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Abstract— Localization in unknown environments using low-
cost sensors remains a challenge. This paper presents a new
localization approach that learns the spatial variation of an
observed continuous signal. We model the signal as a piece-
wise linear function and estimate its parameters using a
simultaneous localization and mapping (SLAM) approach. We
apply our framework to a sensor measuring bearing to active
beacons where measurements are systematically distorted due
to occlusion and signal reflections of walls and other objects
present in the environment. Experimental results from running
GraphSLAM and EKF-SLAM on manually collected sensor
measurements as well as on data recorded on a vacuum-cleaner
robot validate our model.

I. INTRODUCTION

Localization is one of the most important components in

a robot system for ensuring reliable navigation, prompting

the development of a manifold of approaches using a variety

of sensors [1]. Localization usually requires a map of the

environment to be available, which can be hand-crafted or

obtained through the robot’s sensors [9].

In this research, we are interested in localizing a mobile

robot without the need of an a priori map and requiring

only minimal modifications to the environment. The solution

should be low cost and provide pose estimates in real-time.

Such a system would be useful, for example, in floor cleaning

where systematic area coverage is desired.

In our approach a set of signals is emitted into the

environment and measured by a sensor on the robot. We

impose the following requirements on the signals:

1) Each signal source can be uniquely identified.

2) Signals are spatially continuous and constant over time.

3) At any fixed position, how the signal varies with

orientation can be fully described by sensor orientation

and internal sensor parameters.

Examples of such signals are the signal strengths to WiFi

stations or cellular networks, or bearings to unique beacons.

Req. 1 eliminates the data association problem. Signals in

WiFi and other networks contain a unique ID as part of their

data packet protocol. Active beacons like the ones used in

our experiments are identified by their modulation frequency.

Req. 2 ensures that the emitted signals constitute a vector

field that varies over space but is stationary in time. Note

that there are no restrictions other than continuity: the same

measurement vector might be observed at several different

locations in the environment (the measurement model need

not be injective). Such scenarios occur, for example, when

signals emitted by active beacons bounce off walls and

other objects. As a result, the observed bearing can be very
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Fig. 1. Sensor response of an active beacon signal as the sensor approaches
a wall on the right. Reflections from the wall cause non-linear distortion.
A piece-wise linear approximation estimated by our filter is superimposed.

different than the actual one (see Fig. 1). A given vector of

such observations can match to several distinct positions.

Finally, Req. 3 implies that given the signal values at one

sensor position and orientation, we can predict the values

for other orientations at the same position, independent

of the position itself. For example, a WiFi receiver might

show changes in signal strength when rotating, caused solely

by the directional sensitivity of the antenna. Similarly, a

sensor measuring bearing and elevation to beacons can show

variations due to calibration errors of the sensor’s vertical

axis. We call such signal changes rotational variability, and

assume such variability is not a function of position.

In order to localize the robot from an initial start position,

we formulate the problem as one of simultaneous localization

and mapping (SLAM). The map is an observation function

describing the observed vector field over space. We model

this vector field using a piece-wise linear function arising

from estimates of the vector signals at pre-defined ground

positions called nodes with the sensor facing a fixed orien-

tation. The full SLAM state then contains the robot path,

rotational variability and the signal values at all nodes.

Signal values at arbitrary locations are predicted using

bilinear interpolation. This allows us to apply standard so-

lutions such as GraphSLAM and EKF-SLAM to compute

estimates of the SLAM state. With respect to navigation,

we are mainly interested in the localization of the robot,

i.e. the robot path. The learned rotational variability and node

estimates are of secondary interest but are still useful for

sensor evaluation, environment analysis or re-localization.
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Through experiments we show that our approach accu-

rately localizes a robot in an environment equipped with

active beacons. In order to demonstrate the advantage of our

model, we compare the trajectories computed by Vector Field

SLAM with those of an EKF that does not learn a signal map.

The remainder of this paper is organized as follows. After

discussing related work in the next section we present our

SLAM approach for learning a continuous vector field in

Section III. An implementation on a sensor system using

active beacons is described in Section IV followed by exper-

imental results and our conclusions.

II. RELATED WORK

Localization from signals containing unique IDs has been

addressed long ago in navigation systems using active bea-

cons [1]. Most of these systems measure range or bearing

to known landmarks and compute a pose by trilateration or

triangulation. These systems start to fail when signals are

observed not only through the direct path of flight but also

through reflections off walls or other objects. Our approach

provides a direct extension addressing this problem.

An early formulation of the SLAM problem utilizes land-

marks as the map features [8]. The state contains the robot

pose and the positions of all landmarks. Our method does

not estimate the positions of landmarks but the signal values

at fixed ground positions. Our approach shares, however, the

statistical techniques for computing state estimates.

Localization using the signal strengths of WiFi has become

a focus in several research domains. If the positions of

base stations are known, localization can be achieved with

remarkable accuracy [5]. The main challenge is obtaining

a sensor map of ground positions to signal strengths for

localization. There are practical solutions for topological

localization in a large office environment [6], although these

require a training phase for obtaining the signal map. An

approach using Gaussian Process Latent Variable Models

allows building of topologically correct maps from collected

signal strength data [3]. Our approach estimates similar

signal maps but learns a piece-wise linear approximation of

the vector field directly through SLAM.

III. VECTOR FIELD SLAM

The basic idea of our approach for localizing a mobile

robot moving through a field of vector signals is to learn the

signal distribution over space and at the same time track the

pose of the robot. This is known as SLAM.

A. Simultaneous Localization and Mapping

In SLAM, a robot moves through a time series of poses

x0 . . .xT , xt ∈ SE(2) in an environment containing N
map features m1 . . .mN , mi ∈ R

M . Without loss of

generality, x0 = (0, 0, 0)T . At each time step t = 1 . . . T
the robot receives a motion input ut with covariance Rt and

a measurement zt with covariance Qt.

A motion model defined by a function g describes the

motion of the robot since the previous time step:

xt = g(xt−1,ut) + eu (1)

where eu is a zero mean error with covariance Rt.

Furthermore, a sensor model defined by a function h
predicts an observation given current robot pose and features:

zt = h(xt,m1 . . .mN ) + ez (2)

where ez is a zero mean error with covariance Qt.
The state of the online SLAM problem [9] is:

yt = (xt,m1 . . .mN )T . (3)

A method that recursively estimates this state is the Extended

Kalman Filter (EKF). Starting from an initial mean µ0 and

covariance Σ0 the state is updated on motion according to:

µ̄t = f(µt−1,ut) (4)

Σ̄t = FyΣt−1F
T
y + Rt (5)

where f extends the motion model g over all state variables

and Fy is its Jacobian with respect to state yt:

f(yt−1,ut) = (g(xt−1,ut),m1 . . .mN )T (6)

Fy =
∂f

∂y
(µt−1,ut). (7)

Given a sensor observation zt, the state is updated as:

µt = µ̄t + K(zt − h(µ̄t)) (8)

Σt = Σ̄t − KHyΣ̄t (9)

where Hy is the Jacobian of h and K the Kalman gain:

Hy =
∂h

∂y
(µ̄t) (10)

K = Σ̄tH
T
y (HyΣ̄tH

T
y + Qt)

−1. (11)

In many implementations of EKF-SLAM the initial state

contains no or only a minimal set of map features. The state

is augmented with new features as they appear. Initialization

of new features can add significant complexity such as

performing non-linear optimization on a short sequence of

measurements or reformulating the observation model in

a transformed space [2]. The properties and limitations of

EKF-SLAM are well understood [9].
In contrast, the state of the full SLAM problem [9] is

Y = (x1 . . .xT ,m1 . . .mN )T . (12)

GraphSLAM is a non-linear optimization method that com-

putes Y as the solution minimizing an objective function:

J =
T

∑

t=1

(xt − g(xt−1,ut))
T R−1

t (xt − g(xt−1,ut))

+

T
∑

t=1

(zt − h(yt))
T Q−1

t (zt − h(yt)). (13)

GraphSLAM is a batch processing instance of Bundle Adjust-

ment [10] and requires all data be present for computation.

A possible implementation uses the following steps:

1) Provide an initial state estimate for (12).

2) Linearize (13) using the Jacobians in (7) and (10) of the

current estimate. This results in a quadratic function.

3) Solve the linear equation system that minimizes the

quadratic function through the Conjugate Gradient

method. This provides an improved estimate of (12).

4) Repeat steps 2 and 3 until the solution converges.
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Assuming a good initial estimate is provided, GraphSLAM

computes the best possible estimate, i.e. the estimate with the

lowest variance that any unbiased estimator can have [10],

given the model induced by (1) and (2). Although the method

does not output estimates online, it has many successful

applications [9], [10]. In this work, we use GraphSLAM as

a baseline algorithm for validating our SLAM model.

B. SLAM with Sensor Calibration

In practical applications, the measurement zt is often

affected by the internal calibration of the sensor. Using

SLAM this calibration can be estimated along with the robot

path and map features by including a vector c of calibration

parameters in the observation model (2) and state vector (3)

respectively (12):

zt = h(xt, c,m1 . . .mN ) + ez (14)

yt = (xt, c,m1 . . .mN )T (15)

Y = (x1 . . .xT , c,m1 . . .mN )T . (16)

EKF-SLAM and GraphSLAM then compute estimates for

the calibration parameters using the same equations pre-

sented above. We will make use of this technique to learn the

vector field and the rotational variability of a sensor encoded

as calibration parameters in the next section.

C. Application to Vector Fields

We assume there is a time-invariant vector field of di-

mension M defined over the environment satisfying the

constraints in Reqs. 1-3. Our goal is to learn the observation

model or vector field

VF : SE(2) → R
M (17)

that maps a ground pose to a vector of signal values.

Since signals are independent of sensor orientation

(Req. 3) we decompose the space of poses SE(2) into

position and orientation. The vector field over position is then

modeled as a piece-wise linear function by laying a regular

grid of node positions bi = (bi,x, bi,y)T , i = 1 . . . N onto

the ground. This creates cells with one node at each of the

cell’s four corners. Each node i holds a vector mi ∈ R
M

describing the expected signal values when placing the

sensor at bi and pointing at a pre-defined direction θ0.

For an arbitrary sensor position with orientation θ0, the

signal values are computed by bilinear interpolation from

the four nodes of the cell containing the sensor position. Let

xt = (x, y, θ)T be the sensor pose and bi0 . . .bi3 the cell

(x y)

bi0 bi1

bi3bi2mi0

mi1

mi2

mi3

h0

Ground
plane

Signal
field

Fig. 2. Bilinear interpolation from cell nodes

nodes enclosing the sensor as shown in Fig. 2. The signal

values at (x, y) with orientation θ0 are then computed as:

h0(x, y,m1 . . .mN ) =

3
∑

j=0

wjmij
(18)

where mi0 . . .mi3 are the signal values at the cell nodes and

w0 . . . w3 weights of the bilinear interpolation:

w0 =
(bi1,x − x)(bi2,y − y)

(bi1,x − bi0,x)(bi2,y − bi0,y)
(19)

w1 =
(x − bi0,x)(bi2,y − y)

(bi1,x − bi0,x)(bi2,y − bi0,y)
(20)

w2 =
(bi1,x − x)(y − bi0,y)

(bi1,x − bi0,x)(bi2,y − bi0,y)
(21)

w3 =
(x − bi0,x)(y − bi0,y)

(bi1,x − bi0,x)(bi2,y − bi0,y)
. (22)

The final signal values are computed by taking into

account sensor orientation θ and rotational variability c:

h(xt, c,m1 . . .mN ) = hR(h0(x, y,m1 . . .mN ), θ, c). (23)

Here hR is a continuous function that transforms the inter-

polated signal values obtained through (18) by the sensor

orientation and calibration. This is usually a rotation by

orientation θ followed by a correction with the rotational

variability c. We will provide a particular instance of hR in

an application using active beacons in Section IV.
Eq. (23) shows our factorization of the sensor map into

two components h0 and hR following the requirements set

forth in the introduction. Component h0 depends only on

position (Req. 2) whereas component hR depends only on

orientation, sensor calibration and h0 (Req. 3).
Note that Eq. (18) implies a model selection. Given the

current estimate of the sensor position, the nodes used in

the bilinear interpolation are selected. This can result in the

wrong model if the position estimate is far from the actual

position. We revisit this issue in our conclusions.

D. Node Initialization

The final missing piece for applying a SLAM method to

our model is how to initialize the nodes. In general this

depends on the type of signals and the sensor used. We

envision, however, that the following procedure is applicable

to most systems.
We assume the robot collects a short sequence of motion

and sensor measurements u1, z1 . . .ut0 , zt0 and has a rough

idea ĉ of its rotational variability. By iteration of the motion

model (1) from the initial pose x0 we obtain a path x̂1 . . . x̂t0

with each x̂t = (x̂t, ŷt, θ̂t)
T . For all sensor measurements zt

we compute a point ht in the vector field using the inverse

of the rotational component:

ht = h−1

R (zt, θ̂t, ĉ) (24)

where h−1

R is the inverse function of hR in its first argument.

This provides us with a set of samples (x̂t, ŷt,ht) of the

vector field. We then fit a linear model to this sample set

defined by a base vector h0 and scale matrix A0:

ht = h0 + A0

(

x̂t

ŷt

)

+ e0 (25)
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Fig. 4. Extrapolation of new node preserving direction between spots.

approximated by a coordinate offset for both spots. When

rotating the sensor in place this offset becomes apparent as

rotational variability. Thus, the calibration parameters are:

c = (cx, cy)T . (35)

In the ideal case, the offset vanishes and we set ĉ = (0, 0)T .

When turning the sensor, the spot coordinates change

according to the rotation angle θ but in the opposite direction.

The rotational component hR of our model then becomes:

hR(hx1
, hy1

, hx2
, hy2

, θ, cx, cy) = (36)






cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 cos θ sin θ
0 0 − sin θ cos θ













hx1

hy1

hx2

hy2






+







cx

cy

cx

cy







where (hx1
, hy1

, hx2
, hy2

)T is the output vector of (18).

For the extrapolation of a node according to (30) we

consider only node pairs that are equally spaced away from

the new node, and where the closer node is in the 8-

neighborhood. The extrapolation factors in A1 and A2 are

then set such that the direction between Northstar spots is

copied from the closer node (see Fig. 4):

A1 = −
1

2







1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1






A2 =

1

2







3 0 1 0
0 3 0 1
1 0 3 0
0 1 0 3






. (37)

This completes the implementation for Northstar.

As for the motion model (1), we employ an odometry

motion model [9] where at each time step the robot first

translates along a direction and then rotates. The motion

covariance Rt is derived from the motion input ut.

V. RESULTS

We collected data from Northstar by mounting the sensor

on a rail and moving it to controlled poses spaced 50 cm

apart and with 8 different directions (every 45◦) in a room

surrounded by walls on the left, right and far side. Fig. 5(a)

shows the 8×7 grid positions where data were collected. The

sensor readings of one spot, corrected by the ground truth

orientation of the sensor, are displayed in Fig. 6 where each

color (gray scale) corresponds to one of the 8 directions.

This illustrates two aspects of the signal distribution. First,

the rotational variability of the sensor is manifested as small

circles that are approximately equal in size throughout the

room. The mean radius of these circles implies an angular

error in the sensor plane of about 0.7◦. Furthermore, multi-

path effects disturb the signal on the left, right and far

side. While left and right sides show some level of signal

compression, the far side and the upper left and right corners

are severely distorted, caused by reflections off the walls.

We have simulated a path through the rail grid that starts

in the lower left corner, moves along the rows and changes

between rows on the left and right side. This results in

straight forward motions along rows and two 90◦ turns with

intermediate forward motions on the sides. By adding noise

to the motion estimates, an odometry path is obtained as

shown in Fig. 5(b). After moving up and down the rail grid

about 10 times, the error in orientation has increased to 90◦.

Using this odometry path we run EKF-SLAM by choosing

a random Northstar measurement from each visited ground

truth pose. As soon as 5 Northstar measurements are col-

lected, RANSAC estimates the linear model in (25) from

which the initial four nodes of the vector field with a cell size

of 1 m are initialized. The remaining measurements gated at

3σ are then fed into the EKF. The computed vector field

for one spot is shown in Fig. 7 together with the Northstar

measurements and 2σ bounds of the computed covariance.

Comparing the curves of the spot coordinates to the actual

sensor map in Fig. 6 shows how the estimated vector field

approximates the compression from multi-path.

Fig. 5(c) shows the computed robot trajectory. Vector Field

SLAM keeps the robot localized when moving up and down

the rails. The mean position error in this experiment is 6 cm.

We have also applied Vector Field SLAM on a vacuum

cleaner robot equipped with a Northstar sensor. Ground truth

trajectories are obtained from OptiTrack, an optical motion

capture system [7]. We evaluate our approach on 9 different

runs with increasing degrees of distortion of the Northstar

signal from multi-path. Fig. 8 shows the odometry data of

the robot on run 4 as computed from its wheel encoders. In

this and the following figures we superimpose the ground

truth trajectory by finding the rigid transformation and scale

that best aligns the data with the output of the motion capture

system. Fig. 9 visualizes the raw sensor data as pose directly

computed from the Northstar measurements [11]. Note how

the signal becomes distorted on the right and far side.

Fig. 6. Northstar data of one spot at rail positions with 8 orientations.
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(a) (b) (c)

Fig. 5. Experiment with data collected on a grid of rail positions: (a) grid positions and simulated path, (b) odometry information, (c) result of EKF-SLAM.
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Fig. 7. Result of the vector field of x and y coordinates of one spot as learned by EKF-SLAM. The curves for the other spot are similar.
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Fig. 8. Odometry information of vacuum cleaner on run 4.

For comparing our approach to a basic geometric method

we implemented an EKF that does not learn a signal map.

Besides robot pose and rotational variability the state of

this EKF contains the scale between ground position and

sensor response, and the distance between the two spots. This

representation is equivalent to tracking both spot positions.

Fig. 10 shows the trajectory result of this filter. While the

method provides reasonable estimates for the left and center

part of the environment, it fails when moving to the right.

The large distortions caused by multi-path effects require a

spatial modeling of the sensor signals.

The result of running EKF-SLAM using the same parame-

ters as in the rail grid data is shown in Fig. 11 while Fig. 12
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Fig. 9. Northstar pose information of vacuum cleaner on run 4.

shows the result of GraphSLAM with 10 iterations of the

algorithm outlined in Section III. Both methods are able to

estimate the robot path close to the ground truth positions.

Finally Fig. 13 shows the mean localization errors over all

runs. Note how the error of Northstar increases from runs 1–4

to runs 5–9. The SLAM methods are able to cope with this as

their mean error is not affected much. GraphSLAM shows

the best performance with an overall error of 9 cm. EKF-

SLAM is slightly less accurate (11 cm) which we believe

is due to the initial error in rotational variability and the

linearization errors of motion and observation models. Both

methods are significantly better than the filter without signal

map (26 cm), odometry (29 cm) or raw Northstar (47 cm).
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Fig. 10. Trajectory result of an EKF without a signal map on run 4.
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Fig. 11. Trajectory result of EKF-SLAM on run 4.
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Fig. 12. Trajectory result of GraphSLAM on run 4.

All vector fields in our experiments can be represented

by no more than 30 nodes. This results in a state vector for

EKF-SLAM of 3 + 2 + 4 · 30 = 125 variables which allows

computation of estimates in real-time on a low-end PC. For

GraphSLAM the number of poses, which is more relevant to

computational complexity, ranges from about 1000 to 2500

in our experiments. The non-linear optimization then takes

a few minutes per run in a Matlab environment.
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Fig. 13. Mean position errors over all 9 runs with average in parentheses.

VI. CONCLUSION

We have presented a new approach to localization that

learns a vector field of time-stationary signals in an envi-

ronment. Our method applies as long as the signals change

continuously over space, and the vector of signals provides

enough information to estimate pose.
The grid resolution of the vector field defines both the

approximation error to the true signal curves and the ability

of the system to close loops. Since the selection of nodes in

the observation model depends on the current pose estimate,

a larger cell size increases the chances of choosing the right

nodes, i.e. successfully close a loop. A more general model

of (23) defined over all nodes, e.g. weighting cells by the

mass of pose probability falling into them, might put less

emphasis on correct node selection.
Our future work addresses online SLAM methods that are

more efficient than the quadratic time complexity of EKF-

SLAM and also have smaller storage requirements. These

methods allow Vector Field SLAM to run on embedded

systems such as those used in robotic floor cleaners.
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