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Abstract—A new approach to autonomous pursuit evasion by 
a wheeled mobile robot in the presence of wheel slip is 
presented. Classical pursuit evasion problem, such as the 
Homicidal Chauffeur problem, considers the kinematic model 
of the pursuer and does not consider slip in its trajectory, and 
thus cannot predict a realistic pursuit evasion scenario.  In this 
work we present a new dynamics-based approach to pursuit 
evasion problem in the presence of wheel slip. We first show 
how a feedback linearization controller can achieve capture 
with wheel slip. We then improve the capture time by designing 
a new extremum seeking controller that maximizes lateral 
traction force to effect a sharper but stable turn. The simulation 
results show the efficacy of our proposed control approach. 

I. INTRODUCTION 
URSUIT-evasion(P-E) problem has been studied since 
1960s [1] as a differential game for two players. The 

problem is to find regions of initial conditions in game space 
that guarantee either capture (in capture region) or escape (in 
escape region) under optimal play, and determine 
corresponding optimal control strategies for both players 
subject to kinematic constraints. Especially when capture is 
guaranteed, the classical P-E problem gives an optimal 
solution for the pursuer to achieve capture with a given 
velocity and a curvature bound. 

In more recent studies on P-E problems, various 
approaches have been developed to design controls for the 
pursuer and the evader. In [2], a randomized pursuer strategy 
is applied to locate an unpredictable evader and capture it in a 
visibility-based P-E problem. Dynamic programming is 
applied to find solution in a class of herding problem in [3], 
and in multi-player P-E problem in [4] where cumulant- 
based control is used. In [5] nonlinear model predictive 
controller is applied to an evasive UAV in an aerial P-E 
problem to help evasion. In [6] a graph theoretic approach is 
proposed to multi-player P-E problem. In [7] a time-optimal 
pursuit strategy was proposed in a P-E game and the pursuer 
takes worst analysis to capture the evader in a time-efficient 
and robust fashion even when the evader is intelligent.  

Note that all these works assume kinematic constraints for 
the pursuer. For a wheeled mobile robot (WMR), this implies 
nonholonomic constraints that assume no-slipping condition, 
both longitudinally and laterally, at the wheels. However, for 
a realistic P-E problem with WMRs, wheel slip is inevitable. 
The classical game theoretic solution does not take wheel slip 
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into account and thus cannot offer a solution that is valid in 
real-life WMR-based P-E problem where wheel slip is not 
negligible. So far there is no work, to our knowledge, that has 
analyzed the P-E problem subject to wheel slip, which is the 
focus of this paper. 

In vehicle control, wheel slip determines the traction force 
upon which the maneuverability of a vehicle relies. Wheel 
slip is controlled to enhance the maneuverability of a vehicle, 
e.g., Antilock Braking System (ABS) control. The goal of 
ABS control is to maintain the longitudinal traction force at 
its maximum. Direct approaches drive the longitudinal 
traction force to its maximum using sliding mode-based 
extremum seeking control (ESC) [8][9][10] without knowing 
the optimal slip ratio or the analytic function of the 
longitudinal traction force, while indirect approaches 
[11][12][13][14] drive the wheel slip to its optimal value, 
derived from estimation or sensors, where the longitudinal 
traction force is maximal. However, no work has been done in 
the literature to control the lateral traction force, which is in 
a non-actuated direction, to its maximum. 

In this paper, we explore new approaches to P-E problem 
subject to wheel slip. We focus on optimizing the pursuit 
process in a way that the capture time is minimized while the 
evader is under optimal evasion. Pursuit path can be split into 
curve and straight line segments. For constant speed pursuit, 
to minimize the time taken on the curve segment is to 
minimize the capture time. In this work, we exploit wheel slip 
to let the WMR take a sharp turn without being unstable such 
that the curve segment is minimized. In this method, we do 
not need to know the optimal slip angle, where the maximal 
lateral traction force occurs, or the analytic function of the 
lateral traction force. Instead we apply the ESC technique via 
sliding mode to maximize the lateral traction force of the 
pursuer in the curve segment such that the length of this 
segment is minimized. Sliding mode-based extremum 
seeking control was introduced by Korovin and Utkin 
[15][16], analyzed and applied by Ozguner and his coworkers 
on a variety of automotive problems, especially ABS design 
[8][9][10] and source tracing [17]. The model of a WMR on a 
slippery surface is an under-actuated system. The lateral 
direction is not actuated and the lateral traction force is 
indirectly controlled by the wheel torques. We apply ESC 
technique to control the traction force in the non-actuated 
direction to allow the WMR to take a sharp turn to optimize 
the capture of the evader.  

This paper is organized as follows. In section II we briefly 
introduce the classical P-E problem where only kinematics of 
both players is considered. In section III, the full WMR model 
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and the traction model between the wheel and the surface is 
introduced. As a first approach to solve the P-E problem with 
wheel slip, we present an input-output linearization-based 
feedback controller to compensate for the wheel slip to 
capture the evader in section IV. In section V, we present an 
improved controller that employs extremum seeking control 
technique to maximize the lateral traction force in the curve 
segment for the pursuer, in order to minimize the travel in this 
segment and thus minimize the capture time. In section VI we 
present the simulation results followed by a discussion and 
conclusion section (Section VII). 

II. DESCRIPTION OF P-E PROBLEM 
The P-E problem, which was initially considered as a 

differential game problem, is called the Homicidal Chauffeur 
problem in [1]. In this problem, the pursuer P moves at a fixed 
speed w1, and its radius of curvature is bounded by a given 
quantity R. It steers by selecting the value of this curvature at 
each instant. The evader E moves with simple motion. Its 
speed w2 (w2<w1) is fixed and it steers, at each instant, by 
choosing its direction of travel. Abrupt changes in this choice 
are allowed. Each player knows the other’s kinematic states 
and relative location at each moment. Capture occurs when 
the distance PE ≤  l, a given quantity. Herein there are two 
types of problems. The Game of Kind problem is to find 
precise conditions, values of R, l, w1/w2, which guarantee 
either capture or escape. The Game of Degree problem is to 
minimize the time to achieve capture. To take an example of 
this problem, we assume the evader is initially right behind 
the pursuer at a close distance, as located at e0 and p0 in Fig.1. 
The idea of pursuit is that, under optimal play, the pursuer 
first needs to go away from the evader, enlarge the distance in 
between until the pursuer reaches p1 and the evader reaches e1 
simultaneously, then take a turn and go straight to the evader; 
while the evader at first follows the pursuer to e1 and then 
escapes from it after the pursuer reaches p1. More detail on 
deriving the optimal play strategies is omitted as it is 
elaborated in [1]. 

In this paper we will focus on the pursuit behavior for a 
WMR subject to wheel slip. One way to solve this problem is 
to include the dynamic model of the WMR with wheel slip 
and try to achieve a game theoretic solution for optimal play. 

However, that will be extremely hard, if not impossible due to 
the additional complexities introduced by the dynamics, 
especially the variable slip of the WMR. Instead we assume 
the solution under the no-slip condition for optimal play as 
our starting point and design controllers that can negotiate 
slip: 1) following the nominal no-slip path (Section IV) and 2) 
by further reducing the radius of curvature by maximizing 
lateral traction force (Section V). 

III. WMR MODELING WITH WHEEL SLIP  
On slippery surfaces, the WMR is modeled as in Fig. 2, 

where Pc is the center of mass of the WMR, P0 is the center of 
the wheel shaft, d is the distance from Pc to P0, b is the 
distance from the center of each wheel to P0. F1 and F2 are the 
longitudinal traction forces for wheel1 and wheel2, 
respectively. F3 is the lateral traction force. To take into 
account the slip effect, dynamic model needs to be studied 

instead of kinematic model. The equations for the dynamic 
WMR model is derived from Newton’s Law shown in Eq.(1). 
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where M is the robot mass, I is its moment of inertia, Iw is the 
moment  of inertia of each wheel about the wheel axis, r is the 
wheel radius, φ  is the orientation of the WMR, iθ  is the 

angular displacement of the i-th wheel, iτ  is the wheel torque 
applied to the i-th wheel. Equation (1.1) represents the entire 
WMR dynamics in the plane while (1.2) represents the 
spinning dynamics of the wheels. 

The lateral and longitudinal traction forces are functions of 
slip angle (sa) and slip ratio (sr), respectively, and are 
modeled following the Magic Formula [18] in the literature. 
Slip angle and slip ratio are defined as 

i

ii
i v

vrsr −= θ , )(tan 1

v
sa η−=                 (2) 

where vi is the longitudinal speed of the center of the i-th 
wheel, 2/)( 21 vvv +=  is the forward velocity, η  is the 
lateral speed of the center of each wheel. They satisfy the 
following nonholonomic constraints [19] 
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Fig. 1.  Pursuit evasion paths: red line is evader’s path; dashed blue 
curve is pursuer’s path. 
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Fig. 2.  WMR model on a slippery surface. 
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φφφ byxv cc ++= sincos1                  (3) 
φφφ byxv cc −+= sincos2           (4) 

φφφη dxy cc −−= sincos               (5) 
Note that, unlike classical nonholonomic constraints of 
WMR, the above constraints allow both longitudinal and 
lateral slips. 

The traction force between a wheel and a surface is 
modeled as 

( )( )( )( ) vSSKSKKSKKKF +−+= −−
33

1
43

1
21 tantansin   (6) 

where S is a function of slip angle for lateral traction force and 
slip ratio for longitudinal traction force. All other variables 
Ki, i=1,…,4 and Sv are constants and determined from the 
curve fitting process of the empirical data. Fig. 3 shows an 
example of lateral traction forces with friction coefficient 0.7 
and 0.3, respectively. The example of longitudinal traction 
force is omitted as its profile is similar to that of the lateral 
traction force. 

IV. AN APPROACH TO P-E PROBLEM SUBJECT TO WHEEL 
SLIP USING INPUT-OUTPUT LINEARIZATION  

One approach to P-E problem on slippery surface is to 
develop an input-output linearization-based controller that 
takes into account the WMR model with slip in (1). With such 
a controller the pursuer is constrained on the nominal pursuit 
path indicated by the optimal play strategy in Section II, while 
the evader has the same kinematics and evasion strategy as 
before. For the straight line segments, we select the 
orientation φ  and the forward velocity v of the pursuer as the 
outputs. For the curve segment, we select its angular velocity 
and forward velocity as the outputs, linearize the model, 
design a linear controller, and control the pursuer to track 
their desired values indicated by optimal play strategy 
updated at each moment. When the full model of the pursuer 
is introduced as in (1), the bound of the curvature, which is 
also the bound of the angular velocity of the wheels, is 
replaced by the bound of the wheel torque. We want to see 
how well the pursuer with wheel slip can follow the nominal 
pursuit path. With the control gains properly selected, 
simulation result is shown in Section VI. More details about 
input-output linearization technique and dynamic path 
following control applied on the WMR is omitted here as it 
can be found in [20][21][22]. 

V. NEAR-OPTIMAL P-E PROBLEM SUBJECT TO WHEEL SLIP 
In this paper, we define a near-optimal solution to the P-E 

problem in the sense that, the time it takes the pursuer to 
capture the evader at a constant speed is minimized. Since the 
pursuit path can be decomposed into straight line and curve 
segments, to minimize the curve segment is to minimize both 
the pursuit path and the capture time. In this section, we apply 
sliding mode-based ESC to maximize the lateral traction 
force of the pursuer when it is in the curve segment such that 
this segment is minimized. For straight line segments, we use 
the same input-output linearization technique to control the 
same outputs - orientation φ  and forward velocity v of the 
pursuer - as in Section IV and do not discuss here. The evader 
has the same kinematics and evasion strategy as before. 

A. Optimum Search Algorithm for Lateral Traction 
Differentiating the lateral traction F3 with respect to time 

along the trajectories of the system (1)-(5) we obtain 

t
Fdv

I
vd

M
vF

FF
M

FF
I

dbv
vsa

F
t

F

∂
∂+++−++

+−−−
+∂

∂=

322
2

3

212122
33

)]()(

)()([1
)(d

d

ηφηφ

η
η    (7) 

Define an error variable rFFe 33 −=  where rF3  is an 
upper bound of F3. Then the dynamics for e is governed by 
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and u1 is the new control input defined as u1=F1-F2. 
We design the sliding surface as 

∫+=
t

ees
0

dτλ ,                         (11) 

where 0>λ  . If s converges to a constant, the sliding motion 
satisfies 

0
d
d →+ e

t
e λ ,                   (12) 

and the lateral traction force can be made to its maximum 
with a proper selection of λ . To obtain the control law to let s 
converge to a constant, we rewrite (11) together with (8) as 
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Let AAA Δ+=  where A  represent the nominal part of A 
whereas the unknown part AΔ  is bounded by AA δ≤Δ . 

Design the control law as 
))((1

1 sABu Φ+−= − γ ,               (14) 
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Fig. 3.  Lateral traction for friction coefficients 0.7 and 0.3. 
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and )/2sin(sgn)( απss =Φ , a periodic switching function [8] 
[9], which periodically search the traction force neighborhood 
to determine the control direction. This selection guarantees 
that s converges to αk for some integer k, which depends on 
the initial condition and rF3 , if the following sliding mode 
existence condition is satisfied: 
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If it is assumed that the explicit dependence of traction on 
time is negligible, and keep in mind that AA δ≤Δ , the sliding 

mode existence condition turns into 
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Thus in sliding mode, the lateral traction force will converge 
to rF3  until it enters a region where the gradient is so small 
that the condition (16) cannot be satisfied. When (16) is not 
satisfied, the traction is close to its maximum and it will 
behaves arbitrarily. However, for a given rF3 and λ , we can 
select a sufficiently large N such that this region around the 
maximum can be made arbitrarily small. 

B. Forward Velocity Control 
From (1)-(5) we obtain that the forward velocity is 

governed by 
)(21 φηφ dMFFvM +++= ,                (17) 

which we rewrite as 
)(2 φηφ dMuvM ++= ,                  (18) 

where  u2 is the new control input defined as u2=F1+F2. 
We design sliding surface as 

rvvs −=  ,                      (19) 

where rv is the desired speed. If s converges to zero, v will 

converge to rv . The sliding surface is governed by 

),()( 22 ηφφηφ C
M
ud

M
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Let CCC Δ+=  where C represents the nominal part of C 
whereas the unknown part CΔ is bounded by CC δ≤Δ . 

Design the control law as 
)sgn(2 sMkCMu +−=  ,                    (21) 

where  μδ += Ck  with 0>μ , such that s converges to 
zero. 

C. Lateral Traction Observer 
As mentioned in subsection A, the realization of the ESC 

algorithm requires the knowledge of the lateral traction force. 
We assume this quantity cannot be measured directly, so we 
develop an observer which allows us to obtain lateral traction 
force using the measurements of WMR angular velocity φ  
and wheel angular velocity iθ . This observer is based on the 
equivalent control method, which has been used to develop 

observer for longitudinal traction force in ABS control in [8]. 
From (1) we obtain the dynamic equation 

rdFbbIIr w 32121 )()( −−=−+ ττθθφ .           (22) 

Now we define a new variable )( 21 θθφζ −+=
Ir

bIw , which 

turns (24) into 
rdFbIr 321 )( −−= ττζ .                 (23) 

We define an estimate ζ̂  which satisfies 

VrdbIr −−= )(ˆ
21 ττζ  .                 (24) 

The function V is picked as 
)sgn(ζNV −=                      (25) 

where ζζζ ˆ−=  is a tracking error of ζ  and N>0 is a 
sufficiently large constant. 

Subtracting (24) from (23) we obtain 

3)sgn( rdFrdNIr −−= ζζ  .               (26) 

If N is selected such that }max{ 3FN > , ζ  converges to 

the sliding surface 0=ζ . On sliding surface the equivalent 
value of variable )sgn(ζNV −=  is equal to F3 

3FVeq =  .                    (27) 

As shown in [8], the equivalent value of the high frequency 
switching signal can be obtained by applying a lowpass filter 

1
1)(

+
=

sT
sH

f

 ,                 (28) 

where Tf is the constant which suppresses the high frequency 
signal. Since this chattering only occurs in the lateral traction 
force observer loop, it will not affect the entire system. The 
estimate of the lateral traction force out of the filter will be 
used in the ESC algorithm. 

D. Longitudinal Traction Force Tracking 
From previous sections A and B, we obtain desired F1 and 

F2 to control lateral traction force and forward velocity. Now, 
we design iτ  to enable Fi to track desired Fi using sliding 
mode control, which is omitted in this paper. 

VI. SIMULATION RESULTS FOR THE P-E PROBLEM  
We present simulation results for the P-E problems studied 

in this paper. The simulation results for the three stages of the 
problem are shown below.  

Stage 1: Classical P-E Problem 
In this stage, both players have only kinematic constraints. 

As in Fig. 1 in section II, the paths of both players are shown 
in Cartesian space under given initial conditions. Given the 
starting positions of the pursuer and the evader as [0, 1] and 
[0, 0], respectively, it can be shown using game theoretic 
solution that when we select w1=2m/s, w2=0.5m/s, l=0.5m, 
R=2m, capture is guaranteed. The capture time is 8.7s. 

Stage 2: Feedback Control-based P-E Problem Subject to 
Wheel Slip 
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This simulation is for the problem in the second part of 
section IV, where the pursuer has the full model as in (1) and 
is governed by an input-output linearization-based controller. 
M=17kg, I=0.6kg·m2, Iw=0.0011kg·m2, r=0.095m, b=0.24m, 
d=0.047m. The desired forward velocity for the pursuer is 
chosen to be 2m/s (same for all cases). Surface friction 
coefficient is 0.3 in this case. The P-E paths are illustrated in 
Fig. 4. We observe that the pursuer tries to follow the nominal 
pursuit path, while compensating the wheel slip, and 
eventually captures the evader. The capture time is 10.12s. 
Note that the shape of the capture path of the pursuer differs 
slightly from Fig. 1 due to wheel slip. 

Stage 3: Near-Optimal P-E Problem Subject to Wheel Slip 
This simulation is for the problem in section V, where the 

pursuer has the full model as in (1) and is governed by an 
input-output linearization-based controller in straight line 
segments and by the optimal lateral traction force searching 
algorithm in curve segment. The pursuer has the same model 
parameters and desired velocity as in Stage 2. The friction 
coefficient is 0.3. The P-E paths are shown in Fig. 5. It is 
observed that the pursuer takes a sharp turn to capture the 
evader. The capture time is 6.8s.  

Since the control technique we use in straight line segment 
is trivial, now we focus on the results in the curve segment, 
which corresponds to the time from 1.3s to 3.5s. When rF3 , 

λ , and α are selected as -57N·m, 0.5, and 0.5, respectively, 
the actual lateral traction force moves to its maximum and 
stays in the small region around the maximum as shown in 
Fig. 6. The maximum of the lateral traction force can be 
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Fig. 8.  Lateral slip velocity for ESC in the curve segment, and lateral 
slip velocity for output feedback control in the same time window. 

-4 -2 0 2 4 6

-2

0

2

4

6

x-position(m)

y-
po

si
tio

n(
m

)

e0

e

p

p0

e1

p1

 
Fig. 4.  Pursuit evasion paths where the pursuer is following the desired 
path via feedback control: red line is evader’s path; dashed blue curve 
is pursuer’s path. 
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Fig. 5.  Near-optimal pursuit evasion paths with pursuer on a slippery 
surface: red line is evader’s path; dashed blue curve is pursuer’s path. 
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Fig. 9.  Wheel angular velocity in the curve section. 
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Fig. 7.  WMR forward velocity in the curve section 
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observed in Fig. 3. The output of the observer is a very good 
estimate of the force. However, the lateral traction force for 
output feedback control case in this duration is far from its 
maximum. Figure 7 is the forward velocity with chatter as it is 
controlled by sliding mode. In Fig. 8 the lateral slip velocity 
moves to its optimum and stays around it, which corresponds 
to optimal slip angle, while the lateral slip velocity for the 
output feedback control case is much less than the optimum. 
Fig. 9 is the angular velocity of each wheel and Fig. 10 is the 
applied torque for each wheel in which we set its bound at 
1.24N·m. 

Comparing the capture time for the four P-E problems in 
section II, IV, and V, respectively, in Table I, we see that, in 
the feedback control-based P-E, the capture time is longer 
than the classical P-E because the pursuer spends longer time 
in turning to deal with slip; while in the near-optimal P-E, the 
pursuer takes a turn as sharp as possible and captures the 
evader along the shortest path. 

VII. DISCUSSION AND CONCLUSION 
In this paper we approach the pursuit evasion problem 

considering both the dynamics of the WMR and the wheel 
slip as the WMR pursues the evader. We show that it is 
possible to exploit lateral slip to generate different curved 
paths during pursuit process and that may help the capture of 
the evader.  We propose two controllers – one is a standard 
input-output linearization controller that works on a full 
dynamic model of the WMR with slip, and the other is a 
near-optimal extremum seeking controller that optimizes the 
lateral traction to minimize the radius of curvature – to 
address this problem. The simulation results show that the 
extremum seeking controller can give better performance to 
the pursuer.  
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TABLE I 
CAPTURE TIME FOR PURSUIT EVASION PROBLEMS 

Problem type Capture time(s) 
Classical P-E with kinematics 8.7 
Feedback control-based P-E 10.12 
Near-optimal P-E 6.8 
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Fig. 10.  Wheel torque in the curve section. 
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