ST were invertible, it could be used to

compute inverse dynamics torques. However, in general, this

matrix is rank deficient and therefore not invertible.

In [9] we attempt to resolve this issue by treating λ as a

vector of external forces. Again projecting (2) into actuated

joint space, but replacing λ with Fext, we have

(

SM−1ST
)−1

q̈r + S̄T
(

h − JT
CFext

)

= τ (8)

Inverse dynamics torques can then be computed, if Fext

can be measured. However this approach is undesirable

since force sensors must exist at all contact points, and are

typically noisy and delayed if filtered. Alternatively we could

estimate Fext using (6). In this case, we need to use τ from

the previous control time step, which will not produce an

analytically correct solution, but may be acceptable with a

fast enough control loop. Nevertheless, this approach is just
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an approximate solution to floating base inverse dynamics

control, and can go unstable in adverse situations.

B. Inverse Dynamics via Orthogonal Decomposition

Because of the problems that are created by working with

contact forces directly, it would be advantageous to develop

an inverse dynamics approach that is independent of them.

Note that when our system moves within the null space of

the constraints (i.e. (3) and (4) hold), the total dimensionality

of our system is reduced by k. Therefore if we can represent

our dynamics in this reduced dimensional space, we can

eliminate k equations from the full rigid-body dynamics.

We use an orthogonal decomposition approach in order to

project the full system into this n+6−k dimensional space.

Orthogonal decomposition was first proposed for modal syn-

thesis in [7] as a method of eliminating Lagrange multipliers

for linear dynamical systems with linear constraints. In [10],

a general linear projection operator is used to demonstrate

how joint forces and constraint forces can be orthogonally

decomposed (in the fully actuated case), and constraint forces

can be eliminated (in the under-actuated case). In this work,

we show how using an orthogonal decomposition provides

a simple solution to the ill-posed problem of floating base

inverse dynamics control, and can cope with the inherent

problems of under-actuation, constraint switching, etc.

1) The QR decomposition: If we assume Rank(JC) = k
(i.e. there are k linearly independent constraints and JC is

full row rank), we can then compute the QR decomposition

of JT
C :

JT
C = Q

[

R

0

]

(9)

where Q is orthogonal (QQT = QTQ = I), and R is

an upper triangle matrix of rank k. Additionally, if R is

restricted to have all positive diagonal elements, then Q and

R are unique. Multiplying (2) by QT allows us to decompose

the rigid-body dynamics into two independent equations:

ScQ
T (Mq̈ + h) = ScQ

TST τ + Rλ (10)

SuQ
T (Mq̈ + h) = SuQ

TST τ (11)

where

Sc =
[

Ik×k 0k×(n+6−k)

]

(12)

Su =
[

0(n+6−k)×k I(n+6−k)×(n+6−k)

]

, (13)

are used to select the top and lower portions of the full

equation. In Appendix A we show that if the motion remains

within the nullspace of the constraints (i.e. (3) and (4) hold)

then equations (10) and (11) will be independent, and we can

represent the full dynamics of the robot with either equation.

Note that (11) contains no dependance on constraint forces,

yet still describes the full dynamics of the system.

2) Resolving under-actuation: Although the full rigid-

body equation (2) may be under-actuated, the reduced n +
6 − k dimensional space may not be. In [11] we show that

if we segment the constraint Jacobian into its separate parts

relating to base and joint motion:

JC =
[

∂xC/∂qr ∂xC/∂xb

]

, (14)

and that Rank(∂xC/∂xb = 6), we can then represent the

full configuration velocity vector q̇ using only q̇r . This

typically the case for most modern, high degree of freedom

humanoid robots with one or two feet flat on the ground,

or even with 2 edge or 3 point contacts, provided they are

not collinear. As a consequence of this condition, the reduced

dimensional space will not be under-actuated, and the matrix

SuQ
TST τ ∈ R

(n+6−k)×n will be full row rank.

3) Control equation: We can now compute control

torques using (11) and a pseudoinverse:

τ =
(

SuQ
TST

)+
SuQ

T [Mq̈d + h] . (15)

It is straightforward to show that applying (15) to (2) will

result in q̈ = q̈d, provided (3) and (4) are not violated.

Additionally, using the Moore-Penrose pseudoinverse (A+ =

AT
(

AAT
)

−1
), will compute the minimum norm torque

vector that will achieve the desired motion. Note that here

we assume that all robot actuators are rotary joints. If the

robot contains a mixture of linear and rotary actuators, then

the units of τ will be inhomogeneous, and a norm will not

be well defined in the Euclidean metric space [12]. In this

case, we can first project (2) into a metric space where

units are homogeneous (using a symmetric positive definite

matrix), and then take the orthogonal decomposition in this

homogeneous metric space. Also note that the inhomogeneity

inherent in xb ∈ SE(3) (from (1)), does not affect (15) due

to the use of S.

4) Redistribution of control torques: Because a right

pseudoinverse is used in (15), when k > 6 there are an

infinite number of possible torques that can realize q̈d. By

using a weighted psuedoinverse in (15), i.e.

A# = W−1AT
(

AW−1AT
)−1

(16)

where W is a positive definite matrix, we may be able to

reduce the torque loads on specific joints, at the cost of

increasing the total torque generated by the system (as well

as the total contact force).

5) Computing contact forces: Also, we can still compute

the contact forces, using (10):

λ = R−1ScQ
T

[

Mq̈d + h− ST τ
]

. (17)

Note that compared with (6) the modeling error-prone inertia

matrix is used only once, in a non-inverted form, and the time

derivative of the constraint Jacobian (J̇C ) is not required.

6) Practical issues: Note that because Q is numerically

determined (typically with Housholder transformations), it is

possible that Q can exhibit discontinuities during tracking:

an arbitrarily small change in JC may result in a large

change in Q. However, as (15) is actually using Q twice,

first to project into the unconstrained space, and then again

to transform back into the original configuration space, a

discontinuity in Q will not create a discontinuity in the

expression
(

SuQ
TST

)+
SuQ

T and corresponding control

torque.

It is also important to note that (15) can only achieve

q̈ = q̈d when (3) and (4) are true (i.e. our motion exists in
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the null-space of the constraints, and the contact condition

assumed by JC is accurate). However, in the case that either

of these conditions are violated (e.g. slippage at contact

points or we incorrectly believe a foot is on the ground), joint

tracking will degrade, but the system does not become singu-

lar, numerically unstable, etc. Thus this approach is feasible

for real world situations with environmental uncertainties.

Finally, accurate tracking highly depends on the accuracy

of your model (particularly the M and h terms in (15)). We

have developed techniques for estimating inertial parameters

from within the reduced dimensional space independent of

constraint forces [13]. Doing so allows us to use data to

better predict the actuation torques required for some desired

motion, without requiring noisy (or unavailable) contact

force sensing. However, it is important to note that the

projection in (15) only relies on kinematic parameters, which

are generally easier to determine than inertial parameters.

The methods of [2]-[4] rely on inertia weighted projections,

which can potentially compound modeling errors1.

IV. EVALUATIONS

In this section we show the feasibility of the inverse

dynamics control approach on a simulated biped model as

well as a real quadruped robot that walks on rough terrain.

In both these floating base examples, we try to demonstrate

compliance, dynamically changing contact conditions, and

robustness to unforeseen disturbances.

A. Bipedal Humanoid Platform

We use the SL simulated bipedal robot, modeled after the

lower half of the Sarcos Humanoid robot (figure (2))[14].

The simulated robot has 2 × 7 DOF legs and a 1 ×

2 DOF torso, for a total of 16 DOF. Each robot foot is

represented by 4 point contacts, and contact with the floor

is simulated using a spring-damper contact model. In the

simulator, the integration frequency is at 1000Hz, while the

feedback control loop runs at a 500Hz cycle.

Fig. 2. Sarcos CBi robot and SL biped simulator

B. Joint Tracking with Feedforward Control

In our first example, we demonstrate how floating base

inverse dynamics can improve simple joint tracking per-

formance of the biped robot. We implement a feedforward

1However, using inertia weighted projections does have the benefit of unit
and Gauge invariance [12]

controller [15]:

τ = InvDyn(q, q̇, q̈d) + KPS (qd − q) + KDS (q̇d − q̇)
(18)

where KP and KD are position and velocity feedback gain

matrices and InvDyn() is computed via (15). Also, desired

motion is planned to be in the nullspace of the constraints.

We plan a combination squatting/bowing motion in the

sagittal plane via joint angles of combined sinusoids. In order

to demonstrate robustness to a joint limit we also gradually

extend the knee joint, until full extension. Figure 3 displays

some snapshots of the resulting motion. Figure 4 shows

tracking performance of our method (labeled ”PD+FF”),

compared to only high-gain PD control, for a relatively slow

execution of the desired trajectories. Tracking is significantly

improved using feedforward control, achieving RMS error

values of 0.001, 0.011, and 0.005 for the hip, knee, and ankle

flexion extension joints respectively. In comparison, PD only

control had 0.008, 0.076, and 0.021 RMS error over the same

desired motion.

Fig. 3. Some configurations of the biped simulator during the squat-
ting/bowing motion.
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Fig. 4. Tracking performance of the feedforward controller and PD only
controller during a slow squatting/bowing motion. Shown are the joint angles
of the left hip, knee, and ankle flexion/extension joints.

We repeated the trajectories, 5 times faster (Fig. 5). PD

only control was not able to keep the robot upright after

1 second. Note that in this example there is no explicit

balance controller, however, compensating for the robot’s

inertia via floating base inverse dynamics significantly im-

proved stability. The method was also able to maintain

stability during full knee extension (starting roughly at the

4 second mark), although this resulted in a degradation of

tracking performance due to hitting the joint range limits.

The feedforward controller achieved tracking RMS errors
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of 0.005, 0.109, and 0.052 for the hip, knee, and ankle

flexion/extension joints respectively.
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Fig. 5. Tracking performance of the feedforward controller during fast
squatting/bowing motion. The PD only controller was not able to maintain
stability after 1 second. Notice that the knee joint reaches full extension
(after roughly 4 seconds).

C. Weighted Distribution of Forces

Next we show how we can use a weighting term to

redistribute control forces. Imagine that the robot’s left knee

joint becomes damaged, and we wish to minimize the torque

output required by this actuator. From (16), we set the weight

matrix W to identity, except at the entry corresponding

to the left knee joint, where we use 10−5. We execute a

squatting motion (2Hz sinusoids at hip, knee, and ankle

flexion/extension joints), and measure the RMS torque over

6 seconds. As shown in Fig. 6, by using the weighting factor,

we were able to achieve a 3.0 times reduction in left knee

RMS torque, at the cost of a 1.9, 2.4, and 1.7 times increase

in left ankle, right hip, and right knee (respectively).
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Fig. 6. RMS torque values for a squatting task when using the original
(W = I) formulation, and a weighed formulation intended to decrease the
torque required by the left knee joint.

This redistribution of torque did not greatly impact track-

ing performance. Fig. 7 shows relatively small increases in

tracking error when compared to PD only control.
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Fig. 7. RMS tracking errors for a squatting task. The Weighted formulation
reduces the torque required at the left knee joint, without significantly
effecting tracking performance.

D. Superposition of joint space and operational space con-
trol

Next we show how floating base inverse dynamics can

be used to modify joint tracking control in order to achieve

an operational space objective. In this case, we execute a

periodic squatting motion in joint space, while maintaing

stability using a feedforward balance controller in opera-

tional space. We also introduce a stepping pattern which

demonstrates the balance controller’s robustness to constraint

switching, due to making and breaking contacts with the feet.

Additionally, we perturb the balancing system with external

forces.

We use the same feedforward controller as in (18),

however for the desired joint acceleration (in the inverse

dynamics computation) we use:

q̈d =

[

JC

Jb,xy

]+ ([

0

ẍbd,xy

]

−

[

J̇C

J̇b,xy

]

q̇

)

, (19)

where Jb,xy is the Jacobian of the x and y components of

the robot’s base (assuming z is the direction of gravity), and

ẍbd,xy is a desired task-space tracking trajectory for the x
and y components of the robot’s base. In this case, we simply

define:

ẍbd,xy = KP (xbd,xy − xb,xy) − KDẋb,xy (20)

Note that we augment the task Jacobian with the constraint

Jacobian JC , and include a null vector, 0, in order to ensure

that q̈d remains consistent with the constraints. For a detailed

discussion of this, and other issues related to floating base

inverse kinematics, please see [11]. Additionally, we use the

base Jacobian as an approximation to the COG Jacobian,

which works well for our top-heavy biped system. Also, we

intentionally do not include the z component of the base in

(19). This way, we can control for the robot’s balance, and

a stretched knee posture does not introduce a singularity.

The desired base position xbd
is set to alternate between

the two feet, such that the COG lies above the support

polygon of a single foot, and the opposing foot can be lifted.

To lift the feet, we instantaneously change the desired joint

offsets of the hip, knee, and ankle of a single leg. Also at

this time, we provide for a constraint switch by instantly

changing the constraint Jacobian (from double-support, to

right foot, to double-support, to left foot, etc.). Doing so

creates discontinuities in the torque output of (15), but does

not adversely affect balance.

We test this controller with a 2Hz periodic squatting mo-

tion, superimposed with a 3 second period stepping pattern

(alternating right and left feet). The robot bobs up and down

while hopping from one foot to the other. Additionally every

5 seconds, we perturb the system with an external 200

N force at the base for 150ms. Resulting motion during

disturbance and stepping is shown in Fig. 8, as well as in

the accompanying video. Tracking performance of the base

as well as leg joints is shown in Fig. 9. The simulated robot is

able to maintain stability during disturbances and constraint

switches.
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Fig. 8. Reaction of the biped during a 200 N external disturbance, and
a constraint switch from the right to left foot. Time progresses from left
frame to the right.
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Fig. 9. Tracking results of the feedforward balance controller during the
stepping task. The base (top two graphs) is controlled to sway side-to-side,
to allow for the sequential lifting of alternate feet. Discontinuities in desired
joint trajectories are due to an instant offset change to lift the feet. A t=5 a
200 N external disturbance pushes the robot for 150ms.

E. Quadruped locomotion

We also evaluated our floating base inverse dynamics

controller on the LittleDog robot, a roughly 0.3 meter long

and 0.2 meter tall robot dog that walks over rough terrain

(Fig. 10). Please see [16] for a full description of this robot

and its locomotion controller. To locomote successfully on

rough terrain, this robot needs to accurately track its planned

joint-space trajectories for maintaining balance and proper

foot placement. However, a high level of compliance is also

required to cope with the uncertainty of the environment. In

order to have a compliant yet accurate trajectory controller,

we use the feedforward controller of (18), with relatively low

feedback gains.

We test the robustness of the controller towards unper-

ceived obstacles of 2-4 cm height and a non-perceived rock

board (Fig 10). With such unknown obstacles and terrain, a

high gain PD controller alone is much too stiff to be able

to reject the unplanned disturbances. However, by lowering

gains, and adding feedforward inverse dynamics, we are

able to maintain tracking accuracy while robustly giving into

unseen obstacles. Please see the video attachment for a full

demonstration.

Figure 11 (top) shows a typical example of joint tracking

quality while the robot is traversing flat terrain. Figure 11

(bottom) shows the contributions of feedback and feedfor-

ward terms to the total control torque. The feedforward term

is the main contributor for this motion, and only relatively

Fig. 10. The LittleDog robot and various setups to test the robustness of
the controller towards non-perceived obstacles and terrains. Please see the
video supplement.

small amounts of feedback are required for error correction.
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Fig. 11. Top: Tracking of the right hind knee of littledog in a steady walk
(solid green is actual). Bottom: total control torque τ (solid blue) is the sum
of feedback (red) and feedforward (green) torques. Feedforward torque is
the main contributor most of the time. The effect of a constraint switch is
clearly visible due to the discontinuity.

V. CONCLUSION

In this paper, we address the issue of compliant dexterous

control of floating base robotic systems using model-based

control. Because floating base systems have the added com-

plexities of changing constraints when the robot interacts

with the environment, potential closed-loop kinematics, and

potentially unknown location and force of contacts, a general

inverse dynamics control approach is needed that can flexibly

accommodate constraints without the need to derive new

analytical models for every new constraint situation. For

this purpose, we have used orthogonal decomposition to

reduce the dimensionality of our robotic system to only

unconstrained degrees of freedom, that do not depend on

constraint forces. In this way, we can find a solution to

an ill-posed inverse dynamics problem. We are able to

compute the analytically correct inverse dynamics torques for

a sufficiently constrained, floating base rigid-body system,

such as a humanoid or quadruped robot, without the need

to know the constraint forces. This is a major advantage,

since otherwise the contact forces must either be estimated,

or measured with noisy sensors. The resulting formulation

is surprisingly simple, and does not require complex for-

mulations with inverted inertia matrices, which are prone

to magnify modeling errors. Additionally, we can use this

formulation to naturally combine operational space control

with joint tracking control. For example, we can combine

a central pattern generator for locomotion with a COG

controller for balance. We have demonstrated the feasibility
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of our approach with an evaluation on a simulated bipedal

robot, and a real quadruped robot. We have shown how

our approach improves the performance of tracking joint

trajectories significantly and, thus, can help to keep systems

compliant with low feedback gains. We have also shown

that our approach can robustly handle constraint switching,

balancing under disturbances, and the uncertainty of rough

terrain. Our next step is the implementation on a real high

dimensional force-controlled humanoid robot, to perform

locomotion and manipulation tasks.
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VI. APPENDIX A

In this appendix we show the independence of (10) and

(11). We begin by multiplying (2) by QT :

QTMq̈ + QTh = QTST τ +

[

R

0

]

λ. (21)

and define a new coordinate system p such that:

q̇ = Qṗ, q̈ = Qp̈ + Q̇ṗ. (22)

We then rewrite (21) as:

QTMQp̈+QTMQ̇ṗ+QTh = QTST τ +

[

R

0

]

λ, (23)

or in more compact notation:

M̂p̈ + M̂
′

ṗ + ĥ = DT τ +

[

R

0

]

λ, (24)

where we define:

M̂ = QTMQ, M̂
′

= QTMQ̇,

ĥ = QTh, D = SQ. (25)

Next, we decompose p as follows:

p =

[

pc

pu

]

, (26)

where pc ∈ R
k and pu ∈ R

n+6−k, and expand (24) as:
[

M̂cc M̂cu

M̂uc M̂uu

] [

p̈c

p̈u

]

+

[

M̂
′

cc M̂
′

cu

M̂
′

uc M̂
′

uu

] [

ṗc

ṗu

]

+

[

ĥc

ĥu

]

=

[

DT
c

DT
u

]

τ +

[

Rλ
0

]

.

(27)

If q̇ is in the null space of JC :

JC q̇ =
[

RT 0
]

QT q̇ =
[

RT 0
]

[

ṗc

ṗu

]

= 0,

(28)

implying that ṗc = 0. If we differentiate (28):

[

RT 0
]

[

p̈c

p̈u

]

+
[

ṘT 0
]

[

ṗc

ṗu

]

= 0. (29)

Since ṗc = 0, we must also have p̈c = 0. Finally we can

conclude that:

ṗc = p̈c = 0, pc = k (30)

where k is some constant vector (it is unknown, but irrele-

vant). Because of (30), the upper and lower equations of (27)

are decoupled, and we can write the complete dynamics of

our system without any constraint forces as:

M̂uup̈u + M̂
′

uuṗu + ĥu = DT
u τ (31)

Subsequently, we can write our control equation as:

τ =
(

DT
u

)+
[

M̂uup̈u + M̂
′

uuṗu + ĥu

]

(32)

where (.)+ is the right pseudoinverse (A+ = AT
(

AAT
)

−1
).

Since (32) requires a Q̇ term, which may be difficult to

determine analytically, we can substitute (22) back into (32),

and use (13) to write the control equation as:

τ =
(

SuQ
TST

)+
SuQ

T [Mq̈d + h] (33)
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