
The CBC: a LINUX-based Low-Cost Mobile Robot
Controller

David P. Miller, Matthew Oelke, Matthew J. Roman, Jorge Villatoro & Charles N. Winton

Abstract— Over the last five years, a number of powerful
robotics controllers have become available. Only a small per-
centage of these are suitable for general use in robotics. In
particular, they trivially interface with a large variety of sensors
and effectors, have a well constructed software IDE that works
with a standard programming language, are self contained
and are easy to use. The CBC2 is a new robot controller
that meets these conditions. The CBC2 includes an ARM 7
based DAQ/Motor control system, an ARM 9-based CPU/Vision
processor running LINUX, an integrated color display and
touch screen. The CBC2 is both a USB host (allowing the use
of standard cameras, mass storage and network interfaces) and
a USB device for software downloads. This paper describes the
CBC2, its capabilities and the KISS-C IDE and associated li-
braries which include functionality ranging from color tracking
to PID motor control. The CBC/KISS-C system was adopted by
the Botball Robotics Education program in 2009, and was used
in about three hundred schools. Based on feedback from that
experience, design improvements were made and the CBC2 is
being used in the 2010 Botball program and is also being made
available for other uses.

I. THE NEED FOR A NEW ROBOT CONTROLLER

With the creation of the 1991 6.270 board and the ac-
companying IC programming environment [1], educational
robotics was off and running. Since that time, a number
of robot controllers have been developed by educational
institutions, non-profits and commercial enterprises. The
most popular controller through most of the 1990’s was
the Handy Board [2], a direct descendant of the 6.270
electronics, and one that shared its IC programming envi-
ronment. In the very late 1990’s LEGO introduced the RCX
controller which, while limited in both inputs and outputs
when compared to the Handy Board, was well marketed
and relatively inexpensive. It, and the follow-on NXT have
dominated the inexpensive robot controller market ever since.
These systems use proprietary software, sensors and motor
interfaces. They promote ease of use over more powerful
traditional software and hardware techniques. While millions
of K12 students have been exposed to robotics throughout
the US through the RCX and NXT, that exposure has not
resulted in an increase in engineering students; in fact the

This work was supported in part by KIPR through a grant from NASA’s
Robotics Alliance Program

D. Miller and M. Roman are with the School of AME at the University
of Oklahoma, Norman OK, 73072, USA dpmiller@ou.edu and
mattjroman@gmail.com

M. Oelke and J. Villatoro are with KISS Institute for Practical
Robotics, Norman OK, 73069, USA matthew.oelke@kipr.org
and jorge@kipr.org

C. Winton is with School of Computing, University of North Florida,
Jacksonville FL, 32224, USA cwinton@unf.edu

three primary robotics disciplines of CS, EE, and ME have
all had relatively flat or declining per capita numbers since
the introduction of the LEGO RCX[3].

Despite the market dominance of the LEGO controllers,
several other controllers have been developed in recent years
to overcome limitations in the RCX and NXT. Among these
are the GUMStix, Qwerk, Arduino and Brainstem systems.
These systems vary widely in capabilities and price, but
all lack a capable integrated onboard user interface; for the
most part the user interacts with the system through a PC.
For an autonomous robot project in classroom settings, this
is a major stumbling block. These systems also require a
certain level of electronics integration which is beyond the
capabilities of most K-12 classroom setups. These issues
were addressed successfully with the introduction of the
XBC controller [4] in 2005. The XBC incorporated a Nin-
tendo GBA, allowing the buttons and graphical display to be
used as the UI hardware. A more detailed review of robot
controllers suitable for K-20 use can be found in [5].

While the XBC provided a significant improvement in
the user interface compared to previous controllers, the
incorporation of the GBA led to some unforeseen difficulties:
1) the nature of the interface between the DAQ board and the
GBA was a significant failure point and also an opportunity
for static damage to the FPGA used in the XBC; 2) the XBC
was tied to the availability of the GBA – a product that was
discontinued by Nintendo shortly after the introduction of
the XBC.

II. THE CBC2/KISS-C SYSTEM

The CBC2/KISS-C system is a new hardware/software
system developed for general robotics use. It is a succes-
sor for two earlier hardware/software systems, the Handy-
Board/IC system [2] and the XBC/IC system [4], both of
which have been used extensively by the KISS Institute
for Practical Robotics (KIPR) in support of its educational
robotics programs [6][7]. The XBC controller was an upward
compatible replacement for the HandyBoard, providing a
number of enhancements and employing an enhanced version
of the Interactive C (IC) software. The CBC2 is a robotics
controller that is a replacement for the XBC, maintaining
upward compatibility for motor and sensor technology, while
adding new functionality and capability. KISS-C is a replace-
ment for IC, using an IDE similar to the one embedded
in IC, but providing the full capability of ANSI C. A
preliminary version of the CBC was used in the 2009 Botball
season. Based on feedback from hundreds of users, the CBC

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 4633

Fig. 1. The CBC2 Robot Controller, front & back

Fig. 2. CBC2 cut away view

hardware and software was redesigned, and the CBC2 (Fig
1) is now available for Botball and general use.

The remainder of this paper will go over the CBC2 hard-
ware, software development environment, and library. We
will also briefly discuss educational and other applications
for the CBC2/KISS-C system.

III. THE CBC2 HARDWARE

The CBC2 electronics consists of a motherboard, a break-
out board (BoB), a display/touchscreen and a battery. The
subsections below describe how this is packaged and the
design of the break-out board. The motherboard has been
fully documented in [8] and was also used in the original
Chumby[9].

A. Mechanics

The CBC2 is housed in a durable, two part injection
molded plastic case (Figure 2). The top half of the case
houses the screen bezel, touch screen, and motherboard.
Those components are held to the top half of the case
with screws. The motherboard plugs into the BoB via an
11x2 header – providing connections for a two-wire interface
(TWI), SPI bus, two external USB ports, power and sound.
A flex cable is used to connect the motherboard to a 1GB
flash disk which is in an internal USB socket on the BoB.
The bottom half of the case houses a lithium polymer (LiPo)
battery pack and speaker. The two halves of the case screw
together encapsulating the BoB and providing support for
the ports on the back. The sensor ports, motor ports, servo
ports, a software accessible button, and a power switch are
exposed in the front of the CBC2 just below the touch screen
and supported by the bottom half of the case (see top part
of Fig 5).

B. The BoB

The Breakout Board (BoB) is responsible for all actuator
and sensor I/O, supervising battery health, and communicat-
ing this shared data with the motherboard. An Atmel ARM7
32 bit MCU running at 48 MHz is the foundation the BoB
is built on. The ARM7 was selected because of its speed,
availability, and wide range of embedded communication and
I/O ports, including 16 10-bit ADCs. Below is a list of the
exposed port connections on the BoB.

• 8 digital
• 8 analog
• 4 motor with back-emf
• 4 standard hobby servo
• 3.3V serial
• USB
• TWI
• SPI
1) communication: Multiple communication protocols are

used to send and receive data from the ARM7 to various parts
of the BoB. The BoB and motherboard communicate through
an SPI bus on the motherboard connection header. A USB
B port and a 3.3 volt serial port are located across the back
of the BoB. Both of these ports are connected to separate
UART controllers on the ARM7 chip. The remaining USB
A ports pass directly to the motherboard connection header.
The accelerometers are connected to the ARM7 through a
two wire interface (TWI) bus. For expansion and debugging
purposes the lines of the TWI are easily accessible through
a three pin connector on the BoB.

2) sensors: External digital and analog sensors may
be connected through a three pin (signal, power, ground)
connection on the exposed end of the BoB. Eight digital
input/output ports and eight analog input ports are available.
The power rail on the I/O ports can be set at 3.3 or 5
volts for all ports through a jumper. All digital ports have
a software selectable 47kΩ pull-up resistor and are 5 volt
tolerant inputs. Each analog port has 10 bit resolution and a
software selectable 12kΩ pull-up resistor.

Internal sensing: battery voltage, acceleration and motor
feedback, is done through 8 ADCs located on the ARM7
chip. The BoB includes a three axis accelerometer with set
at ±2g’s and 8 bit resolution.

3) charging circuit: A 7.4 volt lithium polymer (LiPO)
battery supplies power for both the BoB and motherboard
through the motherboard connection header. At full charge
the 2000 milliamp hour battery is capable of running the
system minus any external actuators for over six hours. A
Texas Instruments charge controller specifically designed for
LiPO battery packs requires about three hours to replenish
power. For fully discharged batteries the controller precon-
ditions the pack before entering full charge mode. A charge
is completed when the controller senses rapid increases in
battery temperature, if the cell voltage is greater than a
predefined threshold, or if the three hour timer has runout.
The charger checks the battery state every few minutes when
in trickle mode and will reinitiate charging if the battery

4634

falls below the nominal charged voltage. The battery state is
displayed on the BoB through two colored LEDs which can
turn on, off or flash giving six distinct battery/charge states.

4) actuator circuitry: Motor and servo power are directly
connected to the battery. Each motor port is capable of
supplying up to 2 amps of current through easily replaceable
socket mounted H-bridges on the bottom of the board. Motor
ports can be controlled directly by varying the duty cycle of
the PWM signal sent to each motor or through closed loop
PID control using back-emf [10].

Measuring the back electromotive force to obtain closed
loop motor control was selected for two reasons. First it does
not require any external hardware to sense motor position.
Second it has an acceptable degree of accuracy and precision
when compared with the typical motors used. The back-emf
circuitry is based on the XBC [4], the electromotive voltage
from the motor is read with the 10 bit ADC. This voltage is
proportional to the rotational speed the motor is spinning at.
The integral of speed over the time increment between mea-
surements is taken to obtain the motors rotational position.
Each motor has an associated 32 bit position counter updated
prior to calculating the PID control. The motor control loop
and all sensors are updated at 100Hz. The PID gains are
tuned for modified hobby servo motors but are accessible
through software and can be changed on the fly.

IV. CBC2 SOFTWARE

Programming the CBC2 involves writing C code in the
KISS-C IDE. The code can be simulated on the user’s
PC, since it is standard C code, and there are simulator
versions of all of the custom libraries. The source code
is then downloaded (via USB) to the CBC2, where it is
compiled using the native GCC compiler. The user then
interacts through the CBC2 UI to run the code, interact with
the user programs, view sensor data or set parameters for the
vision system.

A. KISS-C IDE

The KISS-C IDE is based on Qt [11] and QScintilla [12].
Qt provides a powerful set of tools for cross-platform UI
devlopment, and QScintilla provides a text editing widget
that provides syntax highlighting, auto indenting, and tool
tip support. These are combined into a pluggable system that
allows a software developer to write simple plugins that add
features such as compiler support and hardware support for
robotics controllers. The plugin provided with the CBC2 has
features for compiling, simulating, and downloading code to
the CBC.

Compiling code is a simple process utilizing GNU’s GCC
compiler in Linux, Apple’s GCC compiler on OS X, and
MinGW’s port of GCC on Windows. GCC was chosen be-
cause it is open-source, widely available, and ANSI standards
compliant. A compatibility library is provided so that any
program that is intended to run on the CBC2 will simulate
properly on a user’s computer. This compatibility layer relies
on GLFW, a library that was intended to make a simple cross-
platform api available for the purpose of opening an OpenGL

Fig. 3. The CBC2 console screen with buttons

window, capturing user input, and supporting multi-threading
across all platforms.

The CBC2 simulator simply compiles the code and runs
it on the user’s computer. For standard programs that do
not make use of any of the CBC2’s special features, this
is straightforward. For programs that try to access any of
the CBC2’s sensor ports, or perform motor control, servo
control, send serial messages or make use of the CBC2 touch
screen, the CBC2 simulation library comes into play. The
CBC2 simulation functions access a graphical window that
displays the status of the CBC2’s input and output ports
(see the right edge of Figure 8). The simulator is written
in C and makes use of a 2D graphics library (based on
OpenGL) which is included with KISS-C. To simulate the
buttons on the CBC2 UI, an unbuffered keystroke function
is used. The four arrow keys, A and B keys are used to
represent the corresponding touch screen buttons accessible
from the CBC2 console window (Figure 3). The period key
is used to simulate the CBC2’s one physical push button.
The mouse can be used to move sliders to set the values
of the various analog ports and accelerometer channels. The
8-5 keys are used to toggle the state of digital ports eight
to fifteen. The simulator runs in a separate thread that is
initiated automatically by KISS-C. No changes to user code
are needed between running it on the simulator and running
it on the CBC2 hardware.

Downloading code requires a serial port, which can be
selected when KISS-C is started or selected later on. The
download includes code in the user’s current window and
any code added through an #include statement. The code
is then compiled on the CBC2, normally error free, but if any
errors were missed in compiling on the user’s computer, they
are displayed on the CBC2’s screen. It is intended that any
code that runs in the simulator will download to the board
and run (hopefully) the same way on the CBC2 with one
caveat; users’ computers vary widely in processing power,
potentially producing timing induced differences in program
behavior on the CBC2.

KISS-C’s plugin system provides an API for adding ca-
pabilities to the basic editor. This means plugins for Java,

4635

Fig. 4. The CBC2 main menu screen

Ruby, Python, etc. could all be developed for this system
with the eventual goal that software could be written for the
CBC2 in a variety of languages.

B. The CBC2 UI

The CBC2 UI provides an interface for compiling and
running programs, checking sensor values, and configuring
the camera parameters, relying heavily on Qt/Embedded and
Tslib. Qt/Embedded provides the user interface functionality,
while Tslib provides the underlying touch screen library.

After the CBC2 has booted, a main menu screen appears
(Figure 4). The user can then select a variety of other
screens. The vision screen is described in Section IV-D.
The console screen (Figure 3) is used to display program
output and to access program readable buttons. The Program
screen is brought up when a program is downloaded and
displays compiler messages. It also provides access to the file
system, including USB mounts. The Sensor screen (Figure
5) displays the current values for the different sensor ports as
well as BEMF data for the motor ports. The screen is updated
at about 10Hz. In addition, the CBC2 can also display values
from up to three sensors (any of the sixteen external sensor
ports plus the three accelerometer channels) in oscilloscope
mode. The screen shots in Figure 6 demonstrate this display
mode.

When the UI loads, it starts internal services to handle
internal and serial communications. In particular, serial com-
munications use data compression and streaming capabilities
provided by Qt, allowing for more cross-platform compati-
bility, as well as simpler and more robust software.

C. CBC2 Firmware & User Hook

The CBC2 software upgrade process provides a method
for re-loading or upgrading the software for each of the two
ARM processors in the CBC2. For the BoB, the CBC2 is
powered on while holding down the black button. This turns
on all of the motor LEDs and puts the BoB processor in a
special mode. A simple serial application is run on the user’s
computer, connected via USB to the CBC2 USB-B port. This

Fig. 5. The CBC2 ports and sensor display screen

Fig. 6. Two screen shots from the CBC displaying data in the oscilloscope
mode

installs the new firmware on the BoB. The process takes only
a few seconds.

The software upgrade process for the motherboard uses
hooks provided by Chumby in their boot scripts that allow
external scripts to be loaded in place of the standard Chumby
scripts via an external USB flash drive. Because of the large
size of the upgrade files for the motherboard (the upgrade
includes LINUX and the GCC tool chain) the upgrade
is performed via flash drive rather than through a serial
connection, which would take substantially longer.

4636

Fig. 7. Color track information, with orange being tracked (right)

A script placed on the internal psp partition will run ahead
of the USB subsystem, and is loaded as the boot script for
the CBC2 in place of the Chumby boot script. When the
script runs, it searches for an external drive for which it can
mount a FAT32 partition. If found, it does so and checks to
see if it has a ”userhook0” file at root level in which case
the upgrade process proceeds. Otherwise the script proceeds
to a normal CBC2 boot.

D. Color vision system

The CBC2 contains two USB-A ports in the back. One
of the expected uses of these ports is to connect to a USB
webcam in order to perform visual color tracking. The CBC2
uses a modified 6282 camera driver pulling images off in
QQGVA: 160× 120 format.

The images are then processed, marking pixels that match
any of the four user selected portions of HSV color space.
The marked pixels are grouped into blobs, and statistics on
each of the blobs (centroid, boundaries, size, axis orientation,
etc) are computed. More details on the algorithm can be
found in [13] and [4].

The vision system UI makes extensive use of the touch
screen interface. Figure 7 shows the UI when the camera
is looking at a scene. The buttons to the left of the image
specify either the raw image; the image where the pixels that
match the selected part of the HSV space are highlighted,
or, as in Figure 7, the blobs that match have markings
superimposed showing the centroid being tracked and the
bounding box for that blob.

The buttons to the right of the image allow the user to
select which of the four color channels they wish to view
or adjust. The ten largest blobs for each of the four color
channels are tracked simultaneously.

The lower half of the screen is used to adjust the portion
of color space selected for the color channel being adjusted.
On the left are buttons for selecting the top left and the
bottom right corners of the selection box (the white rectangle
that covers part of the red/orange color space in Figure 7).
The four buttons to the right of the color space map are
for moving the selected corner of the color space selection
box. Extending the box to the right selects pixels that are
in shadow, while moving the box to the right accepts more
poorly saturated pixels. Up and down change the hue that is
being selected. Exiting the screen saves the values to flash,
so that the color selections are preserved through rebooting
the CBC.

E. The CBC2 User Library

In addition to the standard C libraries, the KISS-C IDE
automatically loads a user library to provide user access to
the capabilities of the CBC. These include, but are not limited
to:

• Virtual sensors in the form of soft controls on the CBC2
touch screen

• Integrated hardware sensors (touch and accelerometer)
• Vision system for web camera
• Digital I/O ports
• Fixed and floating (open collector) analog ports includ-

ing functions for specialized sensors such as sonar
• DC motor ports with PID control using back EMF and

PWM
• Servo motor ports

Insofar as possible, KISS-C library functions correspond to
those provided in IC for the XBC. In particular, a console
screen (Figure 3) implemented on the CBC2 provides as
virtual sensors the programmable physical buttons present
on the XBC for upward compatibility of code.

KISS-C library functions for digital I/O provide the ability
to use the 8 digital ports on the CBC2 to either send or
receive 0/ + 5V signals, enabling control of solid state
relays among other possibilities. Since there are both fixed
and floating analog ports the library functions for accessing
analog ports work for a variety of analog devices such as
common light sensors and the Sharp IR range finder [14].

The KISS-C library includes a selection of functions
for controlling DC motors. The majority of these are for
taking advantage of the CBC2’s back-emf PID motor control
capabilities, but also allow full access to the underlying
PWM motor control.

KISS-C library functions specific to servo motors are used
to enable/disable the CBC2’s servo ports, preset a servo, or
move a servo to any position within approximately 180o of
travel.

Since the CBC2 is a good choice of controller for the
iRobot Create module, the KISS-C library also has an
extensive set of functions [15] to facilitate utilization of the
Create open interface [16]. Additionally, the KISS-C IDE
includes a companion simulator to the CBC2 simulator which
implements the Create movement commands (Figure 8) or
a differentially driven robot built with motors connected to
motor ports 0 & 3. Touch sensors and reflection sensors are
built into the robot simulations. printf statements output
to the scrolling window at the bottom (which, like the CBC
console, has nine lines of output). Code written and tested on
the simulator can be used on the CBC2 without adjustment
to operate a Create module.

V. SUMMARY & APPLICATION AREAS FOR THE
CBC/KISS-C SYSTEM

The CBC/KISS-C system for robot control addresses a
number of shortcomings of its predecessors. The CBC2
controller is ergonomically impressive and not just because
of its well lighted touch screen. It fits comfortably in one’s

4637

Fig. 8. The combined Create and CBC2 simulator; the programming being
simulated drives the robot in an expanding spiral path until a black mark
is detected under the robot by one of its reflectance/cliff sensors. The user
can turn off an on a pen attached to the center of the simulated robot –
which here shows the spiral path taken by the robot in search of a black
marking on the ground.

hand, yet has multiple mounting holes on its bottom (Lego
spacing). Its motor and sensor ports are logically arranged
and are accessible without excess exposure. It’s serial and
USB ports are located so as to not become tangled with
motor and sensor ports. With embedded Linux and reloadable
firmware, it is a complete package, nicely complemented by
the KISS-C IDE, which provides a rich library specific to
the CBC, an integrated simulator, and everything one finds
with a GCC compiler.

The CBC/KISS-C system is well-suited for a collegiate
robotics lab, especially if paired with the iRobot Create
module. It fits comfortably in the Create’s cargo bay, in
particular, and has a serial port voltage compatible with the
Create. Since the CBC2 is already socketed for Wi-Fi, it
would be an interesting project to implement a swarm of
Creates operated by CBCs. It can also function as a multi
channel data-logger, writing the data to the internal flash or
an external memory stick.

The CBC2 was adopted for the 2010 Botball program, and
so is being used by thousands of middle and high school
students in hundreds of robots of their design (Figure 9).
A future paper will report on their experiences, and our
continued experiences with the CBC. We hope to find that
the combination of ease of use while teaching and leveraging
the power of standard OSes and programming languages will
allow the CBC2 to have a more substantial positive impact
on engineering education than those of its predecessors.

Fig. 9. Two CBC2 controlled robots in a Botball regional tournament

ACKNOWLEDGEMENTS

The authors wish to thank Mary Jungman, Henry Groover
& bunnie at Chumby Industries for their technical support;
Anne Wright & Randy Sargent for their help on the vision
system and other areas; The students, teachers and instructors
who used the CBC and provided testing data and user
feedback; we also wish to thank the staff and management
of KIPR for their support of the CBC project.

REFERENCES

[1] 6.270 Organizers, “The history of 6.270 - mit’s autonomous robot
design competition,” 2005. [Online]. Available: http://spacecats.mit.
edu/∼6.270/about/history.shtml

[2] F. Martin, “The handy board,” 2002. [Online]. Available: http:
//www.handyboard.com/techdocs/

[3] Engineering Trends, “No growth in interest of us citizens for obtaining
engineering degrees,” Engineering Trends, Tech. Rep. 0907A,
September 2007. [Online]. Available: http://www.engineeringtrends.
org/IEE/0907A.php

[4] R. LeGrand, K. Machulis, D. P. Miller, R. Sargent, and A. Wright,
“The XBC: a modern low-cost mobile robot controller,” in Proceedings
of IROS 2005. IEEE Press, August 2005.

[5] D. P. Miller, I. R. Nourbakhsh, and R. Siegwart, “Robots for educa-
tion,” in Springer Handbook of Robotics, B. Siciliano and O. Khatib,
Eds. Springer, 2008, ch. 55.

[6] C. Stein and D. Hartz, “The little robot tournament that could,” in
2003 ASEE Annual Conference & Exposition: Staying in Tune with
Engineering Education. ASEE, June 2003.

[7] D. P. Miller and C. Winton, “Botball kit for teaching engineering
computing,” in Proceedings of the ASEE National Conference.
ASEE, June 2004. [Online]. Available: http://www.kipr.org/papers/
asee04-botballkit.pdf

[8] Chumby Industries. (2007) Complete schematics and layout for
the chumby core unit with cross-references. [Online]. Available:
http://files.chumby.com/hdwedocs/Rev37 release.pdf

[9] ——, “Chumby,” 2010. [Online]. Available: http://www.chumby.com/
pages/learn overview

[10] S. Richards. (2006) Back-EMF. [Online]. Available: http://www.
acroname.com/robotics/info/articles/back-emf/back-emf.html

[11] QT Software, “Qt - a cross-platform application and ui development
framework,” 2009. [Online]. Available: http://www.qtsoftware.com/

[12] Riverbank, “QScintilla,” 2008. [Online]. Available: http://www.
riverbankcomputing.com/software/qscintilla/

[13] Newton Research Labs, “Cognachrome vision system,” 2001. [Online].
Available: http://www.newtonlabs.com/cognachrome/index.html

[14] J. C. Zufferey, “Sharp gp2d12,” April 2001. [Online]. Available:
http://dmtwww.epfl.ch/∼jzuffere/SharpGP2D12 E.html

[15] D. P. Miller, “Quick and easy way to add vision to your irobot
create or roomba,” 2007. [Online]. Available: http://i-borg.engr.ou.
edu/∼dmiller/create/

[16] iRobot Corporation, “iRobot create open interface,” 2007. [Online].
Available: http://www.irobot.com/filelibrary/create/Create%20Open%
20Interface v2.pdf

4638

