
Parallel Grid-based Recursive Bayesian Estimation Using GPU for

Real-time Autonomous Navigation

Tomonari Furukawa, Benjamin Lavis and Hugh F. Durrant-Whyte

Abstract— This paper presents the parallelization of grid-
based recursive Bayesian estimation (RBE) using a graphics
processing unit (GPU) for real-time control of autonomous
vehicles. Although the grid-based method has been effectively
used for autonomous search due to its ability to represent search
space explicitly, heavy computational load has been a bottleneck
for real-time application similarly to other non-Gaussian RBE
techniques. The proposed RBE, which parallelizes grid-wise
computations using GPU upon the analysis of mathematical
operations, removes sequential processes and accelerates RBE
significantly. Numerical examples have first demonstrated the
validation of the proposed RBE and investigated its perfor-
mance through parametric studies. The proposed RBE was then
applied to the cooperative search by autonomous unmanned
ground vehicles (UGVs), and its real-time capability has been
demonstrated.

I. INTRODUCTION

Search and tracking are two fundamental tasks for sensor

platforms engaging on objects of interest [4]. When objects

are not detected, sensor platforms must search for objects.

When a object is found, tracking, broadly including staying

for a static object, takes place to engage on the object. Since

the actions of the platforms are based on uncertain prior and

empirical information, it is adequate to estimate the state

of the object within the framework of RBE [11]. Due to

the difference in operation, RBE techniques for search and

tracking however used different numerical techniques in the

past.

Techniques effective for the search operation include the

grid-based method [1], the Gaussian quadrature method [12],

the Monte Carlo method [6] and their variants, although

the Gauss quadrature method is only applicable to one-

dimensional space. These methods locate nodes for nu-

merical integration called grid points, Gauss points and

particles, respectively, in a different manner, but the nodes

are commonly spread over the object space to maintain the

configurations of the space to search and the non-Gaussian

belief on each object over the search space.

The techniques suitable for tracking, such as the extended

Kalman Filter (EKF) [10], the sequential Monte Carlo (SMC)

methods also known as the particle filter methods [7], the

sequential Quasi-Monte Carlo (SQMC) methods [5] and

This work was supported by US RDECOM/DARPA grant (FA23896-08-
1-4129) and ARC Centre of Excellence for Autonomous Systems

T. Furukawa is with Department of Mechanical Engineering, Virginia
Tech, Blacksburg, VA tomonari@vt.edu

B. Lavis is with Department of Mechanical Engineering, University of
California at Berkeley, Berkeley, CA b.lavis@berkeley.edu

H.F. Durrant-Whyte is with Australian Centre for Field
Robotics, The University of Sydney, Sydney 2006 Australia
hugh@acfr.usyd.edu.au

their variants, result from their computational efficiency in

describing the belief of the observable object. As a result,

the areas considered in the object space are limited to those

where objects are observable.

While most of the past work treated search and tracking

independently, continuous work by the authors has shown the

unified formulation of search and tracking in the RBE frame-

work [2], [3], [4]. In their work, an observation likelihood

is formulated in a unified manner such that the belief can

be maintained regardless of whether the object is detectable,

but the use of the grid-based method, which is inevitable

due to the need for maintaining the configuration of target

space for search, makes the computational time extremely

expensive and has not allowed its application to real-world

problems. One may represent the belief more coarsely to

solve this problem, but it is not adequate in tracking since

the belief is often represented sharply in a small region.

This paper presents the parallelization of grid-based RBE

using a GPU for real-time control of autonomous vehicles.

Since the grid-based method involves grid-wise computation

for the core processes of update and prediction, it is ex-

pected that the parallelized grid-based RBE performs fast and

possibly allows real-time RBE even for practical problems

requiring a large number of grid cells. This paper describes

not only the parallelization but also the analytical estimation

of computational speedup as one may need to find parameters

for the grid-based method a priori such that the resulting

parallel RBE can be achieved in real time.

The paper is organized as follows. The following section

reviews the RBE that predicts and updates the belief of each

target as well as the grid-based method. Section III presents

the proposed parallel RBE using GPU, which enables real-

time RBE in real-world problems. Section IV demonstrates

the efficacy of the proposed RBE through numerical exam-

ples and conclusions are summarized in the final section.

II. RECURSIVE BAYESIAN ESTIMATION

RBE forms a basis to the maintenance of belief on a

dynamically moving object. Given prior belief as well as

knowledge on its motion and observations, RBE updates and

maintains the belief using two recursive processes, prediction

and correction. Let the prior belief on the object be p (x̃o
0)

where p (·) is a probability density function. Prediction uses

knowledge on motion written in the form of a probabilistic

Markov motion model p
(

x
o
k+1

|xo
k

)

and updates the belief

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 316

in time by using Chapman-Kolmogorov equation:

p
(

x
o
k|

si
z̃1:k−1, x̃

si

1:k−1

)

=

∫

X o

p
(

x
o
k|x

o
k−1

)

p
(

x
o
k−1

|si
z̃1:k−1, x̃

si

1:k−1

)

dxo
k−1,

(1)

where p
(

x
o
k−1

|si
z̃1:k−1, x̃

si

1:k−1

)

= p (x̃o
0) when k =

0, and x̃
si

1:k ≡ {x̃si
κ |∀κ ∈ {1, ..., k}} and si

z̃1:k ≡
{si

z̃κ|∀κ ∈ {1, ..., k}} represent a sequence of states of the

sensor platform si and a sequence of observations by the

sensor platform from time step 1 to time step k respectively.

Note here that (̃·) represents an instance of variable (·).
Correction, on the other hand, constructs an observation

likelihood lsi (xo
k|

si
z̃k, x̃si

k) from observation si
z̃k and up-

dates the belief in measurement using Bayes theorem:

p (xo
k|

si
z̃1:k, x̃si

1:k)

=
lsi (xo

k|
si
z̃k, x̃si

k) p (xo
k|

si
z̃1:k−1, x̃

si

1:k)
∫

X o lsi (xo
k|

si z̃k, x̃si

k) p (xo
k|

si
z̃1:k−1, x̃

si

1:k) dxo
k−1

,

(2)

or

p (xo
k|

si
z̃1:k, x̃si

1:k) =
gc (xo

k|
si
z̃1:k, x̃si

1:k)
∫

X o gc (xo
k|

si z̃1:k, x̃si

1:k) dxo
k−1

, (3)

where

gc (xo
k|

si
z̃1:k, x̃si

1:k)

= lsi (xo
k|

si
z̃k, x̃si

k) p (xo
k|

si
z̃1:k−1, x̃

si

1:k) . (4)

Note that the likelihood takes two different forms depending

on the detectability of the object and is given by

lsi (xo
k|

si
z̃

o
k, x̃si

k) =

{

1 − PD (xo
k|x̃

si

k) ∄si
z̃

o
k ∈ siX o

D

p (xo
k|

si
z̃

o
k, x̃si

k) ∃si
z̃

o
k ∈ siX o

D
(5)

where siX o
D is the “detectable region” of the sensor

platform si, which describes the region within which

the sensor confidently finds the object o, i.e., siX o
D =

{xo
k|ǫ

o < PD (xo
k|x

si

k) ≤ 1} ⊂ siX o
O, where ǫo is a positive

threshold value which determines the detection of the object.

Depending on whether there exists an observed object within

the detectable region, the upper and lower formulas provide

likelihoods useful for search and tracking, respectively. If

the observed object state is not within the detectable region,

the observation is insignificant. As a result, the likelihood

is defined in terms of the negation of the POD. If the

observation is within the detectable region, the likelihood can

be defined as a probability density having its peak around

the observed object state.

III. PARALLEL RECURSIVE BAYESIAN ESTIMATOR

A. Data Parallelization

The approach chosen to improve the computational effi-

ciency of the grid-based RBE is the form of parallelization

known as data parallelization. Data parallelization is the

process of converting processes which operate on each piece

of data individually in a sequence, to one that operates on

groups of data at once, which can result in a dramatic reduc-

tion in computation time. The RBE, described in Section II,

has multiple processes which lend themselves to computa-

tional speed-up by parallelization. However, their numerical

implementation should be analyzed to determine which of

these are likely to produce meaningful improvements to the

computational speed.

The potential computational speedup produced by par-

allelizing operations in a process can be estimated using

Amdahl’s law, which states that the maximum speedup

achievable by parallelization is:

S =
tp

to
=

1

(1 − P) + P
N

(6)

where S is the computational speedup, tp is the iteration time

for the parallelized algorithm, to is the iteration time for the

original algorithm, P is the proportion of the process which

is parallelizable and N is the number of parallel processors

available to perform the parallelization. This formula is the

theoretical maximum of the computational speedup and does

not take into account the bottlenecking effect of communi-

cations between large numbers of threads; however it gives

a good estimate of the effectiveness of parallelizing each

operation in the RBE.

To enable this estimation, each operation in the RBE

must be examined to estimate the number of floating point

operations. These results can be used to estimate the propor-

tion of the algorithm that can be parallelized and allow the

maximum potential speedup to be calculated using Equation

(6).

B. Parallelization of Recursive Bayesian Estimation

1) Update: The correction operation requires the com-

putation of Equation (2). Given the predicted be-

lief p
ix,iy

x
o
k

(si
z̃1:k−1, x̃

si

1:k) and the observation likelihood

l
ix,iy

x
t
k

(si
z̃k, x̃si

k), the belief of the grid cell [ix, iy] can be

corrected as

p
ix,iy

x
o
k

(si
z̃1:k, x̃si

1:k) =
q

ix,iy

x
o
k

(·)

Ac

∑nx

α=1

∑ny

β=1
q

α,β
x

o
k

(·)
, (7)

where Ac is the area of a grid cell and

q
ix,iy

x
o
k

(si
z̃1:k, x̃si

1:k)

= l
ix,iy

x
o
k

(si
z̃k, x̃s

k) p
ix,iy

x
o
k

(si
z̃1:k−1, x̃

si

1:k) . (8)

In the numerical implementation, the correction operation

can be broken down into three steps:

1) Calculate q
ix,iy

x
o
k

(si
z̃1:k, x̃si

1:k) by multiplying the pre-

dicted belief p
ix,iy

x
o
k

(si
z̃1:k−1, x̃

si

1:k) by the observation

likelihood l
ix,iy

x
o
k

(si
z̃k, x̃si

k);

2) Sum
∑nx

α=1

∑ny

β=1
q

α,β
x

o
k

(si
z̃1:k, x̃si

1:k) and multiply the

sum by Ac; and

3) Calculate p
ix,iy

x
o
k

(si
z̃1:k, x̃si

1:k) by

dividing q
ix,iy

x
o
k

(si
z̃1:k, x̃si

1:k) by
∑nx

α=1

∑ny

β=1
q

α,β
x

o
k

(si
z̃1:k, x̃si

1:k).

317

Out of the three steps, Steps 1 and 3 are the operations whose

calculations can be conducted independently for every grid

cell. Step 1 requires a multiplication operation for each grid

cell in the target space, thus for the search space with ng

cells, there are ng floating point operations per iteration.

Steps 2 and 3 require additional floating operations through

summation and division, which each totals ng at most.

Thus, the maximum number of floating point operations is

estimated as 3ng.

2) Prediction: The prediction operation requires the

numerical evaluation of the Chapman-Kolmogorov equa-

tion described in Equation (1). Given the current belief

p
ix,iy

x
o
k

(

si
z̃1:k−1, x̃

si

1:k−1

)

as well as the Malkov motion model

p
ix,iy

x
o
k
|xo

k−1

constructed in the matrix of size Ix × Iy as the

convolution kernel, the belief can be predicted as

p
ix,iy

x
o
k

(

si
z̃1:k−1, x̃

si

1:k−1

)

= p
ix,iy

x
o
k−1

(

si
z̃1:k−1, x̃

si

1:k−1

)

⊗ p
ix,iy

x
o
k
|xo

k−1

=

Ix
∑

α=0

Iy
∑

β=0

p
α,β

x
o
k
|xo

k−1

p
ix−α,iy−β

x
o
k−1

(

si
z̃1:k−1, x̃

si

1:k−1

)

,(9)

where ⊗ indicates the convolution of the current belief with

the Markov motion model. The equation first shows that

the prediction operation at each grid cell can be conducted

independently. This means that the prediction operation is

completely parallelizable. However, this equation also shows

that the computation time for prediction is largely dominated

by the size of the convolution kernel. The convolution kernel

must be able to capture the motion of the object but needs

to be small to perform the prediction operation fast.

Figure 1 shows how the number of prediction steps varies

with kernel radii and grid size where the kernel radius is

defined as the number of grid cells the kernel matrix extends

from the center cell to the outer row or column, not including

the center cell itself. For a suitable kernel radius rk, the

number of multiplications required to calculate each grid cell

is (2rk + 1)2. For each grid cell, these multiplications are

summed together, and thus there are a further (2rk+1)2 float-

ing point operations per cell. In total, the number of floating

point operations in the Prediction step is ng(2(2rk+1)2). The

figure shows clearly the exponential increase in operations

with kernel radii. There are also other factors, which will

determine the kernel size in the grid-based representation,

including the allowable memory size and the transfer rates

between different processors and memory locations.

C. Estimated Computational Speedup

Table I summarizes the approximate number of floating

point operations in each major operation of the RBE. For

a given number of grid cells, kernel radius and number

of parallel processors available on the GPU the maximum

attainable speedup may now be estimated with Equation (6)

which has been plotted in Figure 2. Note that the number

of grid cells is a factor of each of the total number of

floating point operations in these processes, thus the speedup

which calculates the proportion of time spent in each process,

Fig. 1. Number of floating point operations in prediction

will be theoretically independent of grid size. For example,

for a grid with 1,000,000 cells, a kernel radius of 8 and

using an NVidia G80 chipset GPU with 32 coprocessors,

the maximum speedup attainable is approximately 27.58 for

the prediction and 1.00 for the update step.

TABLE I

COMPUTATIONAL REQUIREMENT FOR GRID-BASED METHOD

Operation Number of floating point operations

Update 3ng

Prediction ng

{

2 (2rk + 1)2
}

Fig. 2. Computational Speedup for Grid-based Representation

When computed linearly using a CPU, the computational

time required for an iteration of RBE at 4740 grid cells was

1.27 seconds, which would mean that, by parallelizing the

prediction step alone, the iteration time could be reduced

to approximately 0.046 seconds with a 96.4% reduction in

computation time. Although this is a theoretical limit, the

parallelization of the prediction step with the grid-based

method has very low overhead due to memory access issues.

This is because the data is stored coherently in a matrix in the

grid-based method, which means that the actual improvement

in computation time should be close to this estimated limit.

IV. NUMERICAL EXAMPLES

This section presents results of a series of qualitative

and quantitative tests carried out to investigate real-time

capability of the system implementing the proposed parallel

RBE. The experimental setup used in the tests is a parallel

318

RBE system which utilizes an NVidia GPU to achieve real-

time performance. The setup specifications which have been

chosen is shown in Table II.

TABLE II

TEST COMPUTER SYSTEM SPECIFICATIONS

Processor Intel Core2Duo, 2.4GHz
Memory 2.0GB RAM

OS Windows XP Pro, Service Pack 2
GPU NVidia 8800GTS, 640MB onboard RAM, stream processors

A. Validation

1) Test 1: Validation of parallelized RBE: Test 1 was

aimed at validating the proposed parallelized RBE by com-

paring it with results from the sequential RBE which runs on

a CPU only. As RBE is recursive, any errors in an iteration

of the parallel RBE will rapidly accumulate. Both the RBEs

were commenced with the same target belief. The target grid

size was varied to remove its effect on the results.

The results for the mean squared error are shown in Figure

3. These indicate that there is a small random error between

the parallel and sequential RBEs, with a mean value of

1.0 × 10−6. This is well within the inherent noise of the

models being used in the iteration, and is of the correct order

of magnitude to suggest that it is due to the use of single

precision floating point operations on the GPU as opposed

to the double precision floating point operations on the CPU.

Fig. 3. Mean Squared Error for Parallel Recursive Bayesian Estimation

2) Test 2: Validation of Target Motion Model: The accu-

racy of the RBE was examined to determine the parameters

required for its real-time computation. The size of this

convolution kernel will affect both the accuracy of the

representation of the targets motion as well as the real-time

performance of the system itself. Realistic limits on the size

of the convolution kernel need to be established to ensure

that this accuracy is within the noise of the system to be

implemented. In this test, the velocity characteristics of the

motion model of the target were varied as well as the kernel

size used to represent them.

Figure 4 shows the results of the parallel RBE in tests

performed at different grid sizes and convolution kernel sizes

with different input target motions models. The belief at

the end of each time step was analyzed by calculating the

weighted mean position of the peak. The results well show

that the relative error is well below 1% across grid sizes from

10,000 to 1,000,000 grid cells when the kernel size is large or

an appropriate velocity is used. However, the error is large if

the kernel size is small and the target velocity is large. Note

that as the number of grid cells increase to above 1,000,000

the convolution kernels become less accurate as the number

of grid cells between the center of the kernel and the peak

in the kernel becomes larger.

(a) kernel radius 8

(b) kernel radius 32

(c) kernel radius 96

Fig. 4. Parallel recursive Bayesian estimation

B. Computational Speedup by Parallelization

Since the parallelization achieves a speedup in compu-

tation time, the iteration time for the parallelized and the

sequential RBEs was measured at different kernel radii and

is shown in Figure 5(a) whereas the computational speedup

for the experimental iteration time is shown along with the

estimation of the maximum speedup in Figure 5(b). The

resulting improvement in the iteration rate appears to be

fairly close to the theoretical limit to which data paralleliza-

tion could achieve with the NVidia GPU used. On average

across the range of convolution kernels tested, the proposed

parallel RBE has been found to achieve over 95% of the

estimated maximum improvement in computational speed.

319

This reconfirms that the high arithmetic intensity of the

prediction step has resulted in the considerable improvement,

and that the additional overhead due to memory access

and idle threads created for coalesced data reads was small

enough not to affect the result significantly.

(a) Iteration time vs kernel radius

(b) Computational speedup vs kernel radius

Fig. 5. Iteration time and computational speedup

C. Real-time Performance

The objective of this paper is to develop a technique of

performing RBE at an appropriate rate to be considered real-

time so that it can be utilized in real search and tracking

operations. Parametric studies were performed to identify the

real-time performance of the developed parallel RBE system.

1) Search Space Grid Size: One of the most important

parameter in determining the real-time performance of the

system is the size of the grid space itself. As the number

of grid cells increases, the number of floating point and

memory operations, and in turn the iteration time, increases

linearly. The iteration time for the parallel RBE system was

measured at different sizes of grid spaces and the results

are shown in Figure 6. The system shows reasonable real-

time performance over this range of grid cells. Although

the iteration time increases linearly with total number of

grid cells, even at the largest grid size tested, 1,000,000,

the iteration time is in the order of 0.1 seconds.

2) Number of Sensor Platforms and Sensor Range:

Previous tests of the real-time performance were carried

out with a single sensor platform with a typical search

range, however the impact with which the characteristics

and quantities searching sensor platforms have on the real-

time performance should also be analyzed. Figure 7 shows

the resulting iteration time of the parallel RBE system for

different numbers of sensor vehicles and with sensor ranges

of 5m, 50m and 100m. The results indicate that the increase

in time with respect to the number of sensors is linear and

Fig. 6. Iteration time vs grid size

not significant. Even for sensor ranges as large as 100m,

the iteration time for 100 such sensor platforms is only

20% longer than for a single sensor platform. These results

indicate that the real-time RBE system will still be able to

iterate at real-time speeds for problems involving a number

of sensor platforms with considerable sensor ranges.

Fig. 7. Real-time performance with multiple sensor platforms

D. Autonomous Cooperative Search by UGVs

The parallel RBE system was finally used with physical

autonomous UGVs for cooperative search. The UGVs were

designed to transmit all observations so that the computer at

the base station can perform RBE with a GPU and transmit

control actions to the UGVs.

The sequence of images in Figure 8 present the target

belief updated using the parallel RBE system. The figure

also shows a two-dimensional contour plot of the belief

overlayed on the satellite image to illustrate correlation

between the UGV positions in the search space and its

position in the real world. The results illustrate the ability of

the system to operate not only real-time RBE by receiving

UGV positions and but also perform real-time cooperative

control by transmitting waypoints to the autopilots on the

UGVs.

Figure 9(a) shows the iteration times for the parallel RBE

as well as that for communication and the total iteration time

during experiments whereas the ratio of the iteration time

for the parallel RBE to the total iteration time is plotted in

Figure 9(b). Even at the larger grid size of 1,000,000 cells,

the parallel RBE takes less than 35% of the total iteration

time and has been found to allow real-time RBE without

much influence.

V. CONCLUSION AND FUTURE WORK

The parallelization of grid-based RBE using a GPU for

real-time control of autonomous vehicles has been presented.

320

(a) 0 second

(b) 60 seconds

(c) 120 seconds

Fig. 8. Cooperative search by UGVs

(a) Iteration time vs grid size

(b) Percentage vs grid size

Fig. 9. Iteration time and percentage

Both the update and prediction process have been paral-

lelized, and because of the heavy computational load of

prediction when the kernel radius is large, the computational

speedup has been estimated analytically. Numerical examples

have first validated the performance of the proposed RBE and

further investigated its effectiveness through parametric stud-

ies. The proposed RBE was then applied to the cooperative

search by autonomous UGVs, and its real-time capability has

been demonstrated.

The current study is merely the first step for the appli-

cation of the parallel RBE, and various extensive studies

are ongoing. One of the ongoing theoretical studies is the

incorporation of a frontier-based exploration technique that

changes the configuration of the target space based on the

belief. To further demonstrate its validity and efficacy in

real world applications, the parallel RBE is currently being

applied to the cooperative control of multiple UGVs and

UAVs.

REFERENCES

[1] Bergman, N. Recursive Bayesian Estimation Navigation and
Tracking Applications, Ph.D Dissertation, Linkopings Univer-
sity, 1999.

[2] Bourgault, F., Goktogan, A., Furukawa, T. and Durrant-Whyte,
H. F., “Coordinated Search of a Lost Target in a Bayesian
World,” Journal of Advanced Robotics, pp. 187-195, 2004.

[3] Bourgault, T., Furukawa, T. and Durrant-Whyte, H. F., “Op-
timal Search for a Lost Target in a Bayesian World,” Eds. S.
Yuta and H. Asama, Field and Service Robots IV, Springer
Tracts in Advanced Robotics (STAR), Springer-Verlag, Vol.
24, pp. 209-222, 2006.

[4] Furukawa, T., Bourgault, F., Lavis, B. and Durrant-Whyte,
H.F., “Bayesian Search-and-Tracking Using Coordinated
UAVs for Lost Targets,” 2006 IEEE International Conference
on Robotics and Automation, Orlando, May 14-18, 2006, pp.
2521-2526, 2006.

[5] Guo, D. and Wang, X., “Quasi-Monte Carlo Filtering in
Nonlinear Dynamic Systems,” IEEE Transactions on Signal
Processing, 54(6), pp. 2087-2098, 2006.

[6] Hammersley, J. M. “Monte Carlo Methods for Solving Multi-
variable Problems,” Ann. New York Acad. Sci., 86, pp. 844-874,
1960.

[7] Liu, J.S. and Chen, R., “Sequential Monte Carlo Methods
for Dynamic Systems,” Journal of the American Statistical
Association, 93(443), pp. 1032-1044, 1998.

[8] Peraire, J., Vahdati, M., Morgan, K., Zienkiewicz, O.C.,
“Adaptive remeshing for compressible flow computations,” J.
Comp. Phys., 72(2), pp. 449-466, 1987.

[9] Sato, M., “Theory of hyperfunctions,” Int. J. Fac. Sci., Univ.
Tokyo, Sec. I, 8(1) 139-193, 1959.

[10] Sorenson, H.W. Ed., Kalman Filtering: Theory and Applica-
tion, New York: IEEE, 1985.

[11] Tarantola, A., Inverse Problem Theory and Methods for Model
Parameter Estimation, Society for Industrial and Applied
Mathematics, Philadelphia, 2005.

[12] Whittaker, E. T. and Robinson, G. “Gauss’s Formula of Nu-
merical Integration,” The Calculus of Observations: A Treatise
on Numerical Mathematics, 4th ed., New York: Dover, pp.
152-163, 1967.

[13] Zienkiewicz, O. C. and Taylor, R. L., The Finite Element
Method: Its Basis and Fundamentals, Sixth Edition, Elsevier
Butterworth-Heinemann, Oxford, 2005.

321

