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Abstract— Reliable real-time localization is a key component
of autonomous industrial vehicle systems. We consider the
problem of using on-board vision to determine a vehicle’s
pose in a known, but non-static, environment. While feasible
technologies exist for vehicle localization, many are not suited
for industrial settings where the vehicle must operate depend-
ably both indoors and outdoors and in a range of lighting
conditions. We extend the capabilities of an existing vision-
based localization system, in a continued effort to improve the
robustness, reliability and utility of an automated industrial
vehicle system. The vehicle pose is estimated by comparing
an edge-filtered version of a video stream to an available
3D edge map of the site. We enhance the previous system
by additionally filtering the camera input for straight lines
using a Hough transform, observing that the 3D environment
map contains only linear features. In addition, we present an
automated approach for generating 3D edge maps from laser
point clouds, removing the need for manual map surveying and
also reducing the time for map generation down from days to
minutes. We present extensive localization results in multiple
lighting conditions comparing the system with and without the
proposed enhancements.

I. INTRODUCTION

Research on the automation of industrial vehicles has

received significant attention in recent years. Heavy industry

can benefit from automated mobile equipment by increasing

productivity and improving personnel safety. Accurate lo-

calization technologies are not only critical for autonomous

navigation, but can also be instrumental in the optimization

of operations with manned vehicles.

To further this goal, we investigate a vision-based localiza-

tion system applied to a large forklift-type vehicle (Fig. 1).

This type of vehicle is primarily used in the aluminum indus-

try to transport molten metal around smelters and is therefore

called a hot metal carrier, or HMC. HMCs operate for

long periods of time both indoors and outdoors in changing

lighting conditions; therefore, any visual localization solution

must be able to handle varying illumination conditions.

Ultimately, the objective of our research is to develop a

fully dependable autonomous industrial vehicle. To achieve

dependability, the accuracy and robustness of the localization

system are essential. Standard solutions such as GPS are

not applicable due to indoor navigation requirements and

multi-path effects near buildings. Other sensor modalities,

including laser [1] and WiFi [2], have also been explored
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Fig. 1: The autonomous hot metal carrier.

for our localization requirements. Our strategy to achieve

robustness is to employ multiple localization systems that can

be fused compared in order to automatically detect failure

or degradation of one of the systems. By choosing different

sensing modalities, the likelihood of a simultaneous failure

of all systems is low, despite there being the potential for

individual failures. For example, the aluminum production

process requires strong DC currents, which result in ex-

tremely high magnetic fields in parts of the operational space.

These fields are quite capable of rendering equipment with

small moving parts, such as a 2D laser scanner, inoperable.

The aim of the vision-based localization system discussed in

in this paper is to act as an independent system to increase

localization reliability.

An approach for vision-based localization is to au-

tonomously build visual maps consisting of image point

features, such as SIFT features [3], [4], [5]. One challenge,

however, when building such maps, is that the features are

not invariant to non-planar scenes [6]. Another significant

concern is the fact that the image features can change

dramatically according to lighting conditions, especially in

the case of outdoor operations [3].

To overcome these issues an alternative strategy is to com-

pare an edge-filtered version of the input from the camera

with a predefined 3D edge map of the environment. Several

authors have proposed such an approach in the computer

vision literature. Drummond and Cipolla [7] and Reitmayr

and Drummond [8] apply a real-time edge localization tech-

nique indoors and outdoors. In those works, however, the 3D

edge-based techniques calculate only a single pose estimate
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each iteration, which makes the system more susceptible to

error. Multi-modal techniques such as the recent particle filter

method developed by Klein and Murray [9] offer improved

robustness by maintaining many pose estimates per frame.

The method proposed in this paper further extends our pre-

viously published particle filter approach [10] which is based

on the Klein and Murray algorithm. In our industrial site,

the architectural configuration of the buildings is permanent,

and therefore provides a good set of salient features from

which to localize. We choose line features at the edges and

intersections of walls, roofs, and doorways as they provide a

robust representation and it is possible to observe them from

both monocular camera images and 3D laser point cloud

data.

The site has been professionally surveyed and a 3D edge

map of the environment has been created by measuring the

end points of linear features on major building structures. In

the first incarnation of the localization system, this surveyed

edge map was required for the observation model. In addition

to the time and financial cost of professional surveying, it is

also sometimes not possible to get significant access to parts

of an industrial site both to avoid interruptions in operation

and placing humans into hazardous areas. In the proposed

version, we eliminate the requirement of contracting survey-

ors by extracting the edge set autonomously from 3D laser

point cloud data. Our other main contribution is the use

of the probabilistic Hough transform as a post-processing

step to filter out non-linear edges from the camera input to

the localization algorithm. This modification improves the

performance of the algorithm by reducing the number of

unsuitable detections used as observation candidates. The

proposed modifications are evaluated under several different

illumination conditions, during operations at different times

of the day and under different weather conditions.

The remainder of this paper is organized as follows. In

Section II we describe in detail the visual localization system.

We then introduce technique to improve the robustness of

the system with the use of the Hough Transform to filter

the edge set in Section III. In Section IV we describe a

method to automatically generate the edge map using 3D data

collected from two laser range sensors. We provide results

from experiments in our industrial site in Section V, followed

by our conclusions in Section VI.

II. SYSTEM DESCRIPTION

The proposed vision-based technique uses cameras

mounted on a vehicle tracking linear features such as build-

ing edges, doors, and rooflines in a large outdoor industrial

building environment. For this task, a sparse 3D edge map

of the site is utilized, consisting of around 20 large industrial

buildings. This map can be generated via professional sur-

veying, or acquired automatically with laser range sensors, as

described later in Section IV. Examples of the surveyed map

and of the 3D laser generated map are given in Fig. 4. Once

the map is created, a vehicle moving through the environment

can be localized by matching edges in the map with edges

extracted from the camera images. The comparison between

the image and the map is calculated for each pose hypothesis

in a particle filter and provides a likelihood measure for that

particle.

Full details on the particle filter implementation can be

found in a previous publication [10]. This reference also

provides additional information about the system, such as

robustness to occlusions and intelligent exposure control to

deal with challenging outdoor lighting conditions.

III. APPLICATION OF THE HOUGH TRANSFORM

In this section we propose the use of the Hough transform

to improve the performance of the algorithm. The Hough

transform [11] is a well-known and effective method for

finding lines fitting a set of 2D points. Each line is rep-

resented by two parameters, ρ and θ, which represent the

length and angle from the origin of a normal to the line.

These parameters are discretized and measurement data (e.g.,

image pixels) are accumulated into bins in both distance and

angle space.

The use of the Hough transform has been proposed in

numerous applications in image and video processing [12],

including robot localisation. For example, Kim et al. [13],

employ the Hough transform to detect curbs in an au-

tonomous driving application, whereas Chang et al. [14]

utilize the transform to detect walls in an occupancy grid.

In our system, the 3D edge models consists solely of

straight lines such as roofs, walls, and doors, making it

suitable for the use of the Hough transform. For this reason

we employ the transform as a post-processing step after the

input image has been edge-detected and binarized. This en-

hancement reduces the effect of noise in similarity matching

between the image and the 3D edge model, where noise is

considered any non-straight element such as trees or clouds,

for example.

Let H(x) represent to the Hough transform line filtering

operation on an edge binary image x. Correspondingly, let

D(x) represent the morphology dilation operation [12]. The

final edge image y used by the localization algorithm is given

by y = D(H(x))⊗x, where ⊗ represents the element-wise

AND logical operation. This operation reduces the amount

of lines that are erroneously picked by the Hough transform

that do not correspond to the ones in the 3D edge model. The

dilation avoids cases where very small angular misalignments

between the edge pixels in x and H(x) cause a significant

part of the relevant edge pixels in x to be discarded.

In our implementation, we use the probabilistic Hough

transform [15]. The probabilistic version of the transform

considers that if just a small subset of the edge points in

the image are selected at random, the performance is only

slightly impaired, with a considerably shorter execution time.

Fig. 2 illustrates the application of the Hough transform to

one of the edge images extracted from our experiments.

The Hough transform improves the overall performance

of the system, at the expense of increased computational

complexity.
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(a) Original edge-filtered image. (b) Edge-filtered image after straight
line detection via Hough transform.

Fig. 2: Illustration of the application of the Hough transform to the edge
images. The long vertical edge in the middle of the figure corresponds to
sun glare in a bright day.

IV. EXTRACTING THE EDGE MAP FROM 3D LASER DATA

The initial implementation of the edge-based localization

system [10] relied on the availability of a surveyed 3D edge

map of the environment. A team of professional surveyors

was hired for this task, and the resulting edge map contained

linear features at the edges of buildings, along rooflines,

and around garage doors (Fig. 4a). Even with a fairly small

site, the survey required two full days of work. Despite

its accuracy, the survey was limited to a particular set of

requested features, and ignored others that may be visible

in a camera image. Any changes to the environment at

a later time would have to be remeasured to update the

surveyed map. Given these disadvantages, we propose that

an automated laser-based edge extraction algorithm would

be a more flexible and cost-effective approach.

Laser data was acquired by mounting two SICK LMS

291 laser scanners on one side of the HMC with their

scan planes vertical and oriented at a right angle relative

to one another. This configuration was chosen to reduce the

effects of occlusion. However, it also requires the vehicle to

traverse its path in both directions to ensure full coverage

since the 3D point cloud data is collected only on one side.

Accurate vehicle positioning is required to accurately register

the 3D points, and is achieved using a laser-based SLAM

algorithm. Data from the vehicle’s four horizontally-mounted

lasers are first used to compute an 2D approximation to the

trajectory [16], which is then taken as a prior for the 3D

registration of the vertical laser scan data. A registered 3D

point cloud of the test environment is shown in Fig. 3.

A. Line Extraction

Two types of 3D lines are extracted from the 3D point

cloud of laser range returns. The first are lines at the

intersection of extracted planes, the second type are edge

lines linking depth discontinuities. The plane intersections

are best for finding lines between the ground and walls

of a building or between adjacent sides of a building. The

plane intersection lines are more accurate and less affected

by measurement noise since they are supported by many

more points than the edge-fitted lines. 3D lines can be

indirectly extracted from the intersections between adjacent

planar segments that are found in the point cloud. However,

Fig. 3: A 3D point cloud of the test area. Colors indicate height, with blue
at the ground transitioning to red at the maximum height.

plane intersections are not able to find the lines on the tops

of the buildings or around open doorways. Therefore, lines

are also fitted to laser points at depth discontinuities in order

to extract additional linear edge features.

1) Plane Intersection Edges: To determine the plane

intersection edges, planar surfaces are first segmented from

the point cloud. The local neighborhood of each point is used

to classify its local shape. A kd-tree is used to find the 10

nearest neighbors of each point within a fixed radius of 2 m

from which a covariance matrix is computed. The eigenval-

ues of this covariance matrix are analyzed to determine the

local shape. If the smallest eigenvalue is significantly smaller

then the second smallest, the local shape is considered planar

and the eigenvector corresponding to the smallest eigenvalue

indicates the surface normal.

A bottom-up segmentation procedure iteratively merges

planar points into clusters provided that their normals are

similar. The plane fitting a cluster of points can be de-

termined from its moments up to second order; i.e., the

mean and covariance of all the points in the cluster. The

smallest eigenvector is the plane normal and the centroid is

used to determine the plane’s offset. To build the clusters,

pairs of adjacent points are processed in order of their

decreasing shape similarity. If the points are in separate

clusters that appear to be from the same plane, then the

clusters are merged. The merging decision is based on the

plane alignment error ǫ, which is computed as a weighted

combination of the plane offset errors do (measured along

the normals) and the difference in normal angle dn:

do(Πa,Πb) = [(µa − µb)
T na]2 + [(µa − µb)

T nb]
2(1)

dn(Πa,Πb) = 1 − (nT
a nb)

2 (2)

ǫ(Πa,Πb) = wodo + wndn (3)

where µa, µb are the centroids and na, nb are the normals

for planes Πa and Πb. The weights wo and wn are chosen

at appropriate scales such that the criterion for merging is

that the alignment error is below a threshold value of 3.

The new cluster’s second order moments can be computed

directly from the moments of the two previous clusters

without having to reanalyze all the original points. The plane
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(a) Edge map generated from survey data.
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(b) Laser-extracted edge map: wn = 6/π,
wo = 2.5m−2, cmin = 0.925,
λmax = 0.09m, lmin = 0.33m.
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(c) Laser-extracted edge map: wn = 4/π,
wo = 2m−2, cmin = 0.9,
λmax = 0.09m2, lmin = 0.33m.

Fig. 4: The surveyed edge map and two edge maps automatically extracted from the 3D laser data. In the extracted edge maps, black lines indicate plane
intersection edges and red lines indicate range discontinuity edges. The two extracted edge maps differ in the set of parameters utilized, and are not
necessarily intended to represent the same set of edges present in the surveyed model.

segmentation procedure is complete when all the adjacent

point pairs have been examined.

The planar clusters with a sufficient number of points are

considered for line extraction. The pairs of adjacent planes

are determined from the adjacent point pairs which belong

to separate planes. If the angle between the surface normals

of adjacent planes is large enough (about 10◦) then the

intersecting line is calculated. The endpoints of the line are

computed from the minimum and maximum extents of the

points from the planes when projected orthogonally onto the

line. The edge is included in the edge map if the distances

between the line and both plane boundaries are below a

threshold dp.

2) Depth Discontinuity Edges: The procedure for extract-

ing lines from edges in the point cloud is very similar to the

plane extraction method. First the local neighborhoods of

each point is used to test if a lidar point lies on a potential

edge. If there is a depth discontinuity in the lidar scan at

the point or the local curvature is at a maximum the point

is labeled an edge. Adjacent edge points are then clustered

using the same procedure as the plane clustering but with

a different set of metrics. The largest eigenvector of the

cluster’s covariance matrix determines the line direction, and

the endpoints of the line are determined from the maximal

and minimal projections of the points onto the line. Only

clusters with a sufficient number of points and a cylindrical

shape are retained as extracted edge lines. The cylindrical

shape is represented by a parameter c = λ3−λ2

λ1+λ2+λ3

computed

from the eigenvalues λ1 ≤ λ2 ≤ λ3 of the cluster covariance

matrix. The value of c must be above a threshold cmin for

the line to be included in the edge set. A threshold λmax

on the maximum value for λ2 is also used to eliminate non-

cylindrical clusters. These thresholds are only applied beyond

the point where the candidate edge has grown beyond a

minimum length lmin to compensate for the larger effects

of noise on nascent clusters.

3) Edge Post-Processing: After extracting the edges, hor-

izontal edges on the ground that occur due to ground strikes

and point cloud boundaries are filtered from the edge set. A

manual culling step is then used to remove edges that appear

due to laser returns from objects within the buildings which

would not be visible in the camera images. Other edges that

are on the far sides of buildings that would not be visible

in the video stream can also be removed similarly. While

the presence of these edges does not tend to degrade the

algorithm’s accuracy in our environment, their removal does

improve computational efficiency. More generally, for larger

and more complex environments, occlusion of such edges

should be taken into account, and can be partially handled by

considering the directions of the normals from the surfaces

that generated the edges when matching with the video data.

4) Related Work: A similar classification of edges for

extraction for 3D point cloud data has been described by

Stamos and Allen [17] and Stamos and Leordeanu [18].

Their plane-fitting algorithm [17] differs in that they allow

for a smoothly varying normal direction, thereby fitting some

curved surfaces. As these types of edges do not generally

translate to straight lines in the edge-processed image (and

such curved surfaces do not appear in our test environment),

our model did not need to consider such edges. By combining

the moment statistics as the plane is expanded, additional

robustness is provided when fitting to completely flat sur-

faces. Nonetheless, a region growing heuristic similar to that

described by Stamos and Allen may be more appropriate in

environments with more complex surface shapes.

Plane intersection has been previously used for line extrac-

tion from both ground-based [17] and aerial [19] platforms.

Stamos and Leordeanu [18] further describe a method for

extracting edges at the extreme points of planar surfaces

rather than utilizing range discontinuities. Gao et al. [20]

include only vertical lines in their application, which are

obtained by comparing the eigenvector corresponding to the

largest eigenvalue of a point cluster with a vector along the

vertical.

B. Evaluation

Fig. 4 illustrates the surveyed edge map and two edge

maps extracted from the laser point clouds. The difference

between the two laser-generated maps is the set of thresholds

used when growing the regions during the extraction process.

To extract an edge set from the raw data takes on the order of

minutes depending on the size and density of the point cloud.

The examples in Fig. 4 require approximately ten minutes

of processing.
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Despite the existence of a ground truth edge map from

the survey, it is difficult to definitively evaluate the accuracy

of a laser-generated edge map for several reasons. Firstly,

the survey map does not represent a complete list of all

relevant edges from the environment. Rather, it contains a

particular subset of linear features (namely building edges,

rooflines, and garage door edges) that the surveyors were

instructed to measure. Many other linear features in the

environment could be picked up by the image processing

algorithm which are equally valid. Therefore, some ‘false

positives’ (with respect to the survey data) extracted from

the 3D point cloud may in fact be valuable edges; while

others, caused by noise or other algorithmic limitations, may

be disruptive. Secondly, a few missed edges from the survey

map will not necessarily result in poor performance either.

With fewer available edges to match to, the localizer may

lose some accuracy; but the effect would be minimal if there

are a sufficient number of remaining edges. A limitation

of using range sensors is that many texture discontinuities

visible in the camera images do not correspond to range

discontinuities, and therefore will not be picked up by the

line extraction algorithm. Moreover, some salient edges are

difficult to detect in our 3D data. For example, a garage

door may have been closed during data collection, or in

some cases the region around the edge contained a significant

amount of clutter. Finally, a surveyed edge might be split

into more than one edge in the laser edge map, which

in many cases will not affect performance. Generally, the

surveyed edges and the autonomously extracted edges simply

represent a different set of linear features in the environment;

but in both cases the visual localization system can operate

successfully.

We have created a set of heuristics and metrics to be of

general assistance in coarsely evaluating the accuracy of the

extracted edge map and choosing appropriate parameters for

the 3D line detection algorithm. First, by simply visually

comparing the surveyed and extracted maps, a qualitative

assessment can be conducted (Fig. 4). Second, we can

get a general sense of accuracy by comparing those edges

that correspond with edges in the surveyed model. These

similarity metrics are based on three criteria: the shortest

distance between corresponding line segments dl; the differ-

ence in angle between them dα; and the relative difference

in segment length ds (i.e., the ratio of the absolute length

difference to the length of the surveyed edge). Rather than

combining these three quantities into a single score (e.g.,

Jiang et al. [21] apply arbitrary weights to similar metrics),

we instead prefer to analyze the distribution of these errors

separately. We compute a correspondence between each

surveyed edge and an edge in the extracted set by finding the

closest match according to each of the metrics provided the

error is below a threshold (dl ≤ 1.5m, dα ≤ 7.5◦, ds ≤ 2).

The thresholds provide a conservative limit within which we

can consider matched edges to have likely come from the

same structural feature in the environment. The resulting

correspondences are not highly sensitive to the choice of

thresholds: a reasonable range of values within the expected
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Fig. 5: Histograms of similarity scores between three extracted edge sets
and the surveyed edge map. The errors are only computed for edges that
have correspondences in the survey set. The distribution for each extracted
edge set is indicated by a different color. The edge map indicated with blue
bins corresponds to the map in Fig. 4b and the red color corresponds to
Fig. 4c. For comparison, the results in black demonstrate an example of
poorly chosen parameters resulting in an edge set with few good matches.

operating tolerance produces the same error distributions.

Fig. 5 shows the similarities between the survey edge set and

three different extracted sets (obtained from the same point

cloud data using different parameters in the line extraction

algorithm). The quality of each edge set can be analyzed by

observing frequency of small errors relative to larger errors

and the total count in each distribution. Here we observe that

with a good choice of parameters, the location and angle of

the corresponding extracted edges typically have low error

(less than 50 cm and 3◦), but we occasionally have large

discrepancies in the lengths of the segments.

A more suitable test of the edge map quality is carried

out by comparing a set of candidate models on the full

localization system and evaluating the resulting pose error.

We are able to easily run and assess the system on logged

data played back in real-time. In the section that follows, we

evaluate a set of extracted edge maps in this manner.

V. EXPERIMENTS

Experiments evaluating the localization system are divided

into two categories. The first set of experiments corre-

sponds to the use of the surveyed edge map. The second

set investigates the performance of the system when edge

maps autonomously generated from 3D laser data are used.

Implementation and hardware details are given next.

A. Experimental Setup

1) The Standard Mission: In order to have fair and mean-

ingful comparisons among the performance of the algorithm

in different illumination conditions, we create a “standard

mission”. We use this mission as a reference to record the

video data and test the algorithm in different times of the

day and weather conditions. This mission is a predetermined

trajectory around our industrial site, performed autonomously

via a highly accurate 2D laser-based localisation system [1].
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Fig. 6: The standard mission path. The trajectory is colored by time: blue
at the start transitioning to red at the end.

Fig. 7: Illustration of the camera setup mounted on the HMC. The blue
circles indicate the camera positions. Each is pointed outwards perpendicular
to the direction of travel.

A plot with the standard mission path around the site is

shown in Fig. 6. A more detailed representation with scale is

given by the red curve in Fig. 9a. The total distance travelled

in the standard mission is 1620 m, which is performed in ap-

proximately 7 minutes, covering most areas and orientations

within the test environment.

2) Camera Setup: The tests are performed with two

firewire digital cameras (Basler scA780-54f), with resolution

of 780 × 580 pixels. The cameras are mounted facing

sideways relative to the direction of vehicle motion, at the

locations illustrated by the blue dots in Fig. 7. Both cameras

are fitted with Kowa LM4NCR (3.5mm F1.4 2/3”) lenses.

The camera setup is calibrated and verified by ensuring that

the edges from the model projected onto the image plane

from known vehicle poses are aligned with the image edges.

This is illustrated in Figs. 8a and 8b, where both distorted

and undistorted versions of the input image are shown, along

with the overlapped edge model.

3) Particle Filter Parameters: The parameters of the

particle filter are determined following the methodology de-

scribed by Nuske et al. [10]. The approach used to calculate

these parameters is to record video, odometry, and ground

truth laser pose data from the vehicle when it performs

the standard mission. The particle filter is then run off-line

several times through the same sequence of recorded data

to optimize these parameters. This optimization is achieved

by varying the parameters at each iteration and comparing

the average pose error estimate. Although a large number

of particles ideally improves the performance of the filter,

it also increases the computational complexity. Operating at

10 Hz, we set the number of particles to 1000 to achieve a

satisfactory trade-off between error and speed.

B. Surveyed Edge Model Results

In the first set of experiments we employ the surveyed

edge map (Fig. 4a) for comparison with the camera data,

as described in Sec. II. Table I shows the average estimated

positional error for different times of the day and weather

conditions, measured relative to the 2D laser-based localizer,

taken as ground truth. The corresponding results are under

the “Surveyed” columns in the table.

Fig. 9a illustrates the standard mission path (in red)

overlaid with the vision-based localizer path (in blue). An

example of how the vision-based localizer positional error

evolves in time is given by the blue curve in Fig. 9b. In this

figure, the green curve represents the vehicle odometry error,

which is based on wheel encoders. The average positional

error of the vision-based localizer was 0.447 m, with a peak

error of 1.21 m. Correspondingly, the average odometry error

was 2.71 m with a peak error of 11.23 m. In addition, the

odometry system is open loop and subject to increasing error

due to drift. In contrast, the visual localizer does not suffer

from this problem as long as it is able to detect mapped

features in the environment.

The average error results when the Hough transform

filter is employed are shown in Table I, under the columns

indicated by “Hough.” In our implementation of the Hough

transform we set the resolution parameters ρ to 1 and θ to

π/180. The dilation operation D on the resulting image is

performed with a 3 × 3 square structuring element and a

single iteration. A plot illustrating the reduced error is given

in Fig. 9c. The red curve represents the Hough transform

case, whereas the blue line corresponds to case in which the

transform is not used. Depending on the video instance, the

transform provides a significant reduction in the estimated

positional error, decreasing the average error to 0.389 m and

the peak error to 0.890 m. Despite an increase of approx-

imately 15% in the processing time when the transform

is used, the system can still be run in real-time with the

parameters described in Sec. V-A.

C. 3D Lasers Edge Model Results

The results presented in this section employ the 3D edge

map autonomously generated with the vertical lasers rather

than the surveyed one. As described in Sec. IV, several

different parameters influence the quality of the generated

edges. We test the system with different versions of the edge

maps, which differ in number of edges and edge lengths,

depending on the parameters used to generate them. Exam-

ples of edge maps generated with different parameters are
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(a) Fish-eye image. (b) Image after undistortion, overlaid with edge
model (in green).

(c) Edge image after undistortion, overlaid with
edge model (in green).

Fig. 8: Example of camera images and calibration.

55

60

65

70

75

80

85

105 110 115 120 125 130 135 140 145

y
 (

m
)

x (m)

Ground Truth
Vision Localizer (3D Lasers Edge Map)
Vision Localizer (Surveyed Edge Map)

(a) Trajectory estimates: comparison of vision-
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(c) With and without Hough transform.

Fig. 9: Accuracy of the localization system under cloudy weather conditions.

TABLE I: Average positional error (in meters) for different parameters and weather conditions.

Sunny Cloudy

Surveyed Laser Extracted Surveyed Laser Extracted

Non-Hough Hough Non-Hough Hough Non-Hough Hough Non-Hough Hough

Early Morning 0.53 0.47 0.86 1.06 0.43 0.38 0.75 0.98

Mid-day 1.12 1.01 0.99 0.94 0.39 0.52 1.20 0.90

Mid-Afternoon 0.45 0.40 1.09 1.49 0.37 0.39 1.09 1.21

Late Afternoon 0.48 0.38 1.15 0.82 0.39 0.35 0.79 0.74

Dusk 0.53 0.45 0.88 1.08 - - - -

given in Figs. 4b and 4c. The results given in Table I under

the “Laser Extracted” fields represent the positional error

for the edge set which yields the best observed performance

(Fig. 4b), considering the laser localizer as ground-truth.

Fig. 10 plots the positional errors for the highest accuracy

edge map tested (in green) and for the lowest accuracy edge

map tested (in red). The blue plot corresponds to the error

obtained with the surveyed edge map. Using the highest

accuracy edge map, the average error was 0.875 m with a

peak error of 1.75 m. The resulting travel path is shown by

the green curve in Fig. 9a. Correspondingly, for the lower

accuracy edge map, the average error was 1.390 m and the

peak error was 3.41 m. We note that the better performing

edge map corresponds to the better performing map from

Fig. 5; however, further experiments would be necessary to

provide sufficient evidence of whether or not the similarity

metrics predict localization accuracy.

The results when the Hough transform filter is employed

are also shown in Table I under the “Laser Extracted -

Hough” columns. In this case, the Hough transform does

not improve the system performance significantly when

compared to the gain observed when the surveyed edge map

is used. We hypothesize that this result is partially due to the

fact that the edge map is composed of smaller lines which

are not perfectly contiguous, in contrast to the surveyed map.

An accompanying video demonstrates the localizer perfor-

mance over a segment of the standard mission for both the

surveyed and laser-extracted edge maps.

VI. CONCLUSIONS

We have presented a vision-based localization method for

a ground vehicle operating in an industrial environment.

The localizer is an extension of the work presented by

Nuske et al. [10]. The system compares the edge images

from onboard cameras to a pre-generated 3D edge map

of the environment in order to perform pose estimation.

The main advantages over the previous system is the use

of the Hough transform for the detection of straight lines
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Fig. 10: Positional error comparisons between the surveyed edge map and
edge maps generated with the 3D lasers without the Hough transform under
cloudy weather conditions. The green curve corresponds to the edge map
shown in Fig. 4b, while the red curve corresponds to Fig. 4c.

and the use of an autonomously generated 3D edge map.

The use of a straight line filter is justified by the fact that

linear structures are common in industrial environments.

Experiments illustrate improved results over the previous

system. The autonomously generated edge map proposed

in this paper replaces the need for professional surveying,

and demonstrates that usable edge maps can be generated

with 3D laser range data. Even though the average error is

slightly increased with the non-surveyed edge maps, their

use is justified by the fact that professional surveying can be

expensive, time consuming, and in some cases, infeasible.

Using the laser-based system, we have been able to construct

larger maps of our site than were previously available from

the survey team.

We provide experimental results for different times of

the day and weather conditions, illustrating the advantages

of the proposed method. The experiments indicate that the

system achieves the highest accuracy in overcast weather. In

bright sunny conditions, effects from sun glare and shadows

negatively affect the algorithm’s accuracy, as often observed

in outdoor computer vision. We have additionally tested the

system during a severe dust storm which covered the east

coast of Australia in September, 2009 (see Fig. 1). Due

to the resulting uniformity in the illumination, the localizer

performed with an even higher accuracy than when under

cloudy conditions. Unfortunately, we were unable to compare

the results for those tests as at the time there were shipping

containers obstructing the standard mission trajectory.

In the near future, we will be integrating the vision-based

localizer into our HMC localization system to provide an

additional level of redundancy and reliability. The next stage

of development will focus on field trials of the system at a

larger industrial site. Preliminary results have demonstrated

the effectiveness of our laser-based edge detection algorithm

in the smelter environment. Vision-based localization trials

using the full system will commence shortly.
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