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Abstract— Time-varying input/output delays in a control
system can significantly degrade the stability and performance
of the closed loop system. Recently, passivity based control has
emerged as a promising candidate to guarantee delay indepen-
dent stability of passive systems with delays in the input-output
channel. In this paper we study set point control of rigid robots
with time-varying sensing/control delays. We first show that the
classical PD controller can be modified to regulate the robotic
manipulator, provided scattering transformation along with
additional gains are used in the communication path. While
this results in a stable system, asymptotic regulation cannot be
guaranteed. Hence, a (delay dependent) gain margin for a pro-
portional position feedback controller is provided to guarantee
stability and asymptotic convergence of the regulation error
to the origin. To improve closed loop performance, scattering
transformation based design of a damping injection scheme
is also discussed. The proposed algorithms are numerically
verified on a two-degree-of-freedom manipulator.

I. INTRODUCTION

In this paper we study the problem of motion control of

rigid robots when there are time varying delays in their input-

output channel. In the last three decades, several control

schemes [23] have been developed for control of robots.

Starting with the work of [24], passivity-based control [18]

has been a fruitful methodology for control design of robotic

systems. Several control design have been presented in the

literature [17], [13] where the controller and the mechanical

system can be represented as a negative feedback intercon-

nection of passive systems. Invoking the fundamental pas-

sivity theorem [7], it is then possible to guarantee passivity

of the closed loop system. Under additional assumptions,

stability of the closed loop system can also be established.

The problem of bilateral teleoperation [1], [15], a classical

problem in robot control, highlighted the deleterious effect

of time delays on the stability of the closed loop system.

This problem has received widespread attention and several

results [9] have been developed to address the network delay

and lossy nature of the communication network. However,

input/output delays may manifest in a robotic control system

from many other sources, for example processing delays in

visual systems [6] or from communication between different

computers on a single humanoid robot [19]. It is well

known [20] that guaranteeing stability of a control system

with input delays is a challenging problem.
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The issue of time delay instability in dissipative systems

has been studied by several authors [14], [11], [4], [2],

[19], [21]. Scattering or the wave-variable representation,

which was developed in [1], [15] for guaranteeing stability

of bilateral teleoperators, has emerged as a novel tool for

studying network control systems [14], [11], [4], [2], [19],

[21]. The basic idea in these results is to use the scatter-

ing variables to guarantee passivity of the communication

block, thereby creating a passive two-port network between

a passive plant, communication and the passive controller.

Furthermore, time-varying gains [12], dependent on the

maximum rate of the delay, can be additionally added in

the communication path to guarantee stability independent

of the time-varying delays [4], [2].

In the sequel, we study the problem of set-point control

in rigid robots (with revolute joints) with time-varying in-

put/output delays and which are constrained to move in the

horizontal plane. We first show that the closed loop system

constituted by a PI controller, a rigid robot in the horizontal

plane can be stabilized using the scattering transformation

along with gains dependent on the maximum rate of change

of the delay [12]. However, simulations indicate that while

stability is preserved, the regulation goal is not always

achievable. Consequently, a gain margin for a proportional

position feedback controller is provided to guarantee stability

and asymptotic convergence of the regulation error to the ori-

gin. However, the proportional gain in the scheme cannot be

arbitrarily assigned and depends on the maximum round trip

delay and the innate dissipation in the robotic manipulator.

To improve the convergence rate, a second control loop is

appended to the proportional controller so as to guarantee

arbitrary dissipation in the system independent of the time-

varying delays and hence achieve good tracking performance.

The contribution of the paper can be summarized as

follows:

• Theorem 3.1: This result demonstrates that a PI con-

troller can be used to stabilize the robotic system

independent of the time-varying delays between the

controller and the robotic manipulator provided gains

dependent on the maximum rate of the change of delay

are utilized in the communication path. This formulation

was earlier used for stabilizing teleoperators against

time-varying delays in [5,12]. The application in the cur-

rent problem of set-point regulation is novel. However,

we show by simulations that this result cannot guarantee

set-point regulation, hence motivating the next result.

• Theorem 3.3: If the manipulator has intrinsic damping,

this result proves that a proportional position feedback
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controller can be used to to guarantee set-point regula-

tion independent of the time-varying delays. However

in this architecture, the robotic system communicates

its position signal to the controller and the controller

has knowledge of the damping bound at the robotic

manipulator. To enable a modular scheme the next result

is proposed.

• Theorem 3.4: The previous result relies on internal

damping in the robotic system. However, the bound

on the damping may be unknown at the controller

and hence damping may have to be injected by the

controller. In this result we show that damping can be

injected by using a scattering transformation based loop

in conjunction with the proportional feedback discussed

in Theorem 3.3.

The outline of the paper is as follows. A brief background

on the general concept of passivity and a description of the

robot dynamics is presented in Section II. This is followed

by the main results and accompanying simulations in Sec-

tion III. Finally the results are summarized in Section IV.

II. PRELIMINARIES

The concept of passivity is one of the most physically

appealing concepts of system theory [22] and, as it is based

on input-output behavior of an system, is equally applicable

to both linear and nonlinear systems. Consider a dynamical

system represented by the state space model

ẋ = f (x,u) (1)

y = h(x) (2)

where f : Rn ×Rp → Rn is locally Lipschitz, h: Rn Rp is

continuous, f (0,0) = 0, h(0) = 0 and the system has the

same number of inputs and outputs.

The dynamical system (1)-(2) is said to be passive if there

exists a continuously differentiable non-negative definite

scalar function S(x): Rn → R (called the storage function)

such that

uT y ≥ Ṡ(x), ∀(x,u) ∈ Rn ×Rp

Following [23], in the absence of friction and disturbances,

the Euler-Lagrange equations of motion for an n-degree-of-

freedom robotic system in the horizontal plane are given as

M(q)q̈+C(q, q̇)q̇ = −τs + τe = τt (3)

where q(t) ∈ Rn is the vector of generalized configuration

coordinates, τs ∈ Rn is motor torque acting on the system,

τe ∈ Rn is the external torque acting on the system, M(q) ∈
Rn×n is the positive definite inertia matrix and C(q, q̇)q̇ ∈
Rn is the vector of Coriolis/Centrifugal forces. In this paper

we consider manipulators with revolute joints. The above

equations exhibit certain fundamental properties due to their

Lagrangian dynamic structure [23].

• Property 1: The matrix M(q) is symmetric positive

definite and there exists a positive constants m1,m2 such

that m1 ≤ M(q) ≤ m2.

τtτe ∑
robot

∑
c

uc

q̇

yc
+

T2
T1

+

τs

Fig. 1. A negative feedback interconnection of the robot dynamics and the
controller

• Property 2: Under an appropriate definition of the

matrix C, the matrix Ṁ - 2C is skew-symmetric

Moreover, it is well known that the robot dynamics are

passive [23] with

S(q, q̇) =
1

2
q̇T M(q)q̇ (4)

as the storage function and (τt , q̇) as the input-output pair.

The passivity property of the robot dynamics has led to

constructive control designs for the robot manipulators.

Specifically, several robot control algorithms can be re-

formulated as a negative feedback interconnection of two

passive systems [13]. Observing Figure 1, the controller takes

in the robot velocity as the input, and the output of the

controller block is fed back to the robot as the desired control

input. If the controller is input-output passive, then by the

fundamental passivity theorem [7], the closed loop system

formed by the robot dynamics and the controller is passive.

This interconnection property is exploited in the subsequent

control design.

III. MAIN RESULTS

In this section we study the set point problem for me-

chanical systems with time-varying input/output delays. The

controller dynamics are given as

Controller =

{

ẋc = uc

yc = KPuc +KI(xc −qd)
(5)

where where KP,KI > 0 are the scalar controller gains, qd

denotes the constant vector for the desired configuration,

uc(t) = q̇(t −T1(t)) and furthermore the control input to the

robot is given as τs(t) = yc(t −T2(t)) where T1(t),T2(t) are

the heterogeneous time varying delays between the robot and

the controller. It is possible to show (see [3]) that the closed

loop system easily destabilizes even with small constant

delays.

Let x(t) = [xc(t) q̇(t)]T and denote by xt the state of the

system. Denote by C = C ([−h,0],R2n), the Banach space of

continuous functions mapping the interval [−h,0] into R2n,

with the topology of uniform convergence. Define xt = x(t +
φ)∈C ,−h < φ < 0 as the state of the system [8]. We assume

in this note that x(φ) = η(φ),η ∈ C and that all signals

belong to L2e, the extended L2 space. The time delays are
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τtτe ∑
robot

∑
c

uc

q̇

yc

+

Scattering Representation

z1

z2
v2

v1

T2(t)
T1(t)

τs

Scattering Representation

d1

d2

Fig. 2. The scattering transformation, together with the gains (dependent
on the rate of change of delay) are used to ensure stability of the closed
loop system

assumed to be bounded (0 < Ti(t) ≤ T ∗
m < ∞, i = 1,2) and

continuously differentiable with

Ṫi(t) ≤ T max
i < 1, i = 1,2 (6)

The above condition implies that the time delays cannot

grow faster than time itself, and hence is a statement about

the causality of the system. To passify the communication

block, scattering variables are used between the plant and

the controller and are given as

v1 = 1√
2b

(τs +bq̇) ; z1 = 1√
2b

(τs −bq̇)

v2 = 1√
2b

(yc +buc) ; z2 = 1√
2b

(yc −buc)
(7)

where b > 0 is a constant. Furthermore, to address time

varying delays [12], [5], gains dependent on the maximum

rate of change of delay are inserted in the communication

between the plant and the controller. The constant gains

d1,d2 are selected as

d2
1 < (1−T max

1 )
d2

2 < (1−T max
2 )

(8)

The proposed architecture is demonstrated in Figure 2. The

transmission equations between the robot and the controller

can be written as

z1(t) = d2z2(t −T2(t))
v2(t) = d1v1(t −T1(t))

(9)

The controller dynamics for this system are described by (5),

however note that uc 6= q̇(t − T1(t)) but is derived from

the scattering representation (7) and the transmission equa-

tions (9).

The first claim in the paper follows

Theorem 3.1: Consider the closed loop system described

by (3), (5), (7) and (9). Then the closed loop system is

input-output passive with (τe, q̇) as the input-output pair.

Additionally, if τe(t) ≡ 0, then the signals q̇ and qc −qd are

Lyapunov stable.

Proof: Consider a positive definite storage functional

for the system as

S(xt) =
1

2
(q̇T M(q)q̇+KI(xc −qd)

T (xc −qd))

+
1

2
(
∫ t

t−T1(t)
||v1(τ)||2dτ +

∫ t

t−T2(t)
||z2(τ)||2dτ)

The derivative of the storage function yields

Ṡ(xt) = q̇T (−C(q, q̇)q̇− τs + τe)+
1

2
q̇T Ṁ(q)q̇

+KI(xc −qd)
T ẋc +

1

2
(||v1||2 −||v1(t −T1(t))||2(1− Ṫ1(t))

+||z2||2 −||z2(t −T2(t))||2(1− Ṫ2(t)))

≤ q̇T (−C(q, q̇)q̇− τs + τe)+
1

2
q̇T Ṁ(q)q̇

+KI(xc −qd)
T ẋc +

1

2
(||v1||2 −||v1(t −T1(t))||2d2

1 + ||z2||2

−||z2(t −T2(t))||2d2
2

≤ (−τs + τe)
T q̇+ yT

c uc −KPuT
c uc +

1

2
(||v1||2 −||z1||2

+||z2||2 −||v2||2)
≤ (−τs + τe)

T q̇+ yT
c uc −KPuT

c uc + τT
s q̇−uT

c yc

≤ τT
e q̇−KPuT

c uc (10)

Hence the closed loop system is passive with (τe, q̇) as the

input-output pair. From (10) it is easy to observe that if

τe(t)≡ 0, then Ṡ(xt)≤ 0 and hence the signals q̇ and qc−qd

are Lyapunov stable.

The above result demonstrates that the closed loop system

constituted by the robotic system, coupled with the PI

controller can be made passive independent of the time-

varying delays. To observe the regulation capabilities of the

the above architecture, the proposed algorithm is simulated

using a two-link revolute joint arm [23]. The dynamics of

a two link robot, in the absence of gravitational forces, are

given as

d11q̈1 +d12q̈2 + c121q̇2q̇1 + c211q̇2q̇1 + c221q̇2
2 = τ1 (11)

d21q̈1 +d22q̈2 + c112q̇2
1 = τ2 (12)

where the entries of the inertia matrix are given as

d11 = m1l2c1+m2(l
2
1 + l2

c2 +2l1lc2 cos(q2))+ I1 + I2

d12 = d21 = m2(l
2
c2 + l1lc2 cos(q2))+ I2

d22 = m2l2
c2 + I2

On the other hand, the c121 =−m2l1lc2sin(q2) = p and c221 =
p,c112 =−p. In the simulations, m1 = 7.848,m2 = 4.49, I1 =
0.176, I2 = 0.0411, l1 = 0.3, l2 = 1, lc1 = 0.1554, lc2 = 0.0341.

The vector q̇ = [q̇1 q̇2]
T is the output of the robotic system

and is transmitted to the controller described by (5). The

time-varying delay in the input-output path was selected to be

T1(t) = 0.6+0.5sin(t);T2(t) = 0.3+0.2sin(t) which satisfies
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Fig. 3. The joint angles are stable but do not converge to the desired
equilibrium as pointed out using the steady state values

τtτe ∑
robot

∑
c

uc

q

yc

+

T2(t) T1(t)

τs

Fig. 4. A proportional position feedback controller architecture for
stabilizing the joint angles to the desired equilibrium. Note that in contrast to
Figure 2, the joint information is explicitly communicated to the controller

the assumption that Ṫi ≤ 1, i = 1,2. Following (8), the time-

varying gains were calculated as d1 = 0.7 and d2 = 0.8.

The desired set point was chosen to be qd = [π
3

π
4
]T . As

seen in Figure 3, the system is stable, however the proposed

control system is not able to regulate the robotic system to

the desired equilibrium. Thus, in contrast with the constant

delay studied in [3], the scattering transformation based

architecture in the case of time-varying delays is only able

to guarantee Lyapunov stability of the closed loop system

but not its tracking performance.

To achieve the desired regulation goal in the presence of

time-varying delays, an alternative architecture is studied as

shown in Figure 4. However, the next result necessitates

modification of the system dynamics where it is assumed

that there exists innate dissipation in the system. Under this

assumption, let the robot dynamics be given as

M(q)q̈+C(q, q̇)q̇+Bnq̇ = −τs + τe = τt (13)

where Bn > 0 is a scalar denoting the natural damping in the

system. In the proposed architecture, the signal q(t) is the

plant output which is communicated to the controller and the

control action is then given as

yc = K(q(t −T1(t)−qd)) (14)

where K > 0 is scalar and as before qd denotes the constant

vector for the desired configuration. The controller output yc

is communicated back to the robot, and assuming τe ≡ 0 the

closed loop system becomes

M(q)q̈+C(q, q̇)q̇+Bnq̇ = K(q(t −T1(t)−T2(t))−qd) (15)

We next study the stability of the above closed loop

system. For the sake of completeness, we provide a brief

overview of a technical result developed in [16].

Lemma 3.2: Given signals x,y ∈ Rn, ∀T (t) such that 0 <
T (t) ≤ Tm < ∞, and α > 0 the following inequality holds

−
∫ t

0
xT (σ)

∫ 0

−T (σ)
y(σ +θ)dθdσ ≤ α

2
||x||22 +

T 2
m

2α
||y||22 (16)

where || · ||2 denotes the L2 norm of the enclosed signal.

We refer the reader to [16] for a proof the above result. Our

next result in the paper follows

Theorem 3.3: Consider the closed loop system described

by (15). If the time-varying delays satisfy 0≤ T1(t)+T2(t)≤
Tm < ∞, i = 1,2, then for a range of the gain 0 < K ≤K∗, the

signals q̇ and (q(t −T1(t)−T2(t))− qd) are asymptotically

stable.

Proof: Consider a positive definite storage function for

the system as

V (q̇,q) =
1

2
(q̇T M(q)q̇+K(q−qd)

T (q−qd)) (17)

Differentiating along system trajectories we get

V̇ = q̇T (−C(q, q̇)q̇−Bnq̇−K(q(t −T1(t)−T2(t))−qd))

+
1

2
q̇T Ṁ(q)q̇+Kq̇T (q−qd)

= −Bnq̇T q̇+ q̇T (q−q(t −T1(t)−T2(t)))

= −Bn||q̇||2 +Kq̇T

∫ 0

−T1(t)−T2(t)
q̇(t +θ)dθ (18)

Note that as we try to upper bound the second term, the sign

of the second term does not affect the subsequent calcula-

tions. Integrating (18) from 0 to t and using Lemma (3.2),

we get

V (q̇(t),q(t))−V (q̇(0),q(0)) ≤−Bn||q̇||22 +K(
α

2
||q̇||22

+
T 2

m

2α
||q||22)

≤−||q̇||22(Bn −
Kα

2
− KT 2

m

2α
) (19)

If the following inequality given by

Bn −
Kα

2
− KT 2

m

2α
> 0 (20)

is satisfied for α > 0, then V (q̇(t),q(t))−V (q̇(0),q(0)) ≤ 0

and hence the signal q̇(t) is square integrable. The above

inequality has a solution α > 0 if Bn > KTm. Thus, if

K < Bn/Tm = K∗, V (q̇(t),q(t)) ≤ V (q̇(0),q(0)), ∀t > 0.

Consequently, for any appropriately selected K as discussed

above, the signals q̇,q − qd ∈ L∞. Noting the system dy-

namics (15), this additionally implies the robot acceleration

q̈ ∈ L∞. Hence as q̇ ∈ L2 and its derivative is bounded, the

robot velocity asymptotically approaches the origin.
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in the permissible gain margin, guarantees asymptotic convergence to the
desired configuration but may lead to a large settling time
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To demonstrate asymptotic convergence of the tracking

error, differentiating (15) yield that the signal
...
q ∈ L∞ (note

that the derivative of the Coriolis term is also bounded for

revolute joints [16]). Hence, the robot acceleration is uni-

formly continuous and limt→∞

∫ t
0 q̈(s)ds exists and is finite.

Invoking Barbalat’s Lemma [10], limt→∞ q̈(t) = 0. Observing

the closed loop dynamics (15), limt→∞ q(t −T1(t)−T2(t))−
qd = 0 and consequently the regulation objective is achieved

asymptotically.

The above scheme was simulated on the two degree of

freedom manipulator described earlier with the same time

delays and the desired configuration. The maximum com-

bined delay that be encountered in the sensing and control

path is 1.6s. Assume that Bn = 0.5 and consequently the

allowable limit for K∗ = Bn
Tm

= 0.31. With this value of the

gain, as shown in Figure 5 asymptotic tracking was achieved.

However the settling time in the proposed architecture in

relatively large. With the aim of improving performance, the

value of the gain was increased to K = 1. However, as seen

in Figure 6, the closed loop system is rendered unstable. A

higher gain control gain K, while maintaining stability of the

τtτe ∑
robot

∑
c1

uc1

q̇

yc1

+

Scattering Representation

z1

z2 v2

v1

T2(t)

T1(t)

Scattering Representation

d1

d2

q

τd

τp

T1(t)T2(t)

Σc2

yc2 uc2

Fig. 7. A two loop architecture where the proportional position feedback
controller is used in conjunction with a damping injection loop. The
damping injection loop uses scattering variables to ensure stability of the
closed loop system

closed loop system, requires more damping in the system.

However, this parameter Bn cannot be controlled and hence

control action is required to additionally damp the system.

To this end, we propose our next control strategy that allows

injection of arbitrary damping in the closed loop dynamics

independent of the time-varying delays.

The proposed architecture (see Figure 7) incorporates an

additional control loop to increase the damping in the system.

In this design the robot velocity q̇ is communicated to a static

controller via the scattering transformation. Thus, the control

torque is the sum of two terms and is given as

τs = τp + τd (21)

where τp is the proportional term designed earlier (14) and

τd is the additional damping injected in the closed loop

system. The damping control is derived out of the scattering

transformation as shown in Figure 7. The scattering variables

are given as

v1 = 1√
2b

(τd +bq̇) ; z1 = 1√
2b

(τd −bq̇)

v2 = 1√
2b

(yc1 +buc1) ; z2 = 1√
2b

(yc1 −buc1)
(22)

where yc1 is the output of the static controller and is given

as yc1 = Kduc1, Kd > 0 is a constant. Using this controller,

the scattering variables can be rewritten as

v1 = 1√
2b

(τd +bq̇) ; z1 = 1√
2b

(τd −bq̇)

v2 = Kd+b√
2b

uc1 ; z2 = Kd−b√
2b

uc

(23)

The transmission equations are given by (9) and substitut-

ing (23) in (9) we get

(Kd +b)uc1 = d1(τd(t −T1(t))+bq̇(t −T1(t)))

d2(Kd −b)uc1(t −T2(t)) = τd −bq̇ (24)
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Fig. 8. The proportional controller along with damping injection results
in better performance

In the second equation above, choosing Kd = b yields

τd −bq̇ = 0 ⇒ τd = bq̇ (25)

Thus by using the scattering transformation and selecting

the controller gain appropriately, arbitrary damping can be

injected in the closed loop system.

In the previous result, i.e Theorem 3.3, existence of natural

damping was required to guarantee stability of the closed

loop system for arbitrary input/output delay. However, in

the new architecture where arbitrary damping injection is

possible, this assumption is not required. The final result in

the paper follows

Theorem 3.4: Consider the robot dynamics (3) together

with the control input (21), (14) and (23). Then for a range

of the gain 0 < K ≤ K∗, the signals q̇ and (q(t − T1(t)−
T2(t))−qd) are asymptotically stable.

This result follows from the above discussion and the proof

of Theorem 3.3. An important difference between this al-

gorithm and the scheme underlying Theorem 3.3 is that

the limit on the proportional gains in the current scheme

depends on the injected damping. Following the proof of

Theorem 3.3, it is easy to observe that K∗ ≤ Kd
Tm

. The gain Kd

is equal to the wave impedance b which is a free parameter

that can be chosen arbitrarily. The scheme was simulated on

the two DOF system with Kd = b = 2 and the coupling gain

was chosen to satisfy the gain constraint outlined above. As

seen in Figure 8, the position error is asymptotically stable.

IV. CONCLUSIONS

In this paper we studied the problem of set-point control

in rigid robots (with revolute joints) with time-varying in-

put/output delays in the horizontal plane. We demonstrated

that the closed loop system constituted by a PI controller,

a rigid robot in the horizontal plane can be stabilized using

a modified scattering transformation scheme [12]. However,

while stability was preserved, simulations indicated that

the regulation goal was not always achievable. To improve

performance, gain margin for a proportional controller was

calculated to guarantee stability and asymptotic convergence

of the regulation error to the origin. However, the propor-

tional gain in the scheme was contingent on the maximum

round trip delay and the natural dissipation in the robotic

manipulator. To improve the convergence rate, a second con-

trol loop was appended to the proportional controller so as

to guarantee arbitrary dissipation in the system independent

of the time-varying delays and hence achieved good closed

loop performance. The results in the paper were validated on

a two-degree-of-freedom manipulator
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