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Abstract— This paper is motivated by the real world problem
of search and rescue by unmanned aerial vehicles (UAVs). We
consider the problem of tracking a static target from a bird’s-
eye view camera mounted to the underside of a quadrotor UAV.
We begin by proposing a target detection algorithm, which we
then execute on a collection of video frames acquired from
four different experiments. We show how the efficacy of the
target detection algorithm changes as a function of altitude.
We summarise this efficacy into a table which we denote the
observation model. We then run the target detection algorithm
on a sequence of video frames and use parameters from the
observation model to update a recursive Bayesian estimator.
The estimator keeps track of the probability that a target
is currently in view of the camera, which we refer to more
simply as target presence. Between each target detection event
the UAV changes position and so the sensing region changes.
Under certain assumptions regarding the movement of the UAV,
the proportion of new information may be approximated to a
value, which we then use to weight the prior in each iteration
of the estimator. Through a series of experiments we show how
the value of the prior for unseen regions, the altitude of the
UAV and the camera sampling rate affect the accuracy of the
estimator. Our results indicate that there is no single optimal
sampling rate for all tested scenarios. We also show how the
prior may be used as a mechanism for tuning the estimator
according to whether a high false positive or high false negative
probability is preferable.

Index Terms— UAV, vision, target detection, sensing

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are typically commis-

sioned for tasks that are perceived as too dull or dangerous

for a human pilot to carry out [13]. In the past, research

involving UAVs was constrained by large and expensive

flight platforms which offered greater payloads. However,

recent advances in embedded computing and sensors have

made small, low-cost autonomous systems accessible to the

broader research community.

In this paper we consider a single UAV with a bird’s-

eye view video camera, which it uses to sense the world

beneath it. Computer vision is an active research field that

has already seen various applications to UAVs, such as

navigation [12], stabilisation and localisation [11], feature

tracking [7], SLAM [5], collision avoidance [15] and au-

tonomous landing [3]. The work in this paper was inspired

by Mondragon et al [7] who use vision-based target tracking

This work was supported by the SUAAVE project. Further information
about this project can be found at http://www.suaave.org.

Andrew Symington, Niki Trigoni and Sonia Waharte are with the Oxford
University Computing Laboratory, Wolfson Building, Oxford, OX1 3QD,
UK. niki.trigoni@comlab.ox.ac.uk

Simon Julier is with the Department of Computer Science, Uni-
versity College London, Malet Place, London, WC1E 6BT, UK.
s.julier@cs.ucl.ac.uk

to estimate the velocity of the UAV relative to a global visual

reference frame. In this work we adopt a similar vision-

based algorithm, except we use it to track whether or not a

particular target is in view of the camera. We then measure

the effect of the altitude of the UAV and the frame rate of

the camera on the accuracy of the tracker over time.

We begin by proposing a target detection algorithm that

acts as a binary classifier or, put more simply, it determines

whether or not a target object exists in a video frame. One

would expect that the efficacy of such a classifier varies

according to the physical appearance of the target, camera

resolution, lighting conditions, etc. However, in our work

we will assume that these factors remain constant and the

efficacy is simply a function of the UAV’s altitude: the further

the camera from the target, the less information is available

to the target detection algorithm, which causes it to miss

targets. To this end, we run the target detection algorithm on

a series of video frames and tabulate its efficacy as a function

of altitude, which we denote the observation model.

The target detection algorithm treats each frame indepen-

dently and so we therefore introduce a recursive Bayesian

estimator to fuse a series of noise-affected detection events

(observations) over time. The estimator takes this series to

track the probability of target presence (whether the target

is in view of the camera), taking into account the efficacy

of the target detection algorithm at the current altitude. The

values it uses to quantify this efficacy are drawn directly from

the observation model. Our estimator also takes into account

the fact that the camera view changes over time. Under

certain assumptions regarding the movement of the UAV, the

proportion of new information is given by the sampling rate

of the detector. We therefore introduce a term that decays

the estimate according to the proportion of new information,

which we call the exploration ratio, that is added between

successive observations.

The remainder of this paper is organised as follows. In

Section II we describe the series of experiments that were

conducted to obtain the video data used in this paper and

show the post-processing steps that we followed to label

the images with a ground truth. In Section III we begin by

describing the target detection algorithm. We then measure

the efficacy of this algorithm against a set of images in

order to construct the observation model. In Section IV we

firstly show the methodology behind the calculation of the

exploration ratio for our UAV platform and then introduce the

recursive Bayesian estimator. In Section V we first measure

the accuracy of our estimator by comparing the probability

of target presence against the ground truth over time, varying

the UAV altitude, sampling rate and prior. We then comment
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on our findings. Section VI concludes this paper.

II. DATA ACQUISITION AND PREPARATION

In this section we discuss how our video data was acquired

and then prepared for use by the target detection algorithm.

A. Acquisition

In order to obtain video data used in this paper we fixed a

FlyCamOne2 video camera to the underside of an Ascending

Technologies Hummingbird quadrotor UAV. A number of

targets were positioned in a 20m× 20m grid on a flat grass

field. We flew the UAV over the grid at fixed altitudes of

5m, 10m, 15m and 20m. In addition to capturing video data

at 27 frames per second, the UAV also recorded GPS and

inertial data at around 10Hz. We found that the human target

depicted in Fig. 2 consistently yielded a sufficient amount of

information to train an effective target detection algorithm,

so we used it as the target in our model.

B. Preparation

The first objective of data preparation is to isolate a set

of example video frames that we will use to train the target

detection algorithm. Each of these video frames must contain

an unoccluded example image of the target. We draw a

rectangle around the target and only the information within

that rectangle is used to train the target detection algorithm.

For our data set we used ten such frames for each altitude.

These frames constitute the training set, while the remainder

constitute the evaluation set.

The second objective is to label each frame in the evalua-

tion set with a ground truth. The ground truth is effectively a

binary flag which tell us whether the frame contains either (i)

some or all of the target, or (ii) none of the target at all. The

efficacy of the target detection algorithm will be measured

by comparing the result of the detector against the ground

truth, for all frames in the evaluation set.

III. TARGET DETECTION

This section begins by describing the target detection

algorithm that we used. Our goal is not to present a novel and

provably superior algorithm, but rather to leverage existing

techniques to create a realistic system, which we can use to

generate meaningful results. In essence, one could use an

alternate method such as Viola and Jones’s [14] boosting

to achieve exactly the same outcome, perhaps with a greater

accuracy. However, regardless of the algorithm that is chosen,

it will act as a binary classifier for unseen images. It the

second part of this section we show how to measure the

efficacy of the target detection algorithm and summarise it

in the form of an observation model, which we will then use

in the next section to update our belief of target presence.

A. The target detection algorithm

For our application we require a target detection algorithm

that determines whether or not a single image contains an

instance of the target. In order to achieve this we use Bay,

Tuytelaars and Van Gool’s [1] Speeded-up Robust Features

Fig. 1. This diagram provides a high-level summary of the target detection
algorithm and the method by which it was evaluated. Recall that the video
frames are split into a training set and evaluation set. For each frame
in the evaluation set, the target detection algorithm loops through the
template example and determines whether it contains the target object: the
algorithm uses SURF keypoint matching with FLANN to find the most
likely homographic projection of the training image into the evaluation
image. The result of the target detection algorithm is compared to the ground
truth label to form the observation model.

(SURF)1. The features produced by SURF are, essentially,

keypoints on a 2D image that are robust to slight changes

in scale, rotation and perspective. Each SURF keypoint has

an associated multidimensional descriptor2 that characterises

the grayscale image gradient in the region surrounding the

keypoint. The similarity between two keypoints is calculated

by measuring the distance between their descriptors with

the n-dimensional Euclidean metric. The Hessian determi-

nant threshold governs the sensitivity of the SURF detector

and, hence, the number of features that are returned. We

determined empirically that a threshold of 500 culled many

of the weaker (and often background) keypoints, while

maintaining an acceptable number of keypoints on objects

at high altitudes.

Recall that in the previous section we divided all the video

frames in our data set into a training set and an evaluation

set. For clarity, let us assume that we are working with the

data from one altitude only. Now, assume that we are given

some arbitrary image which might or might not contain the

target, or part of a target. We refer to this as the unseen

image. The target detection algorithm simply loops over all

images in the training set and attempts to locate each one

of these images within the unseen image. If a location is

1The algorithm that we implemented is based on the find obj.cpp sample
code in the OpenCV pre-2.0 distribution.

2Usually a 64 or 128 double vector, depending on the required resolution.
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found for any of the training images the algorithm returns

a positive detection event, which signals that the target was

found. Otherwise, a negative detection event is returned.

What remains to be explained is how the training image is

located in an unseen image. This is where the SURF features

are used. The detection algorithm begins by calculating the

SURF keypoints for both images. The aim is to find a

correspondence between the keypoints in the training image

and the keypoints in the unseen image. In order to do

so the Fast Library for Approximate Nearest Neighbors

(FLANN) [8] algorithm is used. This algorithm provides a

fast approximation to k nearest-neighbour classification. The

result being that each keypoint in the unseen image is paired

with its closest keypoint in the training image. Recall that

the similarity of two keypoints is calculated by measuring

the distance between their two associated SURF descriptors.

In the next stage of the detection phase we remove all

of the weak correspondences. Weak correspondences usually

occur when some keypoint located on the background clutter

in the unseen image is incorrectly paired with a keypoint

in the training image; FLANN always maps to the nearest

neighbour, regardless of the distance to it. The intuitive way

to do this would be to threshold the correspondences based

on the distance between each pair of keypoints. In practice,

this heuristic fails. A superior approach involves thresholding

based on the distance ratio between each kepyoint in the

unseen image and its two closest matching neighbours. That

is, if the ratio of the distances between the two closest

matches is greater than some threshold we cull the correspon-

dence — the idea being that if one keypoint in the unseen

image maps to two keypoints in the template image with

equal strength, it is unlikely that it describes some particular

feature uniquely [6]. Rather, it is more likely that the feature

is background clutter being arbitrarily mapped to close

neighbours in descriptor space. Ramisa et al [10] discuss the

selection of this threshold for a variety of keypoint detectors.

Their research shows that good results are typically obtained

for SURF using a threshold between 0.6 and 0.8. Through

experimentation we found that a value of 0.6 was best for

our application: many background keypoints were discarded,

while meaningful keypoints were preserved.

Finally, the correspondence set is passed to the RANdom

SAmple Consensus (RANSAC) [4] algorithm, which deter-

mines the most likely projection of the template image into

the unseen image, given the presence of some statistical

outliers. Figure 2 illustrates this process – it shows the

correspondence set as a collection of white lines connecting

the template image keypoints to the unseen image keypoints.

The projection is shown as a bounding polygon in the scene.

If the RANSAC algorithm finds a projection and it has

greater than five correspondences we assume that the scene

contains the target. Through experimentation we found that

if the threshold is set any lower the target detection algorithm

returns significantly more false detections at lower altitudes.

Conversely, if we set the threshold any higher, the target

detection shows significantly more false negatives occur at

higher altitudes.

Fig. 2. At the top left of this figure is an example training image and
beneath it is an unseen image containing the target. SURF keypoints for
both the target image and scene are calculated. FLANN is used to find
mappings from keypoints in the unseen image to keypoints in the template
image (shown as lines in the figure). For clarity, we have not drawn any
weak mappings – those which have a distance ratio above the threshold.
The RANSAC algorithm uses the mappings to calculate the most likely
projection of the training image into the unseen image (shown as a polygon).

B. Observation model

The performance of a machine learning algorithm is

measured by counting the number of true positives (TP), true

negatives (TN), false positives (FP) and false negatives (FN).

For a binary classifier these values are typically expressed in

the form of a 2x2 confusion matrix [9].

To evaluate the performance of the target detection al-

gorithm we executed it on every frame in the evaluation

set and compared the detection result to the ground truth.

If the target detection algorithm agreed with the ground

truth, we incremented the TP and TN count for positive and

negative detection events respectively. If the target detection

algorithm detected a target incorrectly, the false positive

count was incremented. On the other hand, if the target

detection algorithm failed to detect a target that was there,

the false negative count was incremented. We repeated this

process for all four altitudes and the resultant confusion

matrix is listed in Table I.

The observation model is derived directly from the confu-

sion matrix. In essence, the observation model is simply the

false positive probability αh and false negative probability βh

as a function of the UAV’s altitude h. We calculate values

for αh and βh using Eqn. 1 and Eqn. 2 respectively. The
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values for our data set are also listed in Table I .

αh =
FP

(FP + TN)
(1)

βh =
FN

(FN + TP )
(2)

IV. RECURSIVE BAYESIAN ESTIMATOR

In this section we firstly describe how to measure the

amount of new information that is introduced between two

observations, which we call the exploration ratio. We then

present the recursive Bayesian estimator, which uses both

the exploration ratio and the observation model for a given

altitude to maintain a best estimate of target presence.

TABLE I

CONFUSION MATRICES AND OBSERVATION MODEL

Altitude Truth Detected Not Detected αh βh

5m
Present 88 24

0.24569 0.21428
Absent 685 2103

10m
Present 100 25

0.06286 0.20000
Absent 87 1296

15m
Present 516 258

0.03107 0.33333
Absent 38 1185

20m
Present 571 302

0.00130 0.34593
Absent 2 1526

A. Calculating the exploration ratio

The role of the exploration ratio is to measure the

proportion of new information that is introduced at each

observation, resulting from the movement of the UAV, as

a function of the UAV’s altitude and the sampling rate of the

sensor. To simplify the calculation of the exploration ratio we

will make the following assumption regarding the movement

of the UAV: it always moves at a constant speed in a single

direction. Although one could use a more accurate method

that takes into account the attitude and velocity of the UAV,

for this initial study we use a simpler approximation.

Let xh and yh be the length and width of the camera

sensing region at some altitude h, all of which are given

in meters. Both xh and yh are related to one another

according to the aspect ratio of the camera. In Fig. 3 we show

the camera sensor coverage after the UAV displaces some

distance d as a result of moving in the specified direction.

The new, shared and lost areas are clearly marked in the

figure. The exploration ratio e is simply the ratio of new

area to entire observation area. In order to calculate this ratio

we’ll first need a value for d. The value for d is calculated

by dividing the constant velocity v of the UAV (in meters

per second) by the sampling rate r (in frames per second).

Eqn. 3 shows the full equation for calculating e.

e =
dxh

yhxh

(3)

=
v

ryh

(4)

Fig. 3. The coverage or observation region of the video camera sensor is
given by a rectangle of length x and width y. Between each observation
the UAV moves some small distance d and the observation region changes
accordingly. The ratio of new area (d × xh) over the total sensing area
(xh × yh) is referred to as the exploration ratio and it varies as a function
of altitude and sampling rate.

We determined the xh and yh value for each altitude in

our video data set using the one meter interval ticks on the

star-shaped calibration pattern that we laid on the ground.

The calibration pattern is clearly visible in the sample frame

shown in Fig. 2. We then measured the average velocity of

the UAV by integrating the acceleration readings from the

inertial data to determine a reasonable value for v, which

turned out to be slightly over one meter per second. Finally,

we calculated the e value for all combinations of the four

altitudes (5m, 10m, 15m and 20m) and sampling rates (1 ,5

and 10 frames per second) that we chose to test. The result

of our calculations are listed in Table II.

TABLE II

EXPLORATION RATIO FOR VARIOUS ALTITUDES AND SAMPLING RATES

Altitude h yh r = 1 FPS r = 5 FPS r = 10 FPS

5m 4m 0.250000 0.050000 0.025000

10m 7m 0.142857 0.028571 0.014286

15m 10m 0.100000 0.020000 0.010000

20m 13m 0.076923 0.015385 0.007692

B. The recursive Bayesian estimator

The role of the recursive Bayesian estimator is to take

a series of observations and maintain the the probability of

target presence. Moreover, the estimator takes into account

the fact that the camera view changes over time and also that

there is some error associated with the observation, both of

which vary with altitude.

The observation model parameters are the probability of

false positive and the probability of false negative, we defined

earlier as αh and βh respectively for some altitude h. Let us

assume that the camera sensor has an observation region

O (kt) which is visible from the camera when the UAV is

located at position kt at time t. Let xT represent the target.
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We use Chung’s [2] error model, where dt = 0 and dt = 1
denote negative and positive target detection events:

Prh(dt = 1|xT ∈ O
(

kt
)

) = 1− βh

Prh(dt = 0|xT ∈ O
(

kt
)

) = βh

Prh(dt = 0|xT 6∈ O
(

kt
)

) = 1− αh

Prh(dt = 1|xT 6∈ O
(

kt
)

) = αh

Let dt be the tth observation, Dt be the set of t observa-

tions and let xT = 1 be the event that a target exists in a

particular frame. The probability that the target is present in

the frame at time t is computed using Bayes rule:

Pr(xT = 1|Dt) =

Pr(dt|xT = 1)Pr(xT = 1|Dt−1)

Pr(dt|Dt−1)
(5)

The update equation for the recursive Bayesian estimator

is conditional on whether a positive or negative detection

event is encountered. Eqn. 6 shows this update equation.

Pt =

{

(1−βh)Pt−1

(1−βh)Pt−1+αh(1−Pt−1)
, if dt = 1

βhPt−1

βhPt−1+(1−αh)(1−Pt−1)
, if dt = 0

(6)

So far the estimator has implicitly assumed that the camera

view does not change between observations. However, since

the UAV is moving this is not the case. We therefore

introduce a state transition term to the estimator that takes

into account that a portion of the current frame contains

new information. The probability P0 represents our prior

belief of target presence for some unexplored region. In each

iteration the refactored prior, given in Eqn. 7, is a weighted

combination of the previous step’s posterior and P0.

Pt−1 ← eP0 + (1− e)Pt−1 (7)

This weighted update equation causes the estimate to

converge exponentially to P0 over time. This is useful for two

reasons. Firstly, it takes into account the fact that the camera

changes position over time and, hence, objects may appear

and disappear from view. Secondly, it provides a method of

ensuring that the estimate never converges to zero or one

after a series of positive or negative detection events, which

happens as a result of the limited storage capacity of floating

point data types.

V. EXPERIMENTS AND RESULTS

We conducted a series of experiments in order to mea-

sure the effect of altitude, sampling rate and prior on the

performance of the estimator. We used real streams of

video frames, taken from four different altitudes (5m, 10m,

15m and 20m)3. For example, Fig. 4 shows the result of

running the Bayesian estimator on a video stream taken

from an altitude of 5m. If after an observation the posterior

probability of the estimator exceeds 0.5 (see the dashed line

in the bottom three graphs in Fig. 4) we consider this to be a

positive detection event. By comparing the ground truth with

3Recall that the accuracy of the target detection algorithm depends on
the altitude, as shown in Table I.

the estimator’s predictions, we can measure the probability

of the detector making a false positive prediction and that of

making a false negative prediction. We use these two metrics

to assess the estimator’s accuracy4.

The graphs in Fig. 5 show the accuracy of the estimator

when the altitude is 5m and 20m, and for different prior (P0)

values and sampling rates. Our first observation is that as the

prior increases, so the false positive probability increases,

whereas the false negative probability decreases. Our second

observation is that the lower the sampling rate, the higher

the exploration ratio, and thus the higher the impact of prior

on the false positive and false negative probabilities. These

two observations held for all four altitudes tested, although

not all graphs are included for space reasons.

Our third observation relates to the effect of altitude on

the two estimator metrics. When the altitude changes the

estimator uses a new set of parameters from the observation

model and a different exploration ratio. The effect of the

exploration ratio is relatively straightforward and we dis-

cussed it in the previous paragraph. However, the effect of

the observation model parameters is less obvious, despite

there being a general trend in the parameters themselves —

in Table I we see that αh and and βh decrease and increase

respectively with altitude. Moreover, any trend that might

exist may be further obfuscated by the fact that different

video sequences were used to evaluate the four different

altitudes. Therefore, we cannot draw any conclusive evidence

from our results that suggest a trend based on altitude.

Finally, our experimental results show that that there is no

best sampling rate for all scenarios. The optimal sampling

rate depends on the altitude, on the prior, as well as on

whether the application is more interested in reducing false

positives or false negatives.

VI. CONCLUSION AND FUTURE WORK

In this paper we use video data to train a target detection

algorithm and measure parameters for an observation model

that describes its efficacy. We then implemented a recursive

Bayesian estimator to fuse a series of detections over time,

taking into account the observation model and exploration

ratio associated with the altitude at which the observations

occur. Finally, we conducted a series of experiments to test

the impact of the prior, altitude and sampling rate on the

performance of the estimator, compared to the ground truth.

While our results show that sampling rate has a significant

effect on the estimator’s performance, it is clear that there

is no optimal sampling rate that fits all scenarios. The

prior should be chosen in conjunction with the application

requirements — in the case of search and rescue one would

seek to minimize the false negative probability, while for

situations where there are energy or resource constraints one

would seek to minimize the false positive probability.

In future work we plan to run the full estimator online. We

also plan to conduct a detailed study of how altitude affects

the performance of the estimator.

4These probabilities must not be confused with αh and βh, which
measure the accuracy of the target detection algorithm.
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Fig. 4. The top graph shows the ground truth for the video data captured at
5m. The three graphs below show the evolution of the probability of target
presence for the same altitude and period for 1 FPS, 5 FPS and 10 FPS.
The dashed line at 0.5 is the threshold for a positive detection.
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