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Abstract— This paper describes an novel approach towards
linguistic processing for robots through integration of a mo-
tion language model and a natural language model. The
motion language model works for association of words from
motion symbols. The natural language model is one used
for a morphological analysis, which has been developed in
natural language community. The natural language model is
optimized using a enormous amount of words. So this model
is scalable architecture. The motion language model and the
natural language model can be integrated since both models are
represented graphically. The integration of the motion language
model and the natural language model allows robots not only
to interpret motion patterns as sentences but also to generate
motions from sentences. This paper demonstrates the validity of
our proposed framework even in the case that large-scale word
corpus is needed processing through experiments of interpreting
motion patterns as sentences and generating motion patterns
from sentences.

I. INTRODUCTION

Language is an indispensable symbolic system to repre-

sentation of knowledge, communication and reasoning. Lan-

guage acquisition of a robot is required for its intelligence,

but it is extremely tough problem.

In robotics, some approaches for symbolization of robot’s

motion patterns have been proposed, such as MOdule Selec-

tion And Identification for Control (MOSAIC) [1], neural

network approach [2][3], and Hidden Markov Model ap-

proach (HMM) [4][5]. Additionally a model of nonverbal

communication between a humanoid robot and its partner

based on the symbolization of motion patterns is presented

[6]. Although the communication model consists of two

hierarchies of symbolic representations of motion patterns

and behavioral interaction patterns, the communication is

not based on linguistic processing. Sugita et al. introduced

a connectionist model, which consists two Recurrent Neural

Networks with Parametric Bias (RNNPBs) [7]. One RNNPB

symbolizes motion patterns and another one represents a

simple finite language. The two RNNPBs are combined

through Parameteric Bias layer. A robot can generate a

motion from a sentence. Ogata et al. additionally proposed

a method to generate a sentence from a motion by using the

same framework as Sugita’s model [8]. These framework has

two drawbacks of scalability and ambiguity. A connectionist

model is not suitable to learn a large-scale language corpus.

A motion can be expressed by various kinds of sentences.

In the field of video analysis, a number of approaches to

extract image features using HMMs have been proposed [9].
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In the natural language processing, a probabilistic content

model has been proposed to represent topics and topic shifts

[10]. They also used HMMs, where a state correspond

to a topic. Shibata et al. has developed automatic topic

identification based on HMMs with both image and language

information [11]. This framework stochastically maps visual

and audio features to topic words. Generation of the extracted

features from the topic words is not realized.

We also have proposed stochastic approach to linguistic

processing based on symbolization of motion for humanoid

robots [12][13], which consists of motion symbol module

and natural language module. Our stochastic approach can

not only generate multiple motions from a sentence but

also generate various kinds of sentences from a motion.

However the natural language module learns only a small-

scale language corpus. A large-scale language corpus has to

be learned by the robots so that the robots make inferences in

various ways based on language knowledge, which underlies

in the corpus.

In a community of natural language processing, various

kinds of natural language analysis have been developed.

Especially, stochastic approaches are advantageous to pro-

cessing with enormous quantity of linguistic data [14][15].

This paper describes a novel approach to linguistic pro-

cessing based on two functions : semantic function between

motion symbols and words, and grammatical function of

sentences. The grammatical function is learned by a model of

morphological analysis, which can deal with a large amount

of words and word classes [14]. The integration of these two

functions makes it possible for a robot not only to interpret

motion patterns as sentences but also to generate motion

patterns corresponding to sentences. This paper also verifies

the validity of our proposed framework on experiments.

II. MOTION LANGUAGE MODEL

AND NATURAL LANGUAGE MODEL

A. Motion Language Model

Although textual or phonetical modality included in lan-

guage can be measured, some of the linguistic modalities

which underlie the linguistic structure cannot be observed.

In this paper, we propose a motion language model stochas-

tically connecting symbols of motion patterns to morpheme

words through latent variables, which are suitable to rep-

resent unobservable states. Fig.2 illustrates the motion lan-

guage model.

The motion language model consists of three kinds of

nodes : symbol of motion pattern, latent variable and mor-

pheme word. The symbol of motion pattern is represented
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Fig. 1. Overview of integration of a motion language model with a natural language model. The motion language model represents relationship among
motion symbols and morpheme words via latent variables as a graph structure, where nodes on 1st, 2nd and 3rd layer indicate the motion symbols, the
morpheme words and the latent variables respectively. The natural language model represents the dynamics of language which means the order of words
in sentences. The motion language model and the natural language model are equivalent to semantics and syntax. By integrating two functions, linguistic
processing for robots can be realized.
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Fig. 2. The motion language model represent the stochastic association
of Morpheme words with motion symbols via latent states. The motion
language is defined by two kinds of parameters : probability that a
morpheme word is generated by a latent variable and probability that a
latent variable is generated by a motion symbol.

by an HMM which learns spatial and temporal behavioral

pattern [16]. The connections between the symbol of motion

pattern and the latent variable and between the latent variable

and the morpheme word are expressed by associative prob-

abilities : P (s|λ) and P (ω|s). Note that λ, s and ω are the

symbol of motion pattern, the latent variable and morpheme

word respectively, and that P (s|λ) and P (ω|s) represent the

probability that the symbol of motion pattern λ generates the

latent variable s and the probability that the latent variable

s generates the morpheme word ω.

The stochastic parameters of the motion language model

P (s|λ) and P (ω|s) are optimized by EM (Expectation Max-

imization) algorithm, which alternately processes two steps

: Expectation step (E-step) and Maximization step (M-step).

Training pairs of symbol of motion pattern and a sentence (a

sequence of morpheme words) are given. The training pair is

described by
{

λk;ωk
1
, ωk

2
, · · · , ωk

nk
k = 1, 2, 3, · · · , N

}

. Note

that N is the number of training pairs and that nk is

the number of the morpheme words composing the k-th

sentence. Both of the symbol of motion pattern λk and the

sentence (ωk
1
, ωk

2
, · · · , ωk

nk
) represent k-th motion pattern.

E-step calculates distributions of the latent variables based

on model parameters estimated in previous M-step. The

distributions of the latent variables are provided as follows.

P (s|λk, ωk
i ) =

P (ωk
i |s, λ

k, θ)P (s|λk, θ)
Ns
∑

j=1

P (ωk
i |sj , λk, θ)P (sj |λk, θ)

(1)

where θ is a set of the previously estimated model parameters

P (s|λ) and P (ω|s).
M-step estimates the model parameters such that sum-

mation of expectation of log-likelihood that the symbol of

motion pattern λk generates the sentence (ωk
1
, ωk

2
, · · · , ωk

nk
)

is maximized. The summation of the expectation of the log-

likelihood Φ is described by the following equation.

Φ =

N
∑

k=1

log P (ωk
1
, ωk

2
, · · · , ωk

nk
|λk) (2)

P (ωk
1
, ωk

2
, · · · , ωk

nk
|λk) =

nk
∏

i=1

P (ωk
i |λk) (3)

P (ωk
i |λ

k) =

Ns
∑

j=1

P (ωk
i |sj)P (sj |λ

k) (4)

where we uses conditional independence assumption ex-

pressed by Equation 3. The probability that a symbol of

motion pattern generates a morpheme word can be rewritten

as Equation 4. The estimates of the new model parameters
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Fig. 3. Natural language model represents the dynamics of word classes
by Hidden Markov Models. The node ci corresponds to the word class.
Transition from the node cj to the node ci is implemented with probability
P (ci|cj). The morpheme word ωk is generated by the node ci with
conditional probability P (ωk|ci).

are as follows (see the appendix for how to derive the

estimates).

P (s|λ) =

N
∑

k=1

nk
∑

i=1

δ(λ, λk)P (s|λk, ωk
i )

Ns
∑

j=1

N
∑

k=1

nk
∑

i=1

δ(λ, λk)P (sj |λk, ωk
i )

(5)

P (ω|s) =

N
∑

k=1

nk
∑

i=1

δ(ω, ωk
i )P (s|λk, ωk

i )

Nω
∑

j=1

N
∑

k=1

nk
∑

i=1

δ(ωj , ω
k
i )P (s|λk, ωk

i )

(6)

where δ(λi, λj) and δ(ωi, ωj) are Kronecker deltas. δ(λi, λj)
and δ(ωi, ωj) become 1 if i is equal to j. Otherwise, they

become 0 respectively. The numerators in Eqn.5 and Eqn.6

express expected number of times that hidden variable s

is generated from motion symbol λ and expected number

of times that hidden variable s is generated from word ω

respectively. The denominators in Eqn.5 and Eqn.6 express

the number of motion symbol λ in the training pairs and the

expected number of times of hidden variable s in the training

pairs.

By iteratively computing the distributions of the latent

variables and the estimates of model parameters by using

Equations 1, 5 and 6, we can derives the appropriate motion

language model.

B. Natural Language Model

Various kinds of language models have been proposed

in a community of natural language processing. Especially,

stochastic models are advantageous such as CRF (Condi-

tional Random Fields) [15] or HMM [14] since the linguistic

model is required to deal with a lot of words. In this

paper we use a morphological analysis model as a natural

language model [14]. The morphological analysis model is

represented by HMM as illustrates by Fig.3, where each

node corresponds to a word class such as noun, verbs,

adverb and so on. Note that words are classified in detail.

For example, a verb word is classified depending to word

inflexion. The node stochastically generates words that are

classified to the node and the dynamics of the word classes

are expressed by the stochastic transitions among the nodes.

The natural language model is defined by a set of parameters:

initial node distributions {πi|i = 1, , 2, 3, · · · , Nc} that initial

morpheme words are classified as the word class ci, the

transition probabilities {P (ci|cj)|i, j = 1, 2, 3, · · · , Nc} that

the node ci follows the node cj , and the output probabili-

ties {P (ωk|ci)|i = 1, 2, 3, · · · , Nc, k = 1, 2, 3, · · · , Nω} that

the node ci generates the morpheme word ωk, where Nc

indicates the number of nodes in the natural language model.

C. Combining Motion Language Model and Natural Lan-

guage Model

Combining the motion language model and the natural

language model enables robots to interpret motion patterns

as sentences and to generate motion patterns from sentences.

These two computational processes can be described by the

stochastic searching problems.

1) Interpretation of Motion Patterns as Sentences: The

interpretation of motion pattern as sentence can be made

through recognition of a motion pattern as a symbol and

form of a sentence corresponding to the symbol using the

motion language model and the natural language model.

A motion pattern can be recognized as a symbol with the

largest likelihood that the motion pattern is generated by a

symbol. The motion recognition can be processed as follows.

λo = arg max
λi:i=1,2,·,Nλ

P (O|λi) (7)

where P (O|λi) is the likelihood that the motion pattern O

is generated by the motion symbol λi, and the symbol λo is

the result of motion recognition. Note that the motion pattern

O is represented by temporal-spatial data such as a sequence

of joint angles.

Composing a sentence corresponding to the symbol of

motion pattern becomes searching a sequence of words

which is likely to be associated from the motion symbol of

motion pattern and to be grammatically correct. The search

problem can be described as follows.

ω
o = arg max

∀ω
P ( Ω

ω|λo,M)P (ω| Ω
ω, L) (8)

where M and L is the motion language model and the natual

language model respectively. ω is a sequence of words;

ω =
{

ω∗
1
ω∗

2
· · ·ω∗

n∗

}

. Ω
ω is a set of words in the sentence

ω. The first term and the second term in Eqn.8 evaluate

the likelihood that the motion symbol generates the set of

words composing the sentence and the likelihood that the

sentence is generated by the set of words. Eqn.8 is solved

by using beam search algorithm. Beam search is a best-first

search which reduces its resource requirement by keeping a

predetermined number of best partial solutions as candidates.
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2) Generation of Motion Pattern from Sentence: A motion

pattern is generated from a given sentence through searching

a motion symbol of motion pattern corresponding to the

sentence and regenerating temporal-spatial data from the

motion symbol. The search problem for the motion symbol

corresponding to the sentence can be described as follows.

λo = arg max
λi:i=1,2,···,Nλ

P (λi|Ω
ω,M)P (Ωω|ω, L)

= arg max
λi:i=1,2,···,Nλ

P (Ωω|λi,M)P (λi)

P (Ωω)
P (Ωω|ω, L)

= arg max
λi:i=1,2,···,Nλ

P (Ωω|λi,M)P (Ωω|ω, L)

= arg max
λi:i=1,2,···,Nλ

n∗
∏

j=1

P (ω∗

j |λi)P (Ωω|ω, L) (9)

where we use an assumption of equiprobable prior probabil-

ities of motion symbol: P (λi) =
1

Nλ

. Eqn.9 is also solved

by using beam search algorithm.

III. EXPERIMENTS

A. Experimental Result of Interpreting Motion Pattern as

Sentence

The proposed framework of combining the motion lan-

guage model and the natural language model was tested on

human motion data obtained through a optical motion capture

system. The motion capture system measures the positions of

34 markers attached to a performer. The sequences of marker

positions are converted to the sequences of joint angles by

inverse kinematics computation based on a humanoid robot

with 20 degrees of freedom. The human motion data set

contains 25 kinds of motion patterns related to baseball such

as “running”, “jumping”, “swinging a bat”, “throwing a ball”,

and so on. The average length of the motion data is 3.09[sec].

25 HMMs are optimized by using these motion data and the

motion symbols are acquired.

The human motion data can be recognized as one of the

HMMs. The data is also expressed by a sentence manually.

Pairs of motion symbols and sentences are used as training

data for the motion language model. Table.I shows some

examples of training data for the motion language model.

The correspondence of motion symbols to words are learned

as probabilities that words are associated from the motion

symbol. Note that the number of hidden states in the motion

language model was set to 50.

The natural language model consists of 217444 nouns,

1796 adjectives, 3024 adverbs, 14719 verbs, 170 conjunc-

tions, 206 prefixes, 1294 suffixes, 189 prepositions, 15 aux-

iliary verbs, 231 interjections and 430 ohter words, and 2429
word classes. Note that the words unrelated to baseball are

also included in the natural language model.

Table.II shows 5 sentences which are generated from each

motion symbol, the likelihood that the words in the sentences

are associated in the motion language model, the likelihood

that the sentence is generated by the natural language model,

and the likelihood of the co-occurrence. The motion of “run-

ning” is interpreted as some sentences : “a player runs”, “a

TABLE I

SOME EXAMPLES OF TRAINING DATA FOR MOTION LANGUAGE MODEL.

motion synbols sentences

a player runs
1 a runner runs

a hitter a hitter

a player shakes a hand
2 a runner shakes a hand

a hitter a shakes a hand

a player swings
3 a hitter swings

a hitter swings a bat

a pitcher throws
4 a player throws

a pitcher throws a ball

5 a player opens his arms
a pitcher opens his arms

a player applauds
6 a pitcher applauds

a manager applauds
a coach applauds

hitter runs” and “a runner runs” , which are same as training

sentences. The motion of “shaking a hand” is also correctly

interpreted as sentences : “a player shakes a hand”, ‘a hitter

shakes a hand” and ‘a runner shakes a hand”. The motion of

“swinging a bat” is incorrectly interpreted as a sentence :“a

player a player”, which has the largest likelihood but does

not make sense. However the second candidate sentences

: “a player swings” is appropriately associated from the

motion pattern. The likelihood that “a player a player” in the

first sentence is generated by the motion language model is

smaller than that in “a player swings”. But “a player swings”

is evaluated as grammatically worse sentence than “a player a

player”. The motion of “applauding” is interpreted as correct

sentences. The correspondence of the motion symbol and the

sentences is appropriately acquired. The true-positive rate in

all motion symbols in the training set is 84%.

B. Experimental Result of Generation of Motion Pattern

from Sentence

The linguistic processing to generate the motion pattern

from the sentence was tested. Fig.4 shows the motion data

generated from the three kinds of sentences, “subject and

verb”, “subject, verb and object”, and “subject, verb and ad-

verb”. The generated motion pattern can be categorized into

the motion patterns of “running”,“throwing” and “crouching”

respectively. These motion symbols appropriately correspond

to input sentences. Therefore, this experiment demonstrates

the validity of the framework to generate the motion patterns

from not only simple sentence described in “subject and

verb” but also a little complicated sentences in “subject, verb

and object” and “subject verb and adverb”.

IV. CONCLUSION

The contributions of this paper are summarized as follows:

1) This paper describes the motion language model which

connects words to motion patterns via latent variables
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A pitcher bends on the moundA player runs A pitcher throws a ball

Fig. 4. A motion symbol is associated from a sentence. The motion symbol generates motion pattern which is represented as a sequence of joint angles.
The appropriate motion pattern data is generated from each sentence : “a player runs” and “a pitcher bends on the mound” and “a pitcher throws a ball”.

TABLE II

EXPERIMENTAL RESULTS. THIS TABLE SHOWS SENTENCES WHICH MOTION PATTERNS ARE INTERPRETED AS.

motion symbols sentences log P ( Ω
ω |λ, M) log P (ω| Ω

ω , L) log P ( Ω
ω |λ, M) + log P (ω| Ω

ω , L)

a player runs -7.53 -12.74 -20.28
a hitter runs -7.53 -14.60 -22.14

1 a runner runs -7.53 -14.87 -22.40
a player a player -8.63 -13.81 -22.44
a player a hitter -8.63 -15.67 -24.40

a player shakes a hand -7.47 -15.41 -22.88
a hitter shakes a hand -7.69 -17.26 -24.96

2 a runner shakes a hand -7.47 -17.53 -25.00
a player a hitter -9.35 -15.67 -25.02
a hitter a player -9.35 -15.67 -25.02

a player a player -9.13 -13.81 -22.94
a player swings -8.03 -16.65 -24.68

3 a player a bat -9.13 -16.06 -25.19
a bat a player -9.13 -16.06 -25.19
swing a player -9.13 -16.19 -25.32

a player throws -8.03 -13.49 -21.52
a pitcher throws -7.34 -14.49 -21.83

4 throw a pitcher -8.44 -13.63 -22.07
a ball throws -8.03 -15.03 -23.07
throw a ball -9.13 -14.17 -23.30

a player opens his arms -13.17 -21.56 -34.74
his arms open a player -13.17 -21.56 -34.74

5 a pitcher opens his arm -13.17 -21.64 -34.82
his arm, a pitcher opens -13.17 -21.64 -34.84
a player a player his arm -14.97 -21.24 -36.21

a player applauds -7.82 -15.37 -23.20
a pitcher applauds -7.82 -16.37 -24.20

6 a manager applauds -7.82 -16.44 -24.27
a pitcher a pitcher -9.21 -15.81 -25.02
a manager a player -9.21 -15.88 -25.09

stochastically. The motion language model is defined

by two kinds of parameters : the probability that the

motion pattern generates the latent variable and the

probability that the latent variable generates the word.

2) We proposes a novel approach to combining the motion

language model with the natural language model. The

natural language model was developed for morpholog-

ical analysis and was optimized by using large-scale of

texts. The combining the motion language model and

the natural language model makes it possible for robots

to have two linguistic processing. One is to interpret

motions as sentences and another is to generate motion

patterns through association from sentences.

3) These two linguistic processing can be implemented.

The combining of the motion language model and

the natural language model is confirmed to realized

appropriately association between motion symbols and

sentences even in the case that the natural language

model consists of enormous amount of words.

These two processing is translation between motions and

language. We aims at robots that make inferences using a

symbolic system of language. The inferences will lead to key

technologies of robots assisting humans in various situations

and of connecting web mainly based on text analysis to real-

world information.

V. ACKNOWLEDGMENTS

This research was supported by Category S of Grant-in-

Aid for Scientific Research (20220001), Japan Society for

the Promotion of Science.

2408



REFERENCES

[1] M. Haruno, D. Wolpert, and M. Kawato, “Mosaic model for sensori-
motor learning and control,” Neural Computation, vol. 13, pp. 2201–
2220, 2001.

[2] J. Tani and M. Ito, “Self-organization of behavioral primitives as
multiple attractor dynamics: A robot experiment,” IEEE Transactions

on Systems, Man and Cybernetics Part A: Systems and Humans,
vol. 33, no. 4, pp. 481–488, 2003.

[3] H. Kadone and Y. Nakamura, “Symbolic memory for humanoid
robots using hierarchical bifurcations of attractors in nonmonotonic
neural networks,” in Proceedings of the 2005 IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2005, pp. 2900–2905.

[4] A. Billard and R. Siegwart, “Robot learning from demonstration,”
Robotics and Autonomous Systems, vol. 47, pp. 65–67, 2004.

[5] T. Inamura, I. Toshima, H. Tanie, and Y. Nakamura, “Embodied
symbol emergence based on mimesis theory,” International Journal

of Robotics Research, vol. 23, no. 4, pp. 363–377, 2004.

[6] W. Takano, K. Yamane, T. Sugihara, K. Yamamoto, and Y. Nakamura,
“Primitive communication based on motion recognition and generation
with hierarchical mimesis model,” in Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation, 2006, pp. 3602–3609.

[7] Y. Sugita and J. Tani, “Learning semantic combinatoriality from the
interaction between linguistic and behavioral processes,” Adaptive

Behavior, pp. 33–52, 2005.

[8] T. Ogata, M. Murase, J. Tani, K. Komatani, and H. G. Okuno, “Two-
way translation of compound sentences and arm motions by recurrent
neural networks,” in Proceedings of the IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, 2007, pp. 1858–1863.

[9] P. Chang, M. Han, and Y. Gong, “Extract highlights from baseball
game video with hidden markov models,” in Proceedings of the

International Conference on Image Processing, 2002, pp. 609–612.

[10] R. Barzilay and L. Lee, “Catching the drift: Probabilistic content
models, with applications to generation and summarization,” in Pro-

ceedings of the 2nd Human Language Technology Confenrece and

Annual Meeting of the North American Chapter of the Association for

Computational Linguistics, 2004, pp. 113–120.

[11] T. Shibata and S. Kurohashi, “Unsupervised topic identification by
integrating linguistic and visual information based on hidden markov
models,” in Proceedings of the Joint 21st International Conference on

Computational Linguistics and 44th Annual Meeting of the Association

for Computational Linguistics, 2006, pp. 755–762.

[12] W. Takano and Y. Nakamura, “Integrating whole body motion prim-
itives and natural language for humanoid robots,” in Proceedings of

the IEEE-RAS International Conference on Humanoid Robots, 2008,
pp. 708–713.

[13] ——, “Statistically integrated semiotics that enables mutual inference
between linguistic and behavioral symbols for humanoid robots,” in
Proceedings of the IEEE International Conference on Robotics and

Automation, 2009, pp. 646–652.

[14] K. Takeuchi and Y. Matsumoto, “Hmm parameter learning for japanese
morphological analyzer,” in Proceedings of the 10th Pacific Asia

Conference on Language, Information and Computation, 1995, pp.
163–172.

[15] T. Kudo, K. Yamamoto, and Y. Matsumoto, “Applying conditional
random fields to japanese morphological analysis,” in Proceedings

of the 2004 Conference on Empirical Methods in Natural Language

Processing, 2004, pp. 230–237.

[16] W. Takano and Y. Nakamura, “Humanoid robot’s autonomous acquisi-
tion of proto-symbols through motion segmentation,” in Proceedings of

the IEEE-RAS International Conference on Humanoid Robots, 2006,
pp. 425–431.

APPENDIX

A. Optimization of Motion Language Model

The evaluation function can be modified to the following

equation by using (2), (3), (4).

Φ =

N
∑

k=1

log





nk
∏

i=1

Ns
∑

j=1

P (sj |λ
k, ωk

i )
P (ωk

i , s|λk, θ)

P (sj |λk, ωk
i )



(10)

≥

N
∑

k=1

nk
∑

i=1

Ns
∑

j=1

log
P (ωk

i , sj |λ
k, θ)

P (sj |λk, ωk
i )

(11)

≡ F (P (s|λ, ω), θ) (12)

Where Jensen’s equality is applied to the modification.

F (P (s|λ, ω), θ) is the lower limit of the evaluation function.

The lower limit results in the following equation with the

help of Bayes rule.

F (P (s|λ, ω), θ) =

Φ −

N
∑

k=1

nk
∑

i=1

Ns
∑

j=1

P (sj |λ
k, ωk

i ) log
P (sj |λ

kωk
i )

P (sj |λk, ωk
i , θ)

(13)

The second term in (13) is Kullback Distance. The max-

imization of the lower limit F (P (s|λ, ω), θ) under the

distributions of the latent state P (sj |λ
kωk

i ) is equivalent to

the minimization of the Kullback Distance. The Kullback

distance has the minimum value of zero if P (sj |λ
kωk

i ) is

equal to P (sj |λ
k, ωk

i , θ). Therefore, the distributions of the

latent variables under the condition that observable data λk

and ωk
i are given can be estimated as (1).

In M-step, the model parameters are optimized such that

the lower limit F (P (s|λ, ω), θ) becomes the local maxi-

mum. The estimation of the set of the model parameters

denoted by θ for maximization of the lower limit results in

the following calculation.

arg max
θ

F (P (s|λ, ω), θ)

= arg max
θ

N
∑

k=1

nk
∑

i=1

Ns
∑

j=1

P (sj |λ
k, ωk

i ) log P (ωk
i |sj)P (sj |λ

k)

Note that P (sj |λ
k, ωk

i ) can be elimated since it does not

depend on the set of model parameters θ. We also utilize the

Bayes rule for the modification. We introduce the Lagrange

multiplier with the constraint that

Nω
∑

i=1

P (ωi|s) = 1.

L =

N
∑

k=1

nk
∑

i=1

Ns
∑

j=1

P (sj |λ
k, ωk

i )
[

log P (ωk
i |sj) + log P (sj |λ

k)
]

−α

(

Nω
∑

i=1

P (ωi|s) − 1

)

(14)

∂L

∂P (ω|s)
= 0 (15)

We can solve (15) and then obtain the analytical expression

of the optimal model parameter described by (6) . Appli-

cation the analogical procedure to another kind of model

parameter P (s|λ) yields the optimal parameter described by

(5).
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