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Abstract— In this paper, we present a robust RBPF-SLAM
algorithm for mobile robots in non-static environments. We
propose an approach for sampling particles from multiple
ancestor sets, not from just one prior set. This sampling
method increases the robustness of SLAM algorithm, because
some particles can be updated by only observations consistent
with the map, even if observation at certain time step is
corrupted by environmental changes. Corrupted observations
are filtered out from recursive Bayesian update process by the
proposed sampling method. We also present an intermediate
path estimation method to use abandoned sensor information
reflected from relocated objects for map update. The map can
represent the changed configuration of non-static environment
by the stored sensor information and the estimated path. Results
of simulations and experiments in non-static environments show
the robustness of proposed RBPF-SLAM algorithm using sonar
sensors.

I. INTRODUCTION

The simultaneous localization and mapping (SLAM) has
been proposed to solve both pose estimation and mapping
for mobile robots, concurrently. The SLAM algorithms using
extended Kalman filter (EKF) [1], [2] and Rao-Blackwellized
particle filter (RBPF) [3], [4] have shown remarkable results
in last two decades. However, most of these SLAM algo-
rithms assume that the environment is static.

The real environment is always changed due to the relo-
cation of furniture and electronics while the robot executes
SLAM. There are also some objects like people and vehicles
moving around the environment. In real non-static environ-
ment, these environmental changes cause the inconsistency
between the corrupted observations reflected from objects
that have been moved and the predicted observations from
the map. This inconsistency induces errors in the pose esti-
mation of SLAM process due to the wrong data association.

Observation from changed objects can be registered as a
new landmark, not associated with wrong landmarks on the
map, if the accurate sensors are used or plentiful measure-
ments are provided. The corrupted observations also can be
filtered out, if they can be discriminated from the correct
ones. However, it is not easy to know whether the observation
is corrupted or not with sonar sensors due to their large
uncertainty, low resolution and wide beam directivity, even
though they have the advantage of cost competitiveness for
commercial service robots. Pose estimation error caused by

Jung-Suk Lee and Chanki Kim are with students of Robotics
Lab., Dept. of Mechanical Engineering, Pohang University of
Science and Technology (POSTECH), Pohang, KOREA {badol,
minekiki}@postech.ac.kr

Wan Kyun Chung is with Faculty of Robotics Lab., Dept. of Mechanical
Engineering, Pohang University of Science and Technology (POSTECH),
Pohang, KOREA wkchung@postech.ac.kr

corrupted observation is almost inevitable for SLAM using
sonar sensors, and the errors in pose estimation result in the
divergence of SLAM.

There are some researches dealing with non-static environ-
ments. SLAM with detection and tracking of moving objects
(DATMO) [5], [6], [7] were proposed for safe driving of
outdoor vehicles equipped with laser range finders (LRFs)
and vision sensors. In these works, only the observations
reflected from static objects are selected and used for SLAM
process, while the moving obstacles are tracked to avoid
collision, independently. In [8] and [9], same problem is
solved by proposing single unified framework that includes
both data association and target tracking, and builds the map
for stationary parts of the environment.

In indoor environment, on the other hand, tracking moving
obstacles are not a critical problem, because they do not
move so fast. Therefore, researches for indoor SLAM have
focused on the mapping for non-static environments. Biswas
et al. introduced a robot object mapping algorithm that
learned the models of non-stationary objects by comparing
several maps drawn at different times through EM algorithm
[10]. Similarly, observations from dynamic objects were
filtered out through EM, while the remaining observations
reflected from the stationary parts were used for off-line
SLAM in [11]. However, both algorithms cannot update the
environmental changes on the map adaptively, even though
they can build the map for stationary part of the environment.

For the adaptive mapping algorithm that can be of help
to pose estimation of robots, all possible configurations for
non-static environment are represented on several local maps
[12]. Local maps for same area are updated with multiple
timescales and used for long-term SLAM of mobile robots
in [13]. Using vision sensors, existence and displacement of
landmarks on the map are learned by appearance properties
and strength states [14]. In [15], three kinds of maps are
updated independently. Union of static and dynamic occu-
pancy grid maps provides a complete description of the
environment and the static corner feature map is used to
estimate the pose of mobile robot.

Most of the previous works for non-static environments
used LRFs that are accurate enough for robust data as-
sociation and can offer abundant information containing
observations reflected from static parts. However, it is not
easy to discriminate corrupted observations with sonar sen-
sors. Moreover, observations are easily corrupted by small
environmental changes due to their wide beam directivity.
Also, pose estimation in non-static environment was not
considered in most of works. Robots cannot estimate its pose
robustly, if the environmental changes are not immediately
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(a) Sampling from multiple ancestor sets.

(b) Estimation of intermediate path and map update.

Fig. 1. Process of the proposed RBPF-SLAM algorithm.

represented on the map, especially when the low performance
sensors are used.

In this paper, we propose a robust RBPF-SLAM algorithm
that can estimate the pose of the robot robustly and update the
map correctly in non-static environment with sonar sensors.
This work is started from our previous work for localization
of mobile robots in non-static environments [16]. Proposed
SLAM algorithm has following characteristics:

• In proposed SLAM algorithm, particles are sampled
from multiple ancestor sets, as shown in Fig. 1(a). This
sampling makes the particles updated by different com-
binations of observations, and only correctly weighted
particles that are updated by non-corrupted observations
can survive.

• When particles are sampled from the several steps ear-
lier set, some sensor information is abandoned because
the poses at intermediate time steps are not sampled. To
update the map with all available sensor information for
changed environment, intermediate path is estimated, as
shown in Fig. 1(b).

The remainder of this paper is organized as follows. Sec-
tion II introduces RBPF-SLAM, the foundation of proposed
SLAM framework. In section III, a new sampling method
for robust RBPF-SLAM is proposed. Section IV describes
the estimation of intermediate path and map update method.
Section V shows the experimental results and the conclusion
follows in section VI.

II. BACKGROUNDS

In SLAM algorithm, the posterior of the probability distri-
bution for robot’s pose and the map is represented as follows:

p(x1:t ,m|z1:t ,u1:t ,n1:t), (1)

where x1:t , z1:t , u1:t and n1:t mean the pose of the robot, the
sensor observation, the control input and the data association
up to time t, respectively. And the m denotes the map.
This SLAM posterior can be factored into the map update
procedure and the pose estimation by

p(m|x1:t ,z1:t ,u1:t ,n1:t)p(x1:t |z1:t ,u1:t ,n1:t). (2)

Fig. 2. Recursive Bayesian update process of SLAM: The corrupted
observation zt−2 disturbs all following estimation results.

In RBPF-SLAM, the pose of the robot, the right term
in (2), is described by a set of M weighted particles St =
{xt,i,wt,i}M

i=1, where xt,i (= xi
1:t) and wt,i mean the path and

the importance weight for ith particle, respectively. At each
time step, particles for St is sampled from the prior set St−1

with control input ut as follows:

xi
1:t ∼ p(xt |xi

1:t−1,ut). (3)

Under the assumption that the St−1 is distributed according
to p(x1:t−1|z1:t−1,u1:t−1,n1:t−1), the proposal distribution for
sampled particles is given by

p(x1:t |z1:t−1,u1:t ,n1:t−1). (4)

Then, the importance weight is calculated by

wt,i =
target distribution

proposal distribution

=
p(xi

1:t |z1:t ,u1:t ,n1:t)
p(xi

1:t |z1:t−1,u1:t ,n1:t−1)

∝
p(zt |xi

1:t ,z1:t−1,u1:t ,n1:t)p(xi
1:t |z1:t−1,u1:t ,n1:t)

p(xi
1:t |z1:t−1,u1:t ,n1:t−1)

= p(zt |xi
t ,nt),

(5)

which is proportional to the measurement likelihood.
After the path of the robot is estimated, the map for

each particle can be updated from the left term in (2). For
the landmark map, the states of landmarks can be updated
independently based on the path of the robot as follows:

p(m|x1:t ,z1:t ,u1:t ,n1:t)

=
N

∏
n=1

p(mn|x1:t ,z1:t ,u1:t ,n1:t),
(6)

where the map m consists of N landmarks, m = {m1, . . . ,mN}.
The RBPF-SLAM can estimate the path of the robot

and update the map efficiently. Per-particle data association
ability also can increase the robustness of SLAM [17].
However, it has a particle degeneracy problem where most
particles have meaningless importance weight, when the
robot’s sensor is too accurate [18]. To solve this problem,
improved sampling techniques that can substitute (3) for
landmark map [19] by

xi
1:t ∼ p(xt |xi

1:t−1,u1:t ,z1:t ,n1:t) (7)

and for the grid map [20] were introduced. Sampling par-
ticles under consideration of the observation zt as well as
the control input ut makes the RBPF-SLAM shows better
performance.
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(a) (b) (c)

Fig. 3. Process of the sampling from multiple ancestor sets, where K = 4, M = 3 and Δtk = {1,2,3,4}. (a) Particles are sampled from K ancestor sets
and added to Ŝt . (b) M×K particles are weighted by observation zt . (c) Highly weighted M particles are added to St .

Aforementioned RBPF-SLAM algorithms can correctly
estimate the path of the robot and update the map in
static environment. However, if the environment is non-static,
observations from relocated objects could be associated with
the wrong landmarks on the map, which is registered before
the environmental changes. Wrong data associations degrade
the performance of the pose estimation in SLAM, because
their effects remain in recursive Bayesian update process, as
shown in Fig. 2.

To solve this problem, we propose a robust RBPF-SLAM
framework with a new sampling strategy that can suppress
the effects of corrupted observations caused by environmen-
tal changes.

III. ROBUST SAMPLING STRATEGY FOR
RBPF-SLAM

Once the SLAM posterior is disturbed by corrupted ob-
servations, the effect of corruption remains in the SLAM
process because the posterior is updated recursively from the
posterior of the last time step, as shown in Fig. 2. It is not
easy to overcome this problem for RBPF-SLAM using the
low performance sensors like sonar. One possible solution for
this problem is to make the particles, which are updated by
corrupted observations, to be not used in SLAM process. For
example, if the particles for St−1 are sampled directly from
St−3 in Fig. 2, the effect of corrupted observation zt−2 can be
removed. However, discrimination of corrupted observations
is not an easy problem.

To solve this problem, we propose a new sampling method
for RBPF-SLAM, which can select correct particles when
the robot later observes stationary parts of the environment.
In proposed SLAM algorithm, M×K particles are sampled
from K ancestor sets, not from just one prior set, as follows:

xi
1:t−Δtk,t

∼ p(xt |xi
1:t−Δtk

,ut−Δtk+1:t), (8)

where k = 1, . . . ,K, and added to set Ŝt .
When particles are sampled from K ancestor sets, as

shown in Fig. 3(a), particles except ones sampled from St−2

represent the pose of the robot correctly, not disturbed by
corrupted observation zt−2. After M×K particles are sampled
from K sets, all particles are weighted by observation zt

(Fig. 3(b)). At this time, it is highly likely that particles
sampled from St−4, St−3 and St−1 receive high importance
weight because they are sampled on correct positions. On

the other hand, particles disturbed by corrupted observation
zt−2 cannot get high importance weight due to errors in
estimated pose. And then, through the resampling process,
highly weighted M particles are selected from Ŝt and added
to set St , as shown in Fig. 3(c).

To select the appropriate M particles from Ŝt , importance
weights are given to particles. If we assume that the St−Δtk is
distributed according to p(x1:t−Δtk | z1:t−Δtk , u1:t−Δtk , n1:t−Δtk),
the proposal distribution of particles sampled from St−Δtk is
given after the estimation of intermediate path p(xt−Δtk+1:t−1|
z1:t−1, u1:t , n1:t−1, x1:t−Δtk,t) that will be explained in Section
IV by

p(x1:t |z1:t−1,u1:t ,n1:t−1), (9)

which is the same as the one in (4), and the importance
weight is given by the likelihood with the observation zt

in the same manner as in (5). Using the given importance
weight, M particles are resampled from Ŝt and added to
St , which can represent the pose of the robot correctly, not
disturbed by corrupted observations.

Though the proposed sampling method can increase the
robustness of the RBPF-SLAM algorithm, sampling particles
from ancestor sets and updating M ×K particles at every
time step need large computational burden. The objective of
proposed sampling method is that the corrupted observations
are not used to update particles. Therefore, sampling particles
from multiple ancestor sets is of no use to increase the
robustness of pose estimation, while the robot consecutively
observes the same object. To make the proposed SLAM
algorithm efficient, particles are sampled from ancestor sets
only when the robot observes a new object different to the
last observed one. Unfortunately, object detection is not easy
with sonar sensors, so the landmark is used as a criterion for
sampling timing. When the robot observes a new landmark,
which is different than the ones observed by particles in
ancestor sets, particles are sampled from K ancestor sets.

Here, observing new landmark can be detected by land-
mark tracker, which is an independent short time EKF-
SLAM algorithm and tracks nearby landmarks to prevent the
overlap of ancestor sets corresponding to the same landmark.
This simple SLAM process can know whether the current
landmark is same with the last observed one or not, and
provide the criterion for the sampling method.
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Fig. 4. Particles are sampled from multiple ancestor sets only when the
robot observes a new landmark.

The final form of proposed RBPF-SLAM algorithm works
as shown in Fig. 4. If the robot observes landmark m5 at time
t and the landmark tracker detects that it is different to m4

observed by the robot till t − 1, particles are sampled from
multiple particle sets that are stored at the last time step of
the robot observing each landmark. On the other hand, while
the robot observes same landmark, for example m4, particles
in St−1 and St−2 are directly sampled from St−2 and St−3,
respectively, same as in FastSLAM 2.0 [19].

The proposed algorithm can estimate the pose of the
robot robustly, even though observations are corrupted by
environmental changes. However, some observations cannot
be used for map update because the particles sampled from
a few time steps earlier cannot have path information at
the intermediate time steps. Actually, observations that are
reflected from relocated objects and discarded in resampling
stage represent the state of changed environment. To use
these observations for map update, estimation of path infor-
mation at intermediate time steps is described in next section.

IV. ESTIMATION OF INTERMEDIATE PATH AND
MAP UPDATE

In proposed sampling method, some sensor information
between current and ancestor sets is abandoned. For example,
if one particle in St is sampled from the ancestor set St−4

as in Fig. 1(a), the map cannot be updated by observations
zt−3:t−1. This is because the path information at intermediate
time steps xt−3:t−1 is not sampled for that particle. Even
if they are discarded in sampling process, the observations
reflected from changed environment are useful in map update
if the correct path of the robot is given. To update the map
that can represent the current environment, first, the path
information at intermediate time steps is estimated, and then
the map is updated with stored sensor information based on
the sampled poses as in Fig. 1(b).

For the ith particle in St , which is sampled from St−s,
where s = Δtk, the path information xi

t−s+1:t−1 at intermediate
time steps is sampled based on all available information as
follows:

xi
t−s+1:t−1 ∼ p(xt−s+1:t−1|z1:t−1,u1:t ,n1:t−1,x

i
t−s,t). (10)

The path is constrained by the already sampled poses just
before and just after the intermediate time steps, xi

t−s and xi
t ,

with other data.
Now, the probability distribution for path at intermediate

time steps in (10) is rewritten by Bayes’ rule and the Markov

(a)

(b)

(c)

Fig. 5. Process of the intermediate path estimation and the map update. (a)
Missing path information between xt−s and xt (here, Δtk = 4). (b) Calculated
mean and covariance of intermediate path. (c) Sampling intermediate path
and map update.

assumption as follows:

p(xt−s+1:t−1|z1:t−1,u1:t ,n1:t−1,x
i
t−s,t)

=η p(zt−s+1:t−1|xt−s+1:t−1,ut−s+1:t ,nt−s+1:t−1,x
i
t−s,t)

× p(xt−s+1:t−1|ut−s+1:t ,x
i
t−s,t),

(11)

where η is the normalizing constant.
The first term in the right-hand of the equal in (11) can

be factorized by

p(zt−s+1:t−1|xt−s+1:t−1,ut−s+1:t ,nt−s+1:t−1,x
i
t−s,t)

= p(zt−s+1|zt−s+2:t−1,xt−s+1:t−1,ut−s+1:t ,nt−s+1:t−1,x
i
t−s,t)

×·· ·× p(zt−1|xt−s+1:t−1,ut−s+1:t ,nt−s+1:t−1,x
i
t−s,t),

(12)

and the typical term is rewritten as follows:

p(zl |zl+1:t−1,xt−s+1:t−1,ut−s+1:t ,nt−s+1:t−1,x
i
t−s,t)

=
∫

p(zl |xl ,nl ,mnl )

× p(mnl |zl+1:t−1,xl+1:t−1,ut−s+1:t ,nl+1:t−1,x
i
t−s,t)dmnl ,

(13)

where t−s+1 ≤ l ≤ t−1, and mnl is the observed landmark
at time l.

Now the final form of the probability distribution for the
intermediate path from (10) can be obtained as follows:

p(xt−s+1:t−1|z1:t−1,u1:t ,n1:t−1,x
i
t−s,t)

∝ p(xt−s+1:t−1|ut−s+1:t ,x
i
t−s,t)×

t−1

∑
l=t−s+1

∫
p(zl |xl ,nl ,mnl )

× p(mnl |zl+1:t−1,xl+1:t−1,ut−s+1:t ,nl+1:t−1,x
i
t−s,t)dmnl .

(14)

The term p(xt−s+1:t−1|ut−s+1:t ,xi
t−s,t) represents the proba-

bility distribution for the intermediate path xt−s+1:t−1, which
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TABLE I

NUMBER OF PARTICLES (× SETS) USED FOR EACH METHOD

FastSLAM 2.0 Proposed RBPF-SLAM
For simulations 200 100 (× 5)
For experiment 200 50 (× 5)

is calculated from the control input for intermediate time
steps and is also constrained by sampled poses at t and
t − s. The remaining term inside of the integral can update
the probability distribution for xl with the corresponding
observation and the associated landmark on the map.

The implementation for the estimation of intermediate path
is as follows. First, to calculate the mean and covariance
for each pose p(xt−s+1:t−1|ut−s+1:t ,xi

t−s,t), the loop-closing
algorithm [21] is applied. Based on the control input at
intermediated time steps and already sampled poses xi

t−s and
xi

t , as shown in Fig. 5(a), the consecutive relative transfor-
mations from xt−s+1

t−s to xt
t−1 and corresponding covariance

matrix are optimized by iterated extended Kalman filtering.
From the result of this nonlinear constrained least-squares
optimization problem, the mean and covariance for each pose
at intermediate time step is calculated, as shown in Fig. 5(b).

Next, the intermediate path xi
t−s+1:t−1 is sampled from the

mean and covariance with the stored sensor observations, as
shown in Fig. 5(c). Simultaneously, the map is also updated
based on the sampled path and sensor observations. This pro-
cess is same with the sampling stage of FastSLAM 2.0, and
applied from the time t −1 to t − s+1 because the observed
landmark mnl is updated by sensor observation at subsequent
time steps zl+1:t−1 as in (14). If the observed landmarks at
intermediate time steps are already registered on the map,
the states of the landmarks are updated. For the observation
reflected from the relocated object, corresponding landmark
is registered as a new one on the correct position, not
associated with wrong landmark by the correctly estimated
intermediate path.

V. SIMULATIONS AND EXPERIMENTS

In this section, the performance of proposed RBPF-SLAM
algorithm is evaluated by comparing with FastSLAM 2.0
[19] under similar computational burden for each method.
The number of particles and sets for each method is shown in
Table I. First, the robustness of proposed algorithm was ver-
ified with simulations in static and non-static environments.
Then, the algorithm was applied to the real robot equipped
with sonar sensors in non-static residential-like environment.

A. Simulations

Performance of each method was verified by simulations
in two different environments. In all simulations, the robot
traveled the environment 3 times following the given way-
points, as shown in Fig. 6, with 3% of motion noise. The
robot was equipped with a range-bearing sensor with a
maximum range of 20 m, 180◦ frontal field of view and
the standard deviation of 0.2 m in range and 2◦ in bearing.
All simulation results were obtained from 10 independent
runs for each algorithm.
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Fig. 6. Simulation environments (30 m × 30 m): Landmarks (red
circles) are registered on the map while the robot (red triangle) travels the
environment following given way-points (red squares). The environment has
initial landmarks (green Xs) and the position of some landmarks are changed
(blue plus signs) after the robot’s first lap.
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(a) Number of spurious landmarks.
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(b) Landmark position error.

Fig. 7. Simulation results.

For simulations in the first environment, the rightmost 3 of
19 landmarks were relocated purposely with increasing or-
ders to disturb the data association, after the robot traveled its
first lap, as shown in Fig. 6(a). The intentional displacement
of the adjacent landmarks makes the observations from them
wrongly associated with landmarks that are removed. After
the robot observes relocated landmarks, other stationary
landmarks are registered as new ones on wrong position,
if the pose estimation has errors caused by wrong data
association.

In second environment (Fig. 6(b)), performances of both
algorithms were also evaluated under random changes of
landmarks. 7 ∼ 18 of 25 initial landmarks were selected
randomly and displaced to new position under the Gaussian
random with mean of initial position and variance given by
the standard deviation of sensor’s range error model. The
performance of SLAM in non-static environments was also
compared with the one in static environment of which no
landmarks were moved.

In Fig. 7, results of simulations are presented. There is
small number of spurious landmarks on the map updated
by the proposed SLAM algorithm. That means the pose
estimation is not disturbed by corrupted observations and the

254



Fig. 8. Residential-like environment (12 m × 10 m): The landmark map at the center was obtained from proposed SLAM algorithm when the robot
finished its first lap. Black circles and lines mean the point and line landmarks, respectively. Blue line denotes the odometry path of the robot. Six pairs
of small pictures show the environment at robot’s first lap (left in each pair) and the changed environment at second lap (right in each pair).

TABLE II

EXPERIMENTAL RESULTS

Algorithms Final position error Final heading error
FastSLAM 2.0 611.3 mm 6.714◦

Proposed SLAM 365.3 mm 3.150◦

map is correctly updated. Proposed SLAM algorithm failed
in only one trial in static environment (Fig. 7(a)). On the
contrary, FastSLAM 2.0 registered 5 ∼ 8 spurious landmarks
even in static environment.

The position error of registered landmarks also shows the
performance of proposed SLAM algorithm (Fig. 7(b)). Pro-
posed SLAM registered the landmarks on correct positions
in non-static environment as well as in static environment,
while the errors of FastSLAM 2.0 in non-static environment
were larger than the one in static environment.

B. Experiments in Real Environment

The performance of proposed algorithm was also ver-
ified in residential-like environment with Pioneer 3-DX
differential-drive robot equipped with 12 sonar sensors. Line
and point landmarks were extracted from sonar sensors by
[22]. The standard deviations in range (bearing) for two kinds
of landmarks are 0.2 m (5◦) for line and 0.15 m (4◦) for
point. The motion noise is 3% of odometry information. The
robot traveled the environment two times with wall following
algorithm and arrived at the starting point. The average speed
of the robot was about 0.1 m/s. After the robot traveled its
first lap, some objects were displaced to new positions, as
shown in Fig. 8. All following results were obtained from
10 independent runs for each method with stored sensor and
odometry data that were sampled with 4 Hz.

The final position and heading errors from each SLAM
method are shown in Table. II. Final pose error from pro-
posed SLAM algorithm is less than the one from FastSLAM
2.0, which means the proposed algorithm can estimate the
pose of the robot robustly under environmental changes. The
map also shows the performance of the proposed algorithm.

The map from the proposed SLAM represents the environ-
ment correctly, as shown in Fig. 9. Line landmarks on the
map from the proposed algorithm are well aligned. On the
contrary, the entire configuration of the map from FastSLAM
2.0 is distorted compare with the line landmarks at the center
bottom of the map, which were observed right after the robot
started its travel. The proposed algorithm also successfully
registered the landmarks for relocated objects on the final
map as compared with the map (note the areas emphasized
with ellipses in Fig. 8 compared with the same areas in Fig.
9(a)) obtained when the robot finished its first lap.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented a robust RBPF-SLAM algo-
rithm that can estimate the pose of the robot and update the
map robustly with sonar sensors in non-static environments.
The advantages of this algorithm are as follows:

• Sampling from multiple ancestor sets makes some par-
ticles not updated by corrupted observations from the
environmental changes. Correctly updated particles that
survive through sampling process can estimate the pose
of the robot.

• Survived particles can update the map, which represent
the changed environment correctly, by the estimation of
intermediate path.

Our algorithm has been implemented and evaluated via
simulations and experiments in non-static environments. The
results showed that the proposed SLAM algorithm is robust
and accurate with low performance sensors compared with
the FastSLAM 2.0 under similar computational burden.

Future work will include the map management method
that updates the reliability of landmark using negative in-
formation for the elimination of spurious landmarks due to
the environmental changes or the errors from the landmark
extraction process.

VII. ACKNOWLEDGMENTS

This work was supported in part by the Acceleration
Research Program of the Ministry of Education, Science and

255



−4 −2 0 2 4 6

−1

0

1

2

3

4

5

6

7

meters

m
et

er
s

(a) Proposed RBPF-SLAM

−4 −2 0 2 4 6

−2

−1

0

1

2

3

4

5

6

7

meters

m
et

er
s

(b) FastSLAM 2.0

Fig. 9. Landmark map obtained after the robot finished its second lap for each SLAM algorithm: Black circles and lines mean the point and line landmarks.
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