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Abstract— This paper explores systematic control strategies
for the stabilization of running on compliant robots with
nontrivial torso pitch dynamics. The Spring Loaded Inverted
Pendulum (SLIP) embedding controller is revisited and its per-
tinence to more general legged robot models is investigated. It
is first deduced that—in the context of an asymmetric hopper—
the existence of a SLIP embedding control law requires nominal
running motions in which the torso is kept at a constant angle.
To remove this overly restrictive condition, a new method is
proposed here that retains the advantage of generating control
inputs acting in concert with the compliant dynamics of the
plant without explicit reliance on the SLIP. To illustrate the
enhanced control authority afforded by the proposed method,
a minimalist setting is considered, in which a three-degree-of-
freedom asymmetric hopper is controlled by a single actuator
located at the hip.

I. INTRODUCTION

Dynamically stable legged robots like the monopod

Thumper portrayed in Fig. 1(a) pose unique challenges to

existing nonlinear control synthesis tools. The hybrid and

underactuated nature of such systems, combined with the

multitude of constraints that must be respected by the control

action—including actuator and ground contact limitations—

posit the need for developing control laws that work harmo-

niously with the open-loop plant dynamics in inducing stable

running motions on these robots.

To resolve complexity, the idea of task encoding through

the enforcement of a lower-dimensional target dynamics—

rather than through the prescription of a set of reference

trajectories—has been employed in the relevant literature.

In the light of evidence in biomechanics, [3], and robotics,

[10], the Spring Loaded Inverted Pendulum (SLIP) has

been proposed as a canonical model of the center-of-mass

dynamics in running, and studied extensively as a target

for control in animals—see [3] and references therein—and

robots—see [11] and [1].

Along these lines, the SLIP embedding controller has

been proposed in [9] as a method that combines established

nonlinear control synthesis tools, such as the Hybrid Zero

Dynamics (HZD) developed in [12], with empirical control

procedures obtained in the context of the SLIP, such as

those introduced by Raibert in [10], to induce provably

exponentially stable running motions in an asymmetric com-

pliant hopper termed the Asymmetric Spring Loaded Inverted

Pendulum (ASLIP); see Fig. 1(b). The SLIP embedding

controller generates corrective action that works together
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Fig. 1. (a) Thumper (courtesy of Prof. J. W. Hurst); see [4] for design
details. Note that the hip joint does not coincide with the torso’s center
of mass. (b) The Asymmetric Spring Loaded Inverted Pendulum (ASLIP)
introduced in [9] is a more faithful representation of Thumper than point-
mass hoppers. In [9], the leg force u1 was modeled as a spring in parallel
with a prismatic force source; in Section IV below, u1 corresponds to a
passive spring. In the SLIP embedding controller, the COM of the SLIP
(xcm, ycm) coincides with that of the ASLIP, see [9, Fig. 1].

with compliance allowing for large perturbations to be ac-

commodated, with small actuator effort and without violation

of the unilateral constraints between the toe and the ground.

Other controllers that have been proposed in the literature for

asymmetric hoppers similar to the ASLIP include [5], and

[6], in which rough terrain locomotion is also addressed.

In this paper, we turn our attention to investigating the

potential implementation of SLIP embedding in more general

settings. First, an intuitive explanation of how the SLIP

embedding controller utilizes compliance to generate inputs

that respect the plant’s natural dynamics is provided. It is

this property, combined with the constructive nature of the

method, that renders SLIP embedding an attractive alter-

native to existing heuristic control procedures for legged

robots. However, as is shown in this paper, a necessary

condition for its implementation in the context of the ASLIP

is the existence of nominal running gaits in which the torso

remains constant. The fact that this requirement excludes

a large variety of motions where the torso is allowed to

oscillate—such motions are inevitably present in robots like

Thumper—calls for a more general method. Proposing such a

method that preserves the advantages of SLIP embedding, yet

removes the requirement for explicit reliance on the SLIP is

at the core of this work. It is anticipated that the generality of

the proposed approach, which is independent of the particular
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mathematical structure that permitted exact SLIP embedding,

will be of use to the control of more complete robot models.

II. OVERVIEW OF THE METHOD

As enunciated by Raibert, [10], the control objectives for

monopedal running can be decomposed into the regulation of

three key variables: torso angle, hopping height, and forward

velocity. Following the control paradigm of [12], these

control objectives are encoded in a set of suitably designed

constraints that are imposed on the system’s dynamics in con-

tinuous time through its actuators. These constraints, suitably

parameterized, can be interpreted as (virtual) holonomic con-

straints, which restrict the dynamics on lower-dimensional

surfaces embedded in the state spaces of the continuous-

time phases. Loosely speaking, this reduction-by-feedback

procedure effectively reduces the feasible motions of the

system by coordinating its actuated degrees of freedom, so

that a lower-dimensional hybrid subsystem “emerges” from

the robot’s closed-loop dynamics. This lower-dimensional

hybrid subsystem governs the existence and stability prop-

erties of distinguished periodic orbits that correspond to

running motions of interest.

To achieve such coordination, the feedback law exploits

the hybrid nature of the system by introducing control action

in continuous-time within the stance phase and in discrete

time by updating controller parameters at transitions between

the stance and flight phases; see Fig. 2. In the remainder

of this section, the general procedure of how to design the

continuous and discrete time control laws is highlighted.

uαsβ

Outer-loop Hybrid Zero Dynamics

Γc
sΓα

sΓβ

Fig. 2. Feedback diagram presenting the basic structure of the controller.
Continuous lines represent signals in continuous time; dashed lines represent
signals in discrete time.The control laws Γc

s and Γα
s are intended to create a

well defined hybrid zero dynamics (HZD), while the controller Γβ ensures
that the resulting HZD is exponentially stable.

A. ASLIP Open-loop Hybrid Dynamics

The ASLIP hybrid dynamics, combining the stance and

flight phases with the discrete transitions between them, can

be written in the form of a system with impulse effects, [12],

ΣASLIP :

{

ẋs =fs(xs) + gs(xs)u, x−

s /∈ Ss→f

x+
s =∆

(

x−

s , βf

)

, x−

s ∈ Ss→f ,
(1)

in which the continuous part corresponds to the stance

dynamics parameterized by the configuration variables: leg

length l, leg angle ϕ, and torso angle θ, i.e., qs = (l, ϕ, θ);
see Fig. 1(b). In (1), ∆ is the map taking the state x−

s just

prior to liftoff to the state x+
s just after touchdown, Ss→f

is the stance to flight switching surface, and βf = (ltd, ϕtd)
are the touchdown parameters—leg length and angle—which

do not trigger stance to flight switching, but influence the

termination of the flight phase, thus affecting the initial

conditions x+
s of the stance phase. Detailed descriptions of

the components of (1) can be found in [9, Section III].

B. In-Stride Continuous-Time Control

To the continuous-time dynamics of the stance phase in

(1) associate the output

y = h(qs, αs, βs) := qc − hd (qu(qs), αs, βs) , (2)

where qc contains the controlled variables and hd is the

desired evolution parameterized by qu, a strictly monotonic

(increasing) quantity that is a function of the generalized

coordinates qs. The parameter arrays αs and βs in general

include coefficients of polynomials representing the virtual

constraints; their precise meaning will be discussed below.

For given αs and βs, differentiating (2) twice with respect

to time results in

d2y

dt2
= L2

fs
h(xs, αs, βs) + LgsLfsh(qs, αs, βs)u, (3)

and, if LgsLfsh(qs, αs, βs) is invertible,

u∗(xs, αs, βs) = − (LgsLfsh(qs, αs, βs))
−1

L2
fs

h(xs, αs, βs)
(4)

is the unique input that renders the zero dynamics surface

Z(αs,βs) =
{

xs ∈ TQs | h(qs, αs, βs) = 0,

Lfsh(xs, αs, βs) = 0
} (5)

invariant under the flow of the continuous part of the ASLIP

dynamics, that is, for every z ∈ Z(αs,βs)

f∗(z, αs, βs) = fs(z) + gs(z)u∗(z, αs, βs) ∈ TzZ(αs,βs).

The restriction of f∗ on the surface Z(αs,βs), i.e.

ż = f∗|Z(αs,βs)
(z, αs, βs), (6)

is the stance phase zero dynamics of the ASLIP, which

depends on the coefficients αs and βs. Finally, to establish

attractivity of Z(αs,βs), the input (4) is modified as:

u = Γc
s(xs, αs, βs)

= (LgsLfsh(qs, αs, βs))
−1

[υ(y, ẏ, ǫ) − L2
fs

h(xs, αs, βs)],
(7)

where υ(y, ẏ, ǫ) = −(1/ǫ2)KPy − (1/ǫ)KVẏ and KP, KV

positive gains and ǫ > 0.

C. Event-Based Discrete-Time Control

The continuous-time controller of Section II-B introduced

a set of parameters αs and βs, which, together with the

flight parameters βf , can be updated at transitions between

continuous phases. The division of the stance parameters

in the two arrays αs and βs follows the structure of the

event-based parameter update law, which is organized in an

inner/outer-loop architecture. The inner-loop controller

α+
s = Γα

s (x+
s ) (8)
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updates the parameters αs to ensure that the initial condi-

tion x+
s of the stance phase lies on the surface Z(αs,βs).

Intuitively, updating αs affects the “entry” conditions to the

stance phase, by locally deforming Z(αs,βs) so that x+
s ∈

Z(αs,βs). This inner-loop controller leads to the creation of

a reduced-order hybrid subsystem

ΣASLIP
HZD :















































[

ż

β̇s

]

=

[

f∗|Z(αs,βs)
(z, βs)

0

]

,

z− /∈ Ss→f ∩ Z(αs,βs)
[

z+

β+

]

=

[

∆(z−, βf)

Γβ(z−)

]

,

z− ∈ Ss→f ∩ Z(αs,βs),

(9)

which is the Hybrid Zero Dynamics (HZD) associated with

the output (2), and it governs the stability properties of

the full-order ASLIP; [12]. A critical aspect of (9) is its

dependence on the parameter array β = {βs, βf}, which

can be selected according to an outer-loop feedback law Γβ ,

whose purpose is to exponentially stabilize (9). One way

of designing Γβ would be to use Raibert’s intuitive control

procedures in [10]. An alternative, which will be employed

in Section IV-B below, is to use discrete LQR techniques.

III. SLIP EMBEDDING: BENEFITS AND LIMITATIONS

The SLIP embedding controller has been proposed in [9]

as a first step toward a general framework for designing

control laws that stabilize running in compliant robots. The

objective of the control action is to impose via feedback

enough structure on the system allowing for tractable stabil-

ity analysis without “destroying” components of the open-

loop dynamics—such as compliance—that are important in

achieving the task of running. The purpose of this section

is to put SLIP embedding in perspective relative to its

applicability in controlling running in robots like Thumper,

and to motivate the results of Section IV, in which the

method is generalized so that its exact dependence on the

SLIP, which in general is difficult to implement, is relaxed.

A. SLIP Embedding: Preserving Open-loop Compliance

The SLIP embedding controller achieves the dual objec-

tive of working harmoniously with the natural compliant

dynamics of the ASLIP and of affording provable stability

guarantees by manipulating the control inputs so that, for suf-

ficiently fast exponentially contracting pitch error dynamics,

the SLIP emerges as the HZD (9) of the ASLIP. An intuitive

explanation of how the control action respects the system’s

natural dynamics, resulting in the large domains of attraction

reported in [9], is given here. As [9, eq. (58)] suggests, under

the SLIP embedding controller, the total ASLIP leg force, u1,

becomes equal to the projection of the SLIP spring force,

FSLIP, along the direction of the ASLIP leg, that is

u1 =
l − L sinϕ

r
FSLIP ⇔ u1 = (cosχ)FSLIP, (10)

where r =
√

L2 + l2 − 2Ll sinϕ and the angle χ is shown

in Fig. 3. In view of the assumption—see [9, Fig. 1 and eq.

(76)]—that the total leg force u1 corresponds to a spring

force kA(l0 − l) in parallel with an actuator ua
1, i.e.

u1 = ua
1 + kA(l0 − l), (11)

the leg actuator ua
1 is only required to “shape” the actual

spring force kA(l0 − l), so that u1 results in the required

force FSLIP developed along the virtual (SLIP) leg direction,

as (10) dictates. As can be seen in Fig. 3, for physically

reasonable torso pitch angles, the angle between the actual

leg and the virtual leg direction is small. Consequently, small

actuator effort suffices to “shape” the spring force of the

actual leg to achieve this projection, thus providing a quali-

tative explanation of the superiority of the SLIP-embedding

controller under transient conditions against controllers that

create non-compliant HZD, as reported in [9, Sec. IX].

ϕ

ϕ

L

l

r

H (hip)

G (COM)

Gp
FSLIP

u1

χ

T (toe)

Fig. 3. The SLIP embedding configuration; see [9, Fig. 1] or Fig. 1(b)
with the COM of the SLIP coinciding with that of the ASLIP. The leg force
u1 equals the projection of the SLIP force FSLIP along the ASLIP leg.

B. SLIP Embedding: Limitations

The SLIP embedding controller uses the hip torque u2

according to the procedure of Section II-B—see [9, Sections

VI and VII] for details—to stabilize the torso angle θ at a

desired constant pitch angle θ̄, i.e. qc = θ and hd(qs) = θ̄ in

(2). Hence, the virtual holonomic constraint imposed during

stance is a constant polynomial with coefficient αs,0 = θ̄.

This condition however can be overly restrictive—especially

in the case of robots like Thumper with nonzero leg inertia—

since a large variety of running motions in which the torso

is allowed to move are excluded. It is therefore natural to

ask if this condition can be relaxed.

It is shown next that requiring a constant pitch angle dur-

ing the nominal stance phase is, in fact, a necessary condition

for the existence of a SLIP embedding control law. In other

words, allowing the pitch angle to vary during the nominal

stance phase implies that no feedback law exists that will

render the COM dynamics of the ASLIP diffeomorphic to the

SLIP. To show this statement, the problem is formulated as

an output zeroing problem imposed on an extended system,

in which the plant is the ASLIP and the target model is the

SLIP; see Fig. 1(b). This corresponds to a nonlinear model

matching problem; refer to [2] for the relevant background.

The extended system associated with the ASLIP and the

SLIP stance dynamics is defined as

ẋe
s = f e

s (xe
s) + ge

s (xe
s)ue, (12)
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with state vector xe
s := col

(

qA
s , qS

s , q̇A
s , q̇S

s

)

, in which

qA
s = (l, ϕ, θ) are the ASLIP states and qS

s = (xcm, ycm)
are the states of the SLIP, and input vector ue

s := u, the

inputs of the ASLIP; see Fig. 1(b).

The feedback action generated by the SLIP embedding

controller renders the COM dynamics of the ASLIP diffeo-

morphic to the SLIP dynamics. In the extended system (12),

this requirement is equivalent to zeroing the output

y = h (qe
s ) := qS

s − h̄
(

qA
s

)

, (13)

where h̄
(

qA
s

)

is determined by

h̄
(

qA
s

)

:=

[

−l sin(ϕ + θ) + L cos θ

l cos(ϕ + θ) + L sin θ

]

; (14)

see Fig. 1(b). Geometrically, the output (13)–(14) corre-

sponds to the difference between the Cartesian positions of

the COM of a SLIP and an ASLIP with their toes coinciding.

It is of interest to analyze the zero dynamics associated

with the output (13)–(14). According to the procedure of

Section II-B, the zero dynamics surface is defined by

Ze :=
{

xe
s ∈ TQe

s | h (qe
s) = 0, Lfe

s
h (xe

s) = 0
}

, (15)

and it includes all the states of the extended system in

which the COM dynamics of the ASLIP matches exactly

the dynamics of the SLIP. The corresponding zero dynamics

is computed by restricting on Ze the closed-loop system

f∗(xe
s) = f e

s (xe
s) + ge

s(x
e
s)u

∗(xe
s), (16)

in which the input u∗ is computed by (4) as

u∗(xe
s) = −

1
√

x2
cm + y2

cm

P (qe
s ) FSLIP(qS

s ), (17)

where

P (qe
s) =

[

xcm sin(ϕ + θ) − ycm cos(ϕ + θ)

l (xcm cos(ϕ + θ) + ycm sin(ϕ + θ))

]

, (18)

and FSLIP(qS
s ) = k(r0 −

√

x2
cm + y2

cm) is the standard SLIP

leg force. To reveal the underlying structure of the zero

dynamics associated with the output (13), the coordinates

z = col(qz, q̇z) with qz := col(qS
s , θ) are used to parameterize

Ze. Then, the zero dynamics can be computed explicitly, and

after some algebraic manipulations is found to be

[

ẍcm

ÿcm

]

=









1

m

xcm
√

x2
cm + y2

cm

FSLIP(qS
s )

1

m

ycm
√

x2
cm + y2

cm

FSLIP(qS
s ) − g









(19)

and

θ̈ = 0. (20)

In words, the zero dynamics corresponding to the output

(13)–(14) is the combination of two completely decoupled

and conservative subsystems. The translational part (19),

which can be recognized as the SLIP dynamics in the

coordinates qS
s , and the rotational part (20) that governs

the pitch dynamics. By the maximality property of the zero

dynamics see [7, p. 294], (19) and (20) is the “largest”

dynamics compatible with the output (13)–(14) being zero.

As a result it can be deduced that, if the translational

dynamics of the ASLIP is diffeomorphic to the SLIP stance

dynamics, then the pitch velocity must be equal to a constant.

If this constant is nonzero, then the torso tumbles, i.e. it

monotonically rotates during the gait resulting in unrealistic

running motions. On the other hand, if the constant is zero,

as is assumed to be in the SLIP embedding controller, the

torso remains at a desired (upright) posture.

C. Discussion

The SLIP embedding controller provides a systematic

way of designing control laws with provable properties

for compliant running robot models such the ASLIP. The

method, which is detailed in [9], combines constructive

nonlinear controller synthesis tools with intuitive control

procedures to generate control actions that work together

with the open-loop compliance to produce efficient, natural-

like running motions. The SLIP embedding controller can

be envisioned as a “building block” toward a general control

synthesis framework for more elaborate models that consti-

tute more accurate representations of legged robots, such as

the monopedal robot Thumper of Fig. 1.

However, implementing the SLIP embedding controller—

even in the simplified setting of the ASLIP—requires condi-

tions that may limit its authority in controlling more general

robot models. In particular, as was shown in Section III-

B, the SLIP embedding controller requires nominal running

orbits in which the pitch angle remains constant. This con-

dition may be overly restrictive, since it excludes a large

variety of running motions, rendering the method hard, or

even impossible, to implement in models that are more

complete than the ASLIP. For instance, in legged robots like

Thumper, the leg inertia cannot be considered negligible,

thus, inevitably resulting in nontrivial torso pitching. In

addition, the SLIP embedding controller requires establishing

a diffeomorphic equivalence between appropriate restrictions

of the robot dynamics and the SLIP. For general systems,

providing conditions that guarantee the existence of such

coordinate transformations between the COM dynamics of

the system and the SLIP can be an intractable problem.

Embedding the SLIP as the HZD of the ASLIP is a rather

conservative way of ensuring that the open-loop compliance

is preserved under feedback. Evidently, a generalization

is required so that the advantage of making efficient use

of the spring is retained, while the technical burden of

establishing diffeomorphic equivalence between the system’s

COM dynamics and the SLIP is removed. The development

of such method is undertaken in the following section.

IV. REDUCTION-BY-FEEDBACK AND COMPLIANT HZD

CONTROL OF THE ASLIP

This section proposes a feedback law for the ASLIP, which

generalizes the SLIP embedding controller in the sense that

the control action preserves the compliant nature of the

open-loop system without imposing the SLIP as its COM
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dynamics. As a result, the torso pitch angle need not be

constant, thus providing a much larger family of nominal

running orbits, in which the torso is allowed to oscillate. To

illustrate the flexibility afforded by relaxing the requirement

for exact SLIP embedding, a minimalist control setting is

assumed, in which the ASLIP is powered by a single actuator

located at the hip; no active control is present along the leg,

which is assumed to be a passive spring. Hence, contrary

to the SLIP embedding controller, ua
1 in (11) is zero. The

method is developed within the framework of Section II.

A. In-Stride Continuous-Time Control

Following the structure of Fig. 2, a continuous-time feed-

back law Γc
s is employed during stance with the purpose

of stabilizing the torso and of preparing the system for the

upcoming flight phase. The controlled variable qc in (2) is

selected to be the torso orientation θ, while hd represents

its desired evolution, which will be parameterized with

respect to the strictly monotonic (increasing) quantity qu

corresponding to the angle of the ASLIP leg with respect

to the ground,

qu =
π

2
− θ − ϕ; (21)

see also Fig. 1(b). To ease implementation, it is favorable to

use Beziér polynomials to design hd. Let qmin
u and qmax

u be

the minimum and maximum values of the angle qu during a

nominal stance phase, and define the parameter

s =
qu − qmin

u

qmax
u − qmin

u

, (22)

with s ∈ [0, 1]. Then, the desired evolution hd can be pa-

rameterized by the following fourth order Beziér polynomial

hd(s(qs)) =

2
∑

k=0

bk(s)αs,k + b3(s)βs,1 + b4(s)βs,2 (23)

in which the coefficients bk, k ∈ {0, ..., 4}, are given by

bk(s) :=
M !

k! (M − k)!
sk (1 − s)M−k; (24)

and M = 4. Enforcing (23) through zeroing the output

(2) introduces the surface Z(αs,βs) that depends on the

coefficients of the polynomial (23), which are divided in the

two arrays αs and βs to distinguish between their different

control roles. These different roles are explained here. By

properties of the Beziér polynomials,

hd(0) = αs,0, hd(1) = βs,2,

∂hd

∂s

∣

∣

∣

∣

s=0

= M(αs,1 − αs,0),
∂hd

∂s

∣

∣

∣

∣

s=1

= M(βs,2 − βs,1).

(25)

From (25) it is seen that αs,0 and αs,1 are associated with the

entry conditions of the stance phase—updating these param-

eters affects the desired pitch angle and velocity commanded

at the beginning of stance—while βs,1 and βs,2 are associated

with the exit conditions—updating these parameters affects

the pitch angle and velocity at the end of the stance phase.

The parameters βs,1 and βs,2 provide a powerful control

mechanism for stabilizing the ASLIP.

B. Event-Based Discrete-Time Control

The event-based discrete-time component of the control

law updates the parameters α and β at transitions between

continuous phases, and it is organized in the inner/outer-

loop architecture depicted in Fig. 2. The inner-loop controller

Γα
s properly updates αs at touchdown to ensure that the

initial condition x+
s of the upcoming stance phase lies on

the surface Z(αs,βs), i.e., x+
s ∈ Z(αs,βs). This condition is

referred to as hybrid invariance and can be achieved through

the following rule

α+
s,0 = θ+, α+

s,1 =
θ̇+

Mṡ+
+ α+

s,0, (26)

as suggested by the properties (25) of Beziér polynomials.

The inner-loop controller Γα
s leads to the creation of a well

defined HZD, which has the form of (9).

The dependence of the HZD (9) on β = {βs, βf} allows

for further control action. Given the discussion in Section

IV-A, βs provides a means for controlling the pitch angle

and velocity when the ASLIP enters the flight phase, while

the touchdown angle βf provides a powerful control input

determining when the flight phase is terminated. Hence,

according to the feedback diagram of Fig. 2, the parameters β
will be updated at liftoff to render the HZD (9) exponentially

stable. This can be done by using intuitive control procedures

such as those introduced by Raibert in [10]. An alternative

is to use discrete LQR control approaches. Selecting the

Poincaré section to be the surface Ss→f , the Poincaré map

P associated with the hybrid system (9) gives rise to the

discrete-time control system

z−[k + 1] = P
(

z−[k], β[k]
)

. (27)

Linearizing (27) and implementing a discrete LQR results in

the following rule for updating β

β+ := β[k] = β̄ + K
(

z−[k] − z̄−
)

=: Γβ(z−), (28)

where z̄− is the nominal (fixed-point) value of the restricted

state just prior to k-th liftoff, and β̄ the nominal value of the

parameters β. The feedback controller (28) guarantees that

all the eigenvalues of the linearization of (27) are within the

unit circle, and completes the control design.

C. Simulation Results

The mechanical properties of the ASLIP used in the simu-

lations are those in [9, Table I], and they roughly correspond

to the monopedal robot Thumper. Finding a periodic motion

for the ASLIP in closed-loop with the controller developed

in Sections IV-A and IV-B can be cast as a constrained

minimization problem according to the procedure of [12, Ch.

6]. This procedure results in a fixed point of the Poincaré

map (27) and in the nominal values of the parameters. Fig.

4 shows the COM evolution in Cartesian space and the torso

angle during a nominal (fixed point) gait. The dashed part of

Fig. 4(b) corresponds to the stance phase virtual constraint

(23). Note that the torso is allowed to oscillate while all the

constraints—e.g. actuator limitations, toe/ground interaction

constraints—are respected.
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Fig. 4. Cartesian position of the COM, (a), and torso pitch angle evolution,
(b), during a nominal running step. The dashed line represents stance phase.

To illustrate the orbit’s local stability, the state prior to

liftoff is perturbed away from the fixed point by an initial

error of δθ = +5deg and δẋ = +0.1m/s. Figs. 5 and 6

present the evolution of various states and of the input in

converging to the nominal orbit. Figs. 5(b) and 5(d) illustrate

how the outer-loop controller updates the coefficients βs,

corresponding to the torso pitch and pitch rate prior to liftoff.

It is the introduction of this component, namely Γβ , in the

event-based controller that allows to stabilize the total energy

without the need of an extra leg actuator devoted to this

purpose, as was the case in the SLIP embedding controller.
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Fig. 5. Evolution with respect to time showing convergence from a
perturbation: leg angle, (a); torso pitch angle, (b); COM horizontal velocity,
(c); torso pitch rate, (d). The red circles represent commanded touchdown
angle in (a), and commanded liftoff pitch angle in (b) and pitch rate in (d)
corresponding to updates of the parameters β by the outer-loop controller
Γβ of Fig. 2. The norm of the maximum eigenvalue is 0.8.

V. CONCLUSION

Motivated by the fact that embedding the SLIP as the

HZD of the ASLIP requires running gaits in which the torso

remains constant, and given that such motions cannot be

imposed on our monopedal robot Thumper, a more general

control approach is proposed in this work. This approach pre-

serves the advantage of efficient use of the open-loop spring,

while it relaxes the explicit reliance on the SLIP dynamics.

The development of the control law is systematic, offering
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Fig. 6. Total energy, (a), and hip actuator torque, (b). The dashed line in
(a) represents nominal value.

analytical tractability and provable stability properties of the

resulting closed-loop system. In addition, it generalizes other

HZD controllers [12], in that it introduces a set of parameters

that provide control authority over the “exit” conditions from

stance and flight. The power of the method is illustrated by

considering a minimalist actuator setting, in which the three

DOF ASLIP is controlled by a single actuator located at the

hip. Such generalizations of the SLIP embedding controller

can be extended in a straightforward fashion to control more

complete than the ASLIP models of robots such as Thumper,

as has been shown in [8].
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