
Multi-Robot Flooding Algorithm for the Exploration of Unknown

Indoor Environments

Flavio Cabrera-Mora, Jizhong Xiao and Peter Brass

Abstract— In this paper we study the problem of multi-robot
exploration of unknown indoor environments that are modeled
as trees. Specifically, our approach consider that robots deploy
and communicate with active landmarks in every intersection
they encounter. We present a novel algorithm that is guaranteed
to completely explore any tree with m edges and diameter D,
by allowing k robots to be fed into the tree one at a time.
We prove that the exploration time of the algorithm grows in
linear proportion with the size of the tree and is not bigger
than D+m. Simulation results are presented that corroborate
the theoretical analysis.

I. INTRODUCTION

The exploration of unknown indoor environments is a

problem that remains open in the robotics community. Sev-

eral approaches have been proposed to deal with this problem

and can be mainly characterized by the way the environment

is modeled: as a geometric structure [1], [2], [3]; as a grid

[4], [5]; or as a graph [6], [7], [8], [9], [10].

In this paper we consider the exploration of an indoor

environment with multiple robots. These robots are as-

sisted by active landmarks (tokens) that are deployed by

the robots while performing the exploration. These tokens

provide directions to the robots that find them along the

way. Considering these tokens as nodes of a graph and the

passages between them as edges, the exploration process can

be conveniently represented as the problem of exploring a

graph: visiting all vertices and traversing all edges.

Exploration of graphs has been a well-studied problem,

especially for the single-robot case, for both directed and

undirected graphs. Exploration of directed graphs, where

robots can move only in one direction, has been studied for

example in [11] where the minimum time of exploration is

investigated. In [12], it is proven that by letting a single robot

to mark the environment with passive landmarks (pebbles)

the exploration time is dramatically improved. In [13], it was

shown that a single robot can learn its way through a directed

graph in time polynomial in n, using only one pebble, if the

upper bound on the total number of vertices n is known. If,

on the other hand, this upper bound is not known, it is stated

that θ(loglog(n)) pebbles are both necessary and sufficient

to perform the exploration. However, the authors in [13] do

not mention how much the exploration time will be improved

when using more than one pebble.

Flavio Cabrera-Mora is with the Department of Electrical Engineering,
The Graduate Center of the City University of New York, 365 5th Ave.
New York, NY, 10016 USA, fcabrera-mora@gc.cuny.edu

Jizhong Xiao and Peter Brass are with the Departments of Electrical
Engineering and Computer Science, The City College of the City University
of New York, 140th Street & Convent Avenue, New York, NY 10031, USA
jxiao@ccny.cuny.edu, peter@cs.ccny.cuny.edu

Exploration using undirected graphs is considered in some

other works. In [6] the goal is to achieve an efficient

exploration under the constraint that the robot must return

to the root for refueling periodically. In [14] the exploration

of all vertices and all edges is achieved while minimizing the

total number of edge traversals. In [15] and [16], undirected

graphs were used to study the dynamic coverage problem

using a single robot and the least recently visited (LRV)

strategy. The robot deploys tokens that are capable of com-

munication and sensing. These tokens assist the robot by

providing instructions, although this instructions are limited

to only the four cardinal directions. They proved that in a

tree with m edges, the exploration time of LVR is ≤ 2m,

where their definition of complete exploration is that every

edge has been traversed at least once.

Ideally, the exploration process must be accomplished as

fast as possible and to this end, the use of multiple robots is

expected to perform faster than the single robot case. In [17],

an exploration algorithm that explores sparse trees with k

robots is presented and it is shown that its competitive ratio

is influenced only by the density and the diameter of the

tree. In this approach, the communication exists exclusively

among robots and it occurs only when robots meet in the

same vertex. In [18], k robots are used to explore a tree with

m edges and diameter D, using a communication model that

allows all robots to exchange information at every step of

the process through the use of tokens. The authors proposed

an exploration algorithm with a running time O(m
log k

+D),

which is O(k
log k

) larger than the optimal exploration time

when the tree is known a-priori. Finally, in [19], the authors

presented an algorithm for the exploration of a tree with

m edges and radius r, using k robots, and show that the

exploration time is 2m
k

+ O(rk−1), improving the result in

[18] and almost reaching the lower bound max(2m
k
, 2r).

Without exception all the aforementioned approaches for

collective exploration assume that all k robots, located at the

origin, enter the tree all at once in the first step. In practical

implementations however, it will never be physically possible

to make k robots enter an environment or traverse a passage

all at once if the number of robots is large enough. Moreover,

having k robots entering one particular edge all at once make

them vulnerable to the environment. Furthermore, in some

particular scenarios, such as a long path with no branches,

the contribution of the k robots is null since all the robots

will traverse the entire path, as if they were performing the

exploration individually.

In this paper, we propose a novel algorithm in which

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 5478

robots enter an undirected tree one at a time and only one

robot is allowed to traverse an edge at each step. On every

vertex, robots deploy tokens that later on will instruct the

robots toward unexplored/open edges, preventing robots to

enter already explored subtrees. Consequently, the decision

about the next move of a robot is mainly taken by the tokens.

This creates a decentralized system, freeing robots resources

for other tasks. We derive an upper bound for the exploration

time, proving that it depends linearly on the size of the

tree and that is never bigger than D +m. We also perform

simulation to study the behavior of the algorithm in trees of

different sizes.

The paper is organized as follows: Section II describes

our proposed flooding algorithm. Its analysis on trees is

performed in Section III. Simulations showing the behavior

of the algorithm in different trees are presented in Section

IV. Finally,concluding remarks are offered in Section V.

II. FLOODING ALGORITHM

A. Preliminaries

k Robots are initially located at the root r of an unknown

tree T = (V,E), containing n vertices and m edges. Each

robot is uniquely identified with an integer number from 1

to k. Robots explore the tree by moving along the edges that

link a pair of vertices. All robots are identical and explore

the tree following the same exploration algorithm. Define a

parent vertex as one with at least one edge leading to another

vertex in a downward direction. The latter vertex is called

a child vertex. A leaf is a vertex with no children. Define a

downward edge ěv as an edge that leads from a vertex v to

one of its children. That is, for any vertex v, the number of

downward edges can be expressed as: |ěv| = deg(v)− 1.

Define a token (active landmark) as a bookkeeping device

being deployed in each vertex. Every token has communi-

cation capabilities and is able to store at least the following

information:

• The number of edges converging in a vertex

• The ID of the robots that have visited it

• A list of available edges for robots to explore

• The direction that a robot will take in the next step

Each robot is capable of:

• Carrying an unlimited number of tokens.

• Assessing whether it has reached a vertex and deploy a

token if none is present in it.

• Distinctively identifying every edge on that vertex.

At every step, a robot located at a vertex can either

traverse an edge or remain in its current position. Define

an unused/unexplored edge as one that still has not been

traversed by any robot. Define an open edge as one through

which a robot has left a vertex v, without returning back

to it nor sending a message that it has reached a leaf (i.e.,

the robot is still exploring downwards the subtree rooted at

v). If a vertex has some open edges, the token will send a

robot to each open edge in increasing order. For instance,

let assume vertex v has open edges labeled 2, 5, 8 and 10.

The next robot arriving at v will be sent to edge 2 the next

step. Any robot that arrives at v later will be sent to edge

5, and so forth, until one robot has been sent to each open

edge distributing the robots as evenly as possible.

Assume that at each step, each token is able to transmit

its own information about available edges to its parent token

and that this transmission is instantaneous. At the beginning,

the first robot deploys a token at r. Each time a robot reaches

a vertex where a token has been deployed before, it will read

and write its information. Define back-pointer as a list of all

edges a robot has visited in order to be in its current position.

Each edge in the list must have associated the ID of the two

tokens the edge is connected to. This list can be used later

on by the robot to back trace its steps to r. A robot arriving

at a leaf will drop a token, marking the place, and the token

will transmit to its parent that there are no branches available

at this end. This will prevent robots to enter the edge again

and will inform that the robot currently located at the leaf is

returning back to its parent in the next step.

B. “One-by-one” Flooding Algorithm

The main difference between our algorithm and those in

the literature is that ours allows robots to enter the tree one

at a time and only one robot is allowed to traverse an edge

in each step. In addition, each token exchanges information

with its parent about the next destination of the robot in the

vertex. As a result, no two robots will enter the same vertex

on the same step.

Algorithm 1: “One-by-one” Flooding Algorithm

1 Let R be a robot arriving at a vertex v through edge e;

2 Let ej be the ID of each edge at v;

3 Let j be the total number of edges at v;

4 if there is no token present at v then

5 R drops one token at v;

6 R follows one of the j available edges in next step;

7 else if there are unused edges at v then

8 R follows one of the unused edges in next step;

9 else if there are open edges at v then

10 if open edges to be used by other robots in next

step then

11 R will stay put at v in next step;

12 else

13 R follows one open edge in next step;

14 end

15 else

16 R returns to the parent vertex of v using its

back-pointer in next step;

17 end

The algorithm exhibits four properties:

1) No edge is used more than twice by the same robot.

2) Some robots might remain static in some vertices (they

will not enter an edge unless an instruction to do so is

given by the token at the vertex).

3) The exploration is performed by the number of robots

that is more appropriate for the size of the tree.

5479

4) No robot returns to r before every edge has been

traverse and every vertex has been visited at least once.

III. RESULT AND ANALYSIS ON TREES

Define finished tree as a tree in which all edges have been

traversed and all vertices have been visited at least once by

any robot, and the finished exploration time (te) as the time

needed for the tree to be finished. Define completed tree as

a tree that is finished and in which all robots are back at r.

The complete exploration time (tc) is the time required for

the tree to be completed.

Consider a tree T with m edges, rooted at vertex r and

define dr as the degree of r. Assume that there are k robots

stationed at r and that it is guaranteed that there will be

robots available at all times in r to be fed into the tree until

the exploration is finished.

Claim 1: Any tree can be considered as being formed by

dr individual subtrees, all of them rooted at r, where the

degree of each root is equal to 1.

Proof: By definition, the algorithm will feed one robot

into each available unused/open edge at every step. At the

start of the exploration, there are dr unused edges in r, along

with k robots. The first dr robots will enter one of the dr
unused edges in the first step since there is nothing that

prevent them to do so (recall that only a token can instruct the

robot to remain static in a vertex). The feeding process starts

at the same time on all the subtrees of r. Whenever a subtree

is finished, the robots in that subtree will start returning to

r, but this will not affect the movement of robots in the

other subtrees of r. Thus, the exploration of a subtree of r

is independent of the exploration of any other subtree, and

as such every subtree can be thought of as an individual tree

where its root has degree 1.

Define a path S = [a0, a1, a2, . . . , al−1, al, al+1] as the

path from the root to the vertex that will be explored last,

where a0 = r and the last element is a leaf. Define Ts as the

subtree of r where S is specified. Since we are interested in

the worst performance, at every vertex the decision of what

edge a robot should take next step belongs to the adversary.

That is, if vertex ai has j unexplored edges, the edge that

leads to ai+1 will be taken after all other j − 1 edges has

been taken before.

Claim 2: The complete exploration time of tree T equals

the time needed to completely explore the subtree Ts.

Proof: Proof of claim 2 follows directly from claim

1: since each subtree of r is independent of each other, and

because the subtree Ts is the subtree that will be completely

explored last, any other subtree will be completed before Ts.

Consequently, Ts will determine the time in which tree T is

completely explored.

Due to claim 2, from now on the analysis of tree T will be

referred as the analysis of Ts.

Claim 3: The total time to complete the exploration tc
equals the total time to finish the exploration te plus the

number of robots km inside the tree at time te. That is,

tc = te + km (1)

Proof: One of the properties of the algorithm states that

all robots that enter the tree will remain in it until the ex-

ploration is finished either by moving along open/unexplored

edges, or by remaining static in a vertex. If at time te there

are km robots inside the tree, and since only one robot is

allowed to traverse an edge in each step, then it will take

km steps to evacuate all robots to r.

Claim 4: With algorithm “one-by-one”, the maximum

number of robots entering a tree equals te. That is,

kmmax
= te (2)

Proof: According to the algorithm, at each step one

robot enters a tree. If conditions are adequate, the algorithm

will keep feeding robots until time te is reached. Since te is

the time when the last unexplored edge is traversed, after te
all robots in T will start returning to r.

Theorem 1: Algorithm “one-by-one” will completely ex-

plore any tree in time at most D +m. That is,

tc ≤ D +m (3)

Proof: In the first part of the proof we will consider how

the algorithm perform in smaller trees. Define “minimum

tree” as a 3-edge tree with D = 2 and m = 3 that will always

be explored by two robots in time te = 3 (Fig. 1). As a result,

the time for complete exploration will be: tc = te+km = 5.

Note that tc can also be defined, for this configuration, as:

tc = D + m = 5. Define “extended minimum tree” as a

tree with D = 2 and me = j + 1 edges, where j is the

total number of leaves. The extended minimum tree will also

be explored by at most two robots (Fig. 2). In general, the

exploration time of any extended minimum tree with two

robots can be expressed as:

te = me (4)

tc = te + km = me + 2 = me +D (5)

r

step 1

r

step 2

r

step 3

path of robot 1

path of robot 2

(= 3)te

Fig. 1. Two robots exploring the “minimum tree”

Now, consider a tree with diameter D ≥ 3. According to

the definition of internal vertex, the tree with the minimum

number of edges and diameter D ≥ 3 has the configuration

shown in Fig. 3a. Fig. 3b shows that this tree can be decom-

posed into D− 1 minimum trees. Since each minimum tree

will be explored in t′e = m′

e with two robots, then the total

5480

r

step 1

r

step 2

r

step 3

path of robot 1

path of robot 2

()t = j+1e

...

r

step 4

r

step j+1

... ...

... ...

1

2
3 j-1

j

Fig. 2. Two robots exploring an “extended minimum tree”

exploration time will be equal to te = (D−1)m′

e. However,

this result is inaccurate: there are some redundant edges, as

shown in Fig. 3b. For each D−1 minimum trees forming T

there will be D−2 redundant terms. Consequently, the total

exploration time can be expressed as,

te = (D − 1)m′

e − (D − 2) (6)

The total number of edges in T can be obtained from the

following analysis: each minimum tree has m′

e edges, and

there are D − 1 minimum trees and D − 2 redundant edges

that belong to more than one minimum tree. Thus, the total

number of edges in T can be expressed as,

m = (D − 1)m′

e − (D − 2) (7)

Comparison of (6) and (7) leads to: te = m.

The number of robots inside the tree in Fig. 3a at time te
can be obtained following a similar analysis: each minimum

trees is explored by two robots. There are some robots that

are considered in more than one minimum tree (cf. Fig.

3b). That is, for each pair of minimum trees, there is one

redundant robot. Thus, the total number of robots at time te
can be expressed as:

km = 2(D − 1)− (D − 2) = D (8)

Using claim 3, we can express tc as,

tc = te + km = m+D (9)

Thus, theorem 1 holds for any small tree of diameter D and

with the minimum number of edges in it.

In the second part of the proof, we study the behavior of

the algorithm in any larger tree. To this end, we will use a

full N -ary tree. A full N -ary tree is one in which all leaves

have the same depth (diameter) and all internal vertices have

degree N , where by definition N ≥ 2 and D ≫ N . Consider

there exists a N -ary tree rooted at a1 with diameter h. The

path S is defined in the N th subtree as shown in Fig. 4.

r

..
.

..
.

..
.

r

redundant
robots

redundant
edges

=

a) b)

Fig. 3. a) Tree with minimum number of internal vertices and D ≥ 3

(dots represent robots located at vertices at time te) b) Decomposition into
D − 1 minimum trees

1

2
3

N

...

...
...

...

...
...

...
...

...
...

...

...

...
...

...

...

...

...

...

...

...

...

1 2 3 4 N
h-1

...

a0

a1

a2

a3

a
l

a
l+1

a
l-1

a
l-2

h

Fig. 4. N -ary tree rooted at a1

The total number of leaves in a N -ary tree equals Nh, and

the number of internal vertices can be calculated as follows,

1 +N +N2 + · · ·+Nh−1 =

h−1∑

i=0

N i

=
Nh − 1

N − 1
(10)

Since it is assumed that the N -ary tree is rooted at a1, the

total number of vertices n in T equals,

n =
Nh − 1

N − 1
+Nh + 1 (11)

Where the one accounts for vertex a0. The total number of

edges in T is,

m = n− 1 =
Nh − 1

N − 1
+Nh =

Nh+1 − 1

N − 1
(12)

Since h = D − 1, then (12) can be rewritten as,

m =
ND − 1

N − 1
= ND−1 +ND−2 + · · ·+N + 1(13)

5481

If the “one-by-one” algorithm is used in the N -ary tree,

the first subtree of a1 will be finished first, then the second

subtree and so forth. Once finished, a subtree will be blocked

for other robots to enter. By time te, it is likely that some

robots have returned to a1 and entered any other open

subtree. This will block robots at r to enter the tree at every

step, and as a result the total number of robots in the tree at

time te will be less than the maximum possible number of

robots (recall claim 2). That is,

km < te (14)

As a result,

tc = te + km

< 2te (15)

Now we can look for te: if the N -ary tree has in total

Nh leaves, there are Nh−1 “extended minimum trees” in T .

Assume that all extended minimum trees can be labeled with

numbers from 1 to Nh−1, where the latter corresponds to the

one rooted at al−1 that leads to the last vertex in the path

S. Assume that all the Nh−1 extended minimum trees will

be explored by only one robot. This will guarantee that tc
is maximized. Additionally, any extended minimum tree will

be entered by one robot after the robot has traversed at least

h− 2 steps (i.e., the time it takes to go from a1 to the root

of the last extended minimum tree of the subtree). Finally,

the first robot to enter the N (h−1)th extended minimum tree

will do so after a robot has been sent to any other extended

minimum tree. That is, the first robot will enter N (h−1)th

extended minimum tree after N (h−1) − 1 steps have passed.

All these times are with reference to the N -ary tree which

is rooted at a1. In order to refer them to a0 we need to add

one additional step. As a result, the edge connecting al to

al+1 will be traversed at time,

te = (h− 2) + 2N + (Nh−1 − 1) + 1

= Nh−1 + 2N + h− 2 (16)

Using (16) into (15),

tc < 2(Nh−1 + 2N + h− 2)

< 2Nh−1 + 4N + 2h− 4 (17)

Expressing tc as a function of D yields,

tc < 2ND−2 + 4N + 2D − 6 (18)

On the other hand, the sum D +m results on,

D +m = D +
ND − 1

N − 1

= ND−1 +ND−2 + · · ·+N + 1 +D (19)

Comparison of (18) and (19) reveals that tc < D+m. Thus,

theorem 1 holds for any large tree.

Finally, combining both parts of the proof yields that for

any tree tc ≤ D +m.

IV. SIMULATION RESULTS

We simulate the behavior of our “one-by-one” flooding

algorithm in different trees of increasing size (increasing

number of vertices n), starting with the “minimum tree”

(n=4). Simulation results show the upper bound of explo-

ration for every tree and the complete exploration time given

by the algorithm. A typical run for trees of up to 200 vertices

is show in Fig. 5. The algorithm always explores the tree

in its entirety. Fig. 6 shows that for a given number of

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

Number of Vertices

S
te

p
s

Upper bound ()D+m

Time for complete exploration ()tc

Fig. 5. Simulation results for a typical run of the algorithm in trees of
different sizes from n=4 to n=200

vertices different configuration of trees are possible, where

every configuration will have different exploration times.Fig.

7 shows the simulation results for 50 randomly generated

tree configurations per each n ranging from 4 to 100. The

complete exploration time corresponds to the mean value of

the 50 runs along with its standard deviation per each value

of n. The result of the simulations (Figs. 5 and 7) show that

r

D = 2

r

D = 3

r

D = 4

Fig. 6. Example of different tree configurations for the same number of
vertices (n=8)

tc is always less or equal than the proposed upper bound.

In fact, as the size of the tree grows the gap between the

upper bound and tc increases, guaranteeing that the upper

bound will never be violated even if the size of the tree

goes to infinite. Another interesting result of the simulations

is that the grow of tc is almost linear with the size of the

tree. This is a very desirable characteristic since it shows

its predictable nature. Furthermore, Fig. 7 shows that the

5482

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

Number of Vertices

S
te

p
s

Upper bound ()D+m

Time for complete exploration ()tc

Fig. 7. Simulation results for 50 runs of the algorithm in trees of different
sizes from n=4 to n=100

proposed upper bound is tight with respect to the complete

exploration time of the algorithm. Finally, Fig. 8 shows that

the relationship between the number of robots k needed to

explore an unknown tree and the size of the tree is almost

linear. This is an important fact about the algorithm since it

glimpses the existence of a linear upper bound in the number

of robots needed to perform the exploration of any unknown

tree with our algorithm. That is, there exists a limit in the

number of robots beyond which the exploration time will not

be improved.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

Number of Vertices

N
u

m
b

e
r

o
f

R
o

b
o

ts

Fig. 8. Number of robots used for completely explore trees of different
sizes from n=4 to n=100 using “one-by-one” algorithm

V. CONCLUSIONS

In this paper, we present a novel algorithm that is guaran-

teed to completely explore any undirected tree with m edges

and diameter D. The algorithm differs from other works in

the literature by the fact that robots are allowed to enter only

one at a time and that edges can be traversed by only one

robot in each step. We prove that the complete exploration

time of the algorithm tc is never larger than D + m. This

proposed upper bound is independent of the number of robots

k needed to perform the exploration, another difference with

respect to other approaches in the literature. We simulate

the behavior of the algorithm on trees of different sizes and

show that the analysis of section III produces a tight upper

bound with respect to the complete exploration time. The

simulations also show that both, the growth of tc and the

number of robots k needed to perform the exploration are

linearly related to the size of the tree.

REFERENCES

[1] A. Blum, P. Raghavan, and B. Schieber, “Navigation in unfamiliar
geometric terrain,” in Proceedings of the twenty-third annual ACM

symposium on Theory of computin (STOC), 1991, pp. 494–504.
[2] C. Papadimitriou and M. Yanakakis, “Shortest paths without a map,”

Theoretical Computer Science, vol. 84, pp. 127–150, 1991.
[3] X. Deng, T. Kameda, and C. Papadimitriou, “How to learn an unknown

environment,” in Proceedings of the IEEE 32nd Annual Symposium on

Foundations of Computer Science (FOCS), 1991, pp. 298–303.
[4] B. Yamauchi, “Frontier-based approach for autonomous exploration,”

in IEEE International Symposium on Computational Intelligence,

Robotics and Automation, Monterrey, CA (USA), July 1997, pp. 146–
151.

[5] H. Moravec, “Sensor fusion in certainty grids for mobile robots,” AI

Magazine, vol. 9, pp. 61–74, 1988.
[6] B. Awerbuch, M. Betke, R. Rivest, and M. Singh, “Piecemeal graph

exploration by a mobile robot,” in Proceedings of the 8th Annual ACM

Conference on Computational Learning Theory (COLT), 1995, pp.
321–328.

[7] B. Awerbuch and S. Kobourov, “Polylogarithmic-overhead piecemeal
graph exploration,” in Proceedings of the 11th Annual ACM Confer-

ence on Computational Learning Theory (COLT), 1998, pp. 280–286.
[8] P. Panaite and A. Pelc, “Impact of topographic information on graph

exploration efficiency,” Networks, vol. 36, pp. 96–103, 2000.
[9] A. Dessmark and A. Pelc, “Optimal graph exploration without good

maps,” ESA 2002, ser. LNCS, vol. 2461, pp. 374–386, 2002.
[10] C. Duncan, S. Kobourov, and V. Kumar, “Optimal constrained graph

exploration,” ACM Transactions on Algorithms, vol. 2, pp. 380–402,
2006.

[11] X. Deng and C. Papadimitriou, “Exploring an unknown graph,” in
Proceedings of the IEEE 33th Annual Symposium on Foundations of

Computer Science (FOCS), 1990, pp. 355–361.
[12] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “Robotic exploration

as graph construction,” IEEE Transactions on Robotics and Automa-

tion, vol. 7, no. 6, pp. 859–865, December 1991.
[13] M. Bender, A. Fernandez, D. Ron, A. Sahai, and S. Vadhan, “The

power of a pebble: exploring and mapping directed graphs,” in
Proceedings of the thirtieth annual ACM symposium on Theory of

computing (STOC), Dallas, TX (USA), May 1998, pp. 269–278.
[14] P. Panaite and A. Pelc, “Exploring unknown undirected graphs,”

in Proceedings of the ninth annual ACM symposium on Discrete

Algorithms (SODA), San Francisco, CA (USA), January 1998, pp.
316–322.

[15] M. Batalin and G. S. Sukhatme, “Coverage, exploration and deploy-
ment by a mobile robot and communication network,” Telecommuni-

cation Systems Journal, Special Issue on Wireless Sensor Networks,
vol. 26, no. 2-4, pp. 181–196, June 2004.

[16] ——, “The design and analysis of an efficient local algorithm for
coverage and exploration based on sensor network deployment,” IEEE

Transactions on Robotics, vol. 23, no. 4, pp. 661–675, August 2007.
[17] M. Dynia, J. Kutylowski, F. M. auf der Heide, and C. Schindelhauer,

“Smart robot teams exploring sparse trees,” Lecture Notes in Computer

Science, vol. 4162, pp. 327–338, August 2006.
[18] P. Fraigniaud, L. Gasieniec, D. Kowalski, and A. Pelc, “Collective tree

exploration,” Networks, vol. 48, pp. 166–177, 2006.
[19] P. Brass, A. Gasparri, F. Cabrera-Mora, and J. Xiao, “Multi-robot

tree and graph exploration,” in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), Kobe, Japan, May
2009, pp. 2332–2337.

5483

