
Boundary Detection Based on Supervised Learning

Kiho Kwak, Daniel F. Huber, Jeongsook Chae, and Takeo Kanade

Abstract— Detecting the boundaries of objects is a key step
in separating foreground objects from the background, which
is useful for robotics and computer vision applications, such
as object detection, recognition, and tracking. We propose a
new method for detecting object boundaries using planar laser
scanners (LIDARs) and, optionally, co-registered imagery. We
formulate boundary detection as a classification problem, in
which we estimate whether a boundary exists in the gap between
two consecutive range measurements. Features derived from
the LIDAR and imagery are used to train a support vector
machine (SVM) classifier to label pairs of range measurements
as boundary or non-boundary. We compare this approach to
an existing boundary detection algorithm that uses dynamically
adjusted thresholds. Experiments show that the new method
performs better even when only LIDAR features are used, and
additional improvement occurs when image-based features are
included, too. The new algorithm performs better on difficult
boundary cases, such as obliquely viewed objects.

I. INTRODUCTION

Boundary detection is a central problem in many robotics

and computer vision applications.It is a key step in seg-

menting an object from its background, which is known

as figure-ground segmentation. The ability to distinguish

a foreground object from the background in a scene can

simplify object detection and recognition, and is first step in

detecting, modeling, and tracking moving objects in a scene.

An object boundary occurs where one object occludes

another from the viewpoint of a sensor. Boundary detection

has been studied using static images [1], [2], [3], video [4],

[5], and LIDARs [6], [7], [8], [9]. Detecting boundaries is

difficult in static images because appearance may change

more dramatically within an object than at its boundary.

Video sequences can simplify the problem somewhat, since

motion artifacts can often be detected at depth discontinuities

as the sensor moves.

Three dimensional sensors, such as stereo vision or

LIDARs, offer a good alternative to monocular vision ap-

proaches for boundary detection. These sensors directly

estimate the distance to surfaces in the scene and therefore

have the potential to detect depth discontinuities that often

appear at object boundaries. LIDARs have the advantage,

with respect to stereo vision, of lower uncertainty and

reliable performance in untextured regions, generally at the

expense of lower angular resolution. However, even the

This work was supported by the Agency for Defense Development,
Republic of Korea.

Kiho Kwak, Daniel F. Huber, and Takeo Kanade are with Carnegie Mel-
lon University, Pittsburgh, PA 15213, USA {kkwak@cs.cmu.edu,
dhuber@ri.cmu.edu, tk@cs.cmu.edu}

Jeongsook Chae is with the Agency for Defense Development, Republic
of Korea aelibots@gmail.com

TABLE I

ANALYSIS OF THE POTENTIAL BENEFITS OF LIDAR INFORMATION AND

IMAGERY FOR EACH CHALLENGING BOUNDARY DETECTION CONDITION.

high-precision range measurements of laser scanners do not

trivially solve the boundary detection problem.

A common approach for detecting boundaries using range

data is to compute differences in the range of adjacent

measurements and to declare any range difference above

a given threshold to be an object boundary (see [7] for

an overview). While this simple thresholding approach can

work well for straightforward cases, it does not perform

as well in more challenging scenarios that occur frequently

enough to need addressing. For example, if two objects are

close together, they may be incorrectly classified as a single

object with no boundary between them. We have identified

a number of situations that are particularly challenging for

boundary detection: occlusions (which can break a single

object into multiple objects and create false boundaries)

obliquely viewed objects, transparent or translucent surfaces,

low-reflectance surfaces, objects that are close together,

porous objects (such as trees) and objects observed from long

distances. For each of these cases, we considered whether

the information from LIDAR could be helpful in detecting

such boundaries and also whether imagery could be helpful

(Table I). We observe that, while LIDAR can be helpful

in many cases, there are some situations where imagery

provides complimentary information.

In this paper, we investigate two questions regarding

boundary detection. First, can supervised machine learn-

ing techniques improve upon the performance of existing

threshold-based algorithms for boundary detection using

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 3939



LIDAR data? Second, can information derived from images

provide any additional benefit to LIDAR-only boundary

detection techniques? We focus on the problem of boundary

detection using a horizontally oriented, single line LIDAR

(e.g., SICK LMS291 or Hokuyo UTM-30LX). Single line

LIDARs are often used in mobile robot applications for

obstacle detection and moving object tracking, and are

also used in other applications, including factory safety

systems, surveillance, and mobile mapping. When a single

line LIDAR is mounted horizontally at an appropriate height,

the laser sweeps a horizontal arc, making measurements

at constant horizontal angular increments in a plane at an

approximately constant height above the ground.

We cast the problem of boundary detection as a classifica-

tion task. We consider the space between consecutive LIDAR

measurements, and predict whether an object boundary exists

within this region or not. Given a set of labeled local features

derived from the data, standard machine learning tools, such

as support vector machines (SVMs), are used to learn the

relationship between features computed from the data and

the boundary/non-boundary classification labels. The method

is fast enough to operate in real-time and straightforward to

implement. Furthermore, this framework is general enough

that features derived from imagery can be integrated directly

as well. The use of images assumes that the camera and the

LIDAR are approximately co-located to minimize parallax

between the sensors and requires that they are calibrated with

respect to one another.

We conducted experiments to evaluate this approach and

compared it with a state-of-the-art, threshold-based method.

Experiments show that the proposed method improves on

this existing boundary-labeling method, especially on the

more difficult cases, where the existing method performs

poorly. The addition of image-based features further im-

proves boundary detection performance.

The rest of this paper is organized as follows. The next

section describes previous research that is relevant to our

approach. Section 3 details our boundary classification al-

gorithm. Sections 4 and 5 outline the experimental setup

and experimental results respectively. Section 6 concludes

the paper and discusses our plans for future work.

II. RELATED WORK

There is relatively little research on explicitly detecting

object boundaries. However, the boundary detection problem

can be viewed as the dual of the more commonly studied

problem of segmentation, where the goal is to find all the

points (or pixels) belonging to a single object. Boundary de-

tection (or segmentation) algorithms can be broadly classified

based on whether they use range data or imagery.

The most common method for segmenting range data is

to use jump distance thresholds [6], [7], [8], [9]. Boundaries

are identified wherever the Euclidean distance between two

adjacent points is larger than a threshold. Arras [8] and

Spinello [9] observed that although fixed threshold methods

work well in indoor environments, they do not work as well

in outdoor environments due to the longer ranges involved

Fig. 1. The boundary detection problem in the framework of classification
(Nb: Non-boundary, B: boundary).

and more challenging conditions (e.g., scenarios described

in Table I). For example, if the threshold is chosen to be

large enough to cluster objects at long distances, then nearby

objects are not separated. To solve these problems, new

segmentation methods using more complex and adaptive

thresholds (typically a function of range) were developed

[6], [7]. While these methods address the problem of long

distance objects, they still have difficulty with challenging

scenarios in outdoor environments.

There has been recent interest in explicit boundary de-

tection using imagery and video. Recently, the Pb bound-

ary estimator [1] and follow-on research [3] have shown

promising results on still images. The initial method uses a

combination of image gradients and texture-based features

in a learning framework to estimate the probability of a

boundary existing at each pixel. In follow-on work, improved

boundary detection was achieved by combining the original

Pb estimator with a global estimate of boundary based on

normalized cuts.

Video can also be used to detect object boundaries. Stein

et al. [4], [5] use motion cues to estimate boundaries in an

over-segmentation of the images in a video sequence. The

combination of appearance and motion cues results in better

detection than appearance alone.

Algorithms that are similar in spirit to ours that learn

features from a combination of imagery and LIDAR have

been proposed as well [8], [9]. However, these methods are

designed for detection and classification of specific objects,

such as pedestrians, and, as a result, are not well-suited for

the general problem of boundary detection.

III. BOUNDARY DETECTION AS

CLASSIFICATION

We pose the boundary detection problem in the framework

of classification (Figure 1). A line-scanning LIDAR produces

a sequential series of range measurements with fixed angular

increments in polar coordinates. The boundary of an object

may lie at any point in this continuum, and, therefore, the

true location of the boundary is likely to lie at some position

between the measured rays. The classification task is to

determine whether an object boundary exists between two

consecutive range measurements.

If the scene is observed simultaneously with a camera,

then it is possible to calibrate the camera pose with respect to

3940



Fig. 2. LIDAR features description.

the LIDAR, which allows the range measurement points to be

projected onto the camera image. The centers of projection

of the camera and LIDAR need to be as close together

as possible to minimize the effects of parallax. Camera

image resolution is typically significantly higher than the

angular resolution of LIDARs, which means that the region

between two projected laser points will contain multiple

pixels. Consequently, information from image patches must

be aggregated. We use rectangular image patches surround-

ing the projected LIDAR points for computing image-based

features. Intuitively, if the image patches surrounding two

points belong to the same object, then the statistics of the

image patches are more likely to be similar than if they

belong to two different objects.

Evidence of a boundary existing between two LIDAR

points may be based on features derived from the range,

including distance between real returned points (except in-

tervening points with no return from the laser scanner, which

we refer to as ”no-return points”), range from origin to

mid-point, and surface orientation. Evidence of a boundary

between two points in an image is based on image tex-

ture features, histogram similarity, mean intensity, standard

deviation of intensity. The next two sub-sections describe,

the LIDAR-based and image-based features used in our

experiments in detail.

Given a set of features derived from the 3D and image

data, along with the ground truth labeling of whether a

boundary exists between each pair of LIDAR measurements,

we use standard machine learning techniques to train a clas-

sifier to correctly label novel data queries. We experimented

with several types of classifiers, including logistic regression

[10] and support vector machines (SVMs) with linear and

non-linear kernels [11].

A. LIDAR features

When a LIDAR returns consecutive range scan points

(pi, i = 1, . . . , n) in a full scan, each scanned point

can be defined as (ri, φi) in the polar coordinates and

as (xi = ricosφi, yisinφi) in the Cartesian coordinates.

The n denotes the number of scan points, including valid

Fig. 3. Left: Examples of image patches used for computing image-based
features. Right: Close-ups of some representative pairs of adjacent regions
from the left image.

and invalid scanned points in a full scan. A point is con-

sidered invalid if the sensor did not receive a return for

that measurement, which occurs, for example, when there

is no surface within the sensor’s range. In this paper, we

only consider the relation between valid range measurements

(pj , j = 1, . . . , nr), where nr is defined as the number of

valid returned points. The LIDAR features are defined as a

function (fj : Pj → R
m) that takes a pair of consecutive

valid points (Pj = (pj , pj+1), j = 1, . . . , (nr − 1)) and

returns an m-dimensional value (XL
j = (dj , lj , θj)

T , XL
j ∈

R
3). We define the following LIDAR-based features (refer

to Figure 2):

1) Distance between valid returned points (dj): This

feature is the Euclidean distance between points pj and pj+1

(j = 1, . . . , (nr − 1)) and is given by

dj = ‖pj − pj+1‖2
(1)

2) Range from origin to mid-point (lj): This feature

measures the range from the origin to the mid-point between

points pj and pj+1, which is given by

lj =

∥

∥

∥

∥

pj + pj+1

2

∥

∥

∥

∥

2

(2)

3) Angle between valid returned points (θj): This feature

is designed to measure the orientation of the surface with

respect to the viewing direction and is given by

θj = arctan

(

rj+1

rj sin φj

− cotφj

)

(3)

B. Image features

Each image feature is based on two rectangular regions,

Rj and Rj+1, extracted from image locations centered on

the projection of the LIDAR measurements, pk and pk+1

into the image (Figure 3). The image features are defined as

a function (fj : Pj → R
m) that takes a pair of consecutive

valid patches (Ij = (Rj , Rj+1), j = 1, . . . , (nr − 1)) and

returns a 3-dimensional value (XI
j = (hj , mj , sj)

T , XI
j ∈

R
3). In our experiments, the size (N) of each patch is 11 by

15 pixels.

1) Histogram intersection (hj) [12]: This feature measures

the similarity between two histograms computed over adja-

cent regions. This is calculated as

3941



hj =

∑

B min (Hj , Hj+1)
∑

B Hj

(4)

where Hj and Hj+1 are the histograms acquired from the

image patches Rj , Rj+1, and B is the number of bins in the

histogram. In our experiments, B is set to 16.

2) Difference of mean intensity of two patches (mj):

This feature measures the difference of average intensity of

adjacent patches

mj =
1

N

(

∑

m,n

(Rj (m, n) − Rj+1 (m, n))

)

(5)

3) Difference of standard deviation of two patches (sj):

This feature returns the difference of standard deviation of

the intensity of adjacent patches.

sj = σj − σj+1 (6)

where

σj =

√

1

N − 1

∑

m,n

(Rj(m, n) − µj)
2

(7)

µj is the mean intensity value of patch Rj . The value of

σj+1 is defined analogously.

IV. EXPERIMENTAL SETUP

For our experiments, a SICK LMS-221 LIDAR and a

PointGrey Flea2 camera were used to acquire the data sets.

The LIDAR has a 180 degree horizontal field of view, with

a line scanning frequency of 75 Hz and a 0.5 degree angular

resolution. The camera has a 60 degree horizontal field of

view, with a frame rate of 30 Hz and a resolution of 800 by

600 pixels. These sensors were mounted on front of a vehicle.

The LIDAR was placed at a height of 70 cm, and the camera

was installed 30 cm above the LIDAR. The data from each

sensor was time-stamped to enable synchronization.

We developed a procedure for calibrating a line scanner

with respect to image data. The intrinsic parameters of

the camera (e.g., focal length, optical center, pixel aspect

ratio, and skew) were computed using the matlab calibration

toolbox [13]. The procedure for estimating the extrinsic

parameters requires a small set of thin objects to be imaged

by the laser scanner and the camera. Furthermore, a device

for detecting the laser spot on the thin objects is needed, and

For our experiments, we use tripods for the thin objects, and

an infrared viewer to locate the laser spots on the tripod

legs. By using this method,a calibration of both sensors

has been achieved, which enables projecting LIDAR range

measurements onto the camera image.

The data for our experiments consists of sequences that

include walking and running people and moving vehicles

in different directions with respect to the stationary sensor

platform, as well as a number of non-moving vehicles and

other stationary objects. Data sets were collected during

daylight and in different environmental conditions − sunny

days and snowy days.

Fig. 4. An example of automatic classification of foreground and
background points (top), along with the corresponding images for reference
(bottom).

One of the important aspects of training a classifier is

to ensure that the input training data is not unduly biased.

In our case, a substantial percentage of the measurements

within each scan are identical from scan to scan. These

boundaries (and also non-boundary points) are part of the

non-moving background. If we were to include such points

from every scan in the training data, then the algorithm would

be biased toward these redundant measurements. Instead, we

identify the background regions in the training data and only

use these measurements once. The foreground data changes

sufficiently between scans, due to the changing position

relative to the background and the changing orientation of

the objects (e.g., car turning).

We implemented a simple background detection algorithm

to automatically identify the background in training data

based on a small sample of scans of each scene. The

algorithm assumes that the sensing platform is not moving,

but it is allowable to have some moving objects within the

scene. The algorithm measures the range in each scanning

direction (which is constant between scans), and accumulates

these ranges in a histogram for each scanning direction.

The most frequently occurring ranges above a threshold

in frequency are considered to be background points. The

remaining points are filtered to remove transient random

noise, which can occur due to various sensor artifacts and

environmental conditions (like snow), and any unfiltered

points are considered to belong to moving foreground objects

(Figure 4). The spaces between adjacent background points

are then manually labeled as boundary or non-boundary

using an interactive labeling tool.

Once the background is identified, new scans can be

labeled and divided into foreground and background au-

tomatically. Points are labeled as background if they fall

within a short distance from the background surface range

for the given scanning direction. Any remaining points

are filtered as described above, and the boundary between

foreground points and background points is implicit based

3942



Fig. 5. The performance comparison of three different classifiers. ROC
(top) and Precision/Recall (bottom) curves.

on this classification. Figure 4 shows an example of an

automatically labeled scan, along with the corresponding

imagery for reference.

Using this semi-automated method, we labeled data for

training and testing. In total, we labeled 4400 instances

− 1000 boundary and 1400 non-boundary instances from

outside the camera’s field of view (FOV) (LIDAR data only)

were used to compare the performance of three different

classifiers and 800 boundary and 1200 non-boundary in-

stances from within the camera’s FOV (image and LIDAR

data) were utilized for the other tests. The labeled data was

randomly split into three subsets: training (50%), holdout

(25%), and test sets (25%). Each algorithm was trained

using only the training data. The algorithms also had access

to the holdout data to guard against overfitting. The test-

ing data was kept sequestered. Once training is complete,

each algorithm was evaluated on the testing data, and its

performance was charted as a function of the classification

decision threshold. This experiment was conducted 10 times

with different randomly selected subsets of the available data.

To measure the average performance of the experiment, the

threshold averaging receiver operator characteristic (ROC)

curves and precision-recall (PR) curves proposed by [14]

were used. These two techniques are standard measures in

the classification literature and differ only slightly in their

definition. PR curves have the benefit that they are not as

biased by data imbalance as ROC curves. Data imbalance

occurs when there are significantly more examples of one

type than the other [15].

V. EXPERIMENTAL RESULTS

Using the framework described above, we performed a

series of experiments to evaluate the effectiveness of our

boundary detection approach. The experiments include: a) a

comparison of different types of classifiers; b) a comparison

of our algorithm with a state-of-the-art method that uses

dynamic jump distance thresholding; and c) a comparison

of our algorithm using LIDAR features, image features, and

a combination of LIDAR and image features.

A. Choice of classifier

We compared the performance of three different classi-

fiers: SVMs using a linear kernel, SVMs using an RBF

kernel, and logistic-regression. For the SVM classifier im-

plementation, we used LibSVM [16] and determined the

penalty parameter (C = 10) for the linear kernel SVM and

the penalty and kernel parameters (C = 10, γ = 0.1) for

the RBF kernel SVM by cross validation. The results of

the experiment show that there is not much differentiation

between the performance of the chosen classifiers (Figure

5). In the ensuing experiments, we use the SVM classifier

with a linear kernel, which is sufficiently fast and does not

suffer from the possibility of overfitting.

B. Comparison with dynamic thresholding

In our second experiment, we compared the performance

of our algorithm − using LIDAR features only − with the

adaptive breakpoint detector (ABD) algorithm described by

Borges and Aldon [6]. The ABD algorithm uses a threshold

that scales as a function of distance from the sensor to

determine the boundaries between objects.

We evaluated the two algorithms on the same data sets,

which included all instances inside and also outside the

camera FOV. The results, shown in Figure 6, show that our

algorithm outperforms the ABD algorithm for all threshold

values. We also manually extracted a subset of the full data

that consisted entirely of challenging cases as described

in Table I. The performance of both algorithms on this

challenging data set is lower than on the full data set, but

our algorithm still outperforms the ABD method. Figure 7

shows an example of the boundary classification results of

the two algorithms for a portion of an example scan. In this

example, the ABD algorithm breaks up single objects when

they are viewed obliquely (for example, a car seen from a

slanted angle), whereas our method classifies these instances

correctly.

C. Effect of sensor modality

The next experiment was designed to test the contribution

of the LIDAR-based features versus the imagery-based fea-

tures. In this experiment, only instances within the camera’s

FOV were used. We evaluated three cases: LIDAR features

only, image features only, and LIDAR and image features

combined.

Figure 8 provides the threshold averaging ROC curves

with respect to the three cases. As can be seen, the LIDAR

3943



Fig. 6. Threshold averaging ROC (top) and Precision/Recall (bottom)
curves. These illustrate that our method improves boundary detection
performance when compared to the ABD algorithm.

features are more discriminative than the image-based fea-

tures. This agrees with the intuition that depth discontinuities

from 2D laser range measurements are a more reliable

indicator of object boundaries than differences in image

intensity or texture. However, the combination of LIDAR

and image-based features performs better than features from

either modality individually. This result suggests that the

information in the LIDAR and image features is not entirely

redundant.

Figure 9 shows the segmentation result of LIDAR, image,

and combined data when we consider a real frame data in

the camera FOV. As can be seen in Figure 9a, the car on the

left and the person standing 0.5 m in front are grouped into

a single objects. Discriminating the objects to two different

things is difficult because of their very close proximity to

each other.

Figure 9b shows the segmentation result when only image

features are only used for segmentation. In this experiment,

the LIDAR data in the camera FOV are used. As can be seen,

the segmentation result does not look so good. In the figure,

the marked points indicate the manually labeled ground truth

and each color box encompasses a set of points classified

as non-boundary. In other words, the boxes represent the

segmentation result. The height is fixed at 60 pixels.

The method using combined LIDAR and imagery features

was evaluated in the same frame of data (Figure 9c). In

this case, boundaries that were mis-classified by the imagery

feature method are now correctly classified. Specifically, the

person and the car, which were separated by 0.5 m are now

(a) The scanned object

(b) Segmentation result (ABD)

(c) Segmentation result (our approach)

Fig. 7. An example showing the segmentation performance of the ABD
and our algorithm for a single scan.

correctly divided into two segments. When only image or

LIDAR features were used, these objects were segmented as

one group.

VI. SUMMARY AND FUTURE WORK

In this paper, we have proposed a supervised learning

approach to object boundary detection. The method is aimed

at line scanning LIDARs and can be augmented with imagery

if available. We formulate the boundary detection task as

a classification problem and use features derived from the

LIDAR measurements and image patches surrounding the

LIDAR measurements as inputs to a classifier. The classifier

is learned using a set of labeled training examples. Experi-

ments show that the SVM classifier performs slightly better

than logistic regression. The proposed method improves on

the performance of an existing dynamic thresholding bound-

ary detection algorithm, especially for challenging boundary

cases. Further improvement is achieved by incorporating

visual features derived from co-registered imagery.

In future research, we hope to address a number of issues.

First, we would like to evaluate additional types of image

and LIDAR features for the boundary classification task.

In particular, we are investigating features that are based

3944



Fig. 8. Threshold averaging ROC (top) and Precision/Recall (bottom)
curves when image only, LIDAR only, and combined features are used.

on image-based edge detection. Second, we plan to pursue

alternate learning algorithms, such as AdaBoost [17], for the

classifier. With larger numbers of features, the problem of

feature selection becomes an issue, which can be addressed

by methods like boosting. Third, we are working to integrate

the boundary detection algorithm into a larger framework for

detecting, modeling, and tracking moving objects using the

combination of LIDAR and imagery.

REFERENCES

[1] D.R. Martin, C.C. Fowlkes, and J. Malik, ”Learning to detect natural
image boundaries using local brightness, color, and texture cues,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 26, 2004, pp. 530-549.

[2] M.A. Ruzon and C. Tomasi, ”Color edge detection with the compass
operator,” Computer Vision and Pattern Recognition, IEEE Computer
Society Conference on., 1999.

[3] M. Maire, P. Arbelaez, C. Fowlkes, and J. Malik, ”Using contours to
detect and localize junctions in natural images,” IEEE Conference on
Computer Vision and Pattern Recognition. CVPR 2008, 2008, pp. 1-8.

[4] A. Stein and M. Hebert, ”Occlusion boundaries from motion: low-level
detection and did-level reasoning,” International Journal of Computer
Vision, vol. 82, May. 2009, pp. 325-357.

[5] A.N. Stein and M. Hebert, ”Local detection of occlusion boundaries
in video,” Image and Vision Computing, vol. 27, 2009, pp. 514-522.

[6] G.A. Borges and M. Aldon, ”Line extraction in 2D range images for
mobile robotics,” J. Intell. Robotics System, vol. 40, 2004, pp. 267-
297.

[7] C. Premebida and U. Nunes, ”Segmentation and geometric primitives
extraction from 2d laser range data for mobile robot applications,”
Robotica, 2005, pp. 17-25.

[8] K. Arras, O. Mozos, and W. Burgard, ”Using boosted features for the
detection of people in 2D range data,” Robotics and Automation, IEEE
International Conference on, 2007, pp. 3402-3407.

[9] L. Spinello and R. Siegwart, ”Human detection using multimodal and
multidimensional features,” Robotics and Automation, IEEE Interna-
tional Conference on, 2008, pp. 3264-3269.

(a) The segmentation result of a single scan LIDAR data.

(b) The segmentation result of a single frame image data.

(c) The segmentation result based on image and LIDAR features

Fig. 9. The boxes represent each cluster. The distance between the person
and the car is only 0.5m and the sensors’ origin is placed at 25m from the
objects.

[10] D.W. Hosmer and S. Lemeshow, Applied logistic regression, Wiley-
Interscience, 2004.

[11] V.N. Vapnik, The nature of statistical learning theory, Springer Verlag,
2000.

[12] M.J. Swain and D.H. Ballard, ”Color indexing,” International Journal
of Computer Vision, vol. 7, 1991, pp. 11-32.

[13] Camera calibration toolbox for Matlab. [Online]. Available:
http://www.vision.caltech.edu/bouguetj/calib doc/

[14] T. Fawcett, ”An introduction to ROC analysis,” Pattern recognition
letters, vol. 27, 2006, pp. 861-874.

[15] J. Davis and M. Goadrich, ”The relationship between precision-recall
and ROC curves,” Proceedings of the 23rd international conference on
Machine learning, Pittsburgh, Pennsylvania: ACM, 2006, pp. 233-240.

[16] C.C. Chang and C.J. Lin, LIBSVM: a library for support vector
machines, 2001.

[17] R. Schapire and Y. Freund, ”A decision theoretic generalization of
on-line learning and an application to boosting,” Journal of Computer
and System Sciences, vol. 55, 1997, pp. 119-139.

3945


