
Learning to grasp objects with multiple contact points

Quoc V. Le, David Kamm, Arda F. Kara, Andrew Y. Ng

Abstract— We consider the problem of grasping novel objects
and its application to cleaning a desk. A recent successful
approach applies machine learning to learn one grasp point
in an image and a point cloud. Although those methods are
able to generalize to novel objects, they yield suboptimal results
because they rely on motion planner for finger placements. In
this paper, we extend their method to accommodate grasps with
multiple contacts. This approach works well for many human-
made objects because it models the way we grasp objects. To
further improve the grasping, we also use a method that learns
the ranking between candidates. The experiments show that
our method is highly effective compared to a state-of-the-art
competitor.

I. INTRODUCTION

We consider the problem of robots cleaning a desk by

grasping. This task poses many challenges: the variation in

shapes and orientations of objects, the lack of complete 3D

information, the occlusions between objects.

Recent approaches [1], [2] apply machine learning tech-

niques to solve this problem. Their method generalizes well

for novel objects because they do not rely on brittle hard-

coded rules. The main shortcoming is that their system is

built on top of a pinch grasp classifier [1] and relies on mo-

tion planner for finger placements. The method [2] extends

pinch grasps in [1] to model power grasps. Although it tries

to learn the position of the center of the end effector and the

direction of the wrist, motion planning plays an important

role for finger placements. Motion planners, unfortunately,

only detect collisions and do not consider force stability.

In fact, when performing experiments with their methods,

we notice that for many objects, pinch grasps [1] are not

applicable. This is because human-made objects are designed

to be reliably grasped with multiple contacts (two or more,

using the thumb and other fingers).1 Power grasps [2] are

better but sometimes objects slip off the robot hand. This

is because many configurations, despite being collision-free,

are not stable for grasping.

We will illustrate the latter observation with a simplistic

example (see Figure 1). Suppose we would like the robot to

pick up a mug. The classifier by [2] will return the location at

the red square as a good candidate because depth and visible

light images have discontinuities at that location (Figure

1, left). Their method will use this candidate and query a

motion planner for a good grasp configuration. Some grasp

Quoc V. Le, David Kamm, Arda F. Kara, Andrew Y. Ng
are with the Computer Science Department, Stanford University
quocle@cs.stanford.edu, dkamm@stanford.edu,
ardakara@stanford.edu, ang@cs.stanford.edu

1There are certainly cases that pinch grasps are preferred, such as grasping
a pen. However, our robot hand (Barrett) cannot grasp such objects very
well.

configurations, despite having no collision with objects, are

not stable. For example, if the two fingers are placed at two

locations specified by the blue circles, the motion planner

does not detect collision, but the mug may slip out of the

robot hand during grasping.

Ideally and hypothetically, their algorithm should return

a place near the centroid of the object as a candidate and

then, with high probability, the motion planner will place

the fingers at the appropriate locations (see Figure 1, right).

However, in this case, the location at the red square is rather

indistinguishable in the depth and visible light images; and

it is difficult to build a pattern recognizer to identify it.

Fig. 1. Problems with the method in [2]. Left: best candidate returned
by their classifier (red square) and finger locations (blue circles) that
have no collision. These finger placements are not stable for grasping.
Right: ideal finger placements (blue circles) and corresponding hypothesized
candidate (red square). The red square, however, does not contain any useful
information and thus cannot be found by the method in [2].

In this paper, we present a method that learns the contact

points, i.e., the locations where the blue circles touch the

objects. This method disambiguates the problem of fingertip

placements and chooses the placements that are most stable.

Our method uses a motion planner only for planning a

trajectory that has no collisions. It also allows grasping

objects at multiple contacts with pinch grasp as a special

case. We will show that meaningful features can be extracted

from these contact points. We also use supervised learning,

or more specifically Support Vector Machines, to learn

grasping concepts that generalize well for novel objects.

Our experiments show that despite its simplicity, this idea

significantly improves grasping accuracy.

With multiple contacts, most degrees of freedom (finger

closure size and orientation) are fixed. Motion planning is

used simply to avoid collisions and the number of configura-

tions that the motion planning needs to search is quite small.

This provides a big computation boost and starkly contrasts

the approach in [2] where a motion planner is extensively

used to search over 4 parameters (pitch, roll, yaw, finger

closure size).

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 5062

II. PREVIOUS WORK

Early work in robot grasping assumed complete 2D or 3D

models of objects. Under such assumptions, many types of

grasps can be modelled and computed, for example force

closure [3], [4], [5], form-closure [6], equilibrium grasps

[7], [8], [9], stable grasps [10], compliant grasps [8]. More

recent approaches use machine learning to combine more

information for better grasping using SVMs [11] or for better

controlling using reinforcement learning [12], [13].

The main drawback of those methods is that it is hard

to extend them to real-world data where capturing complete

3D models for objects is difficult. For example, given a static

scene, the back face of objects cannot be captured using a

stereo camera. This realization leads further developments

in robotic grasping where methods have to consider more

realistic sensory data, for example, intensity images, point

clouds, haptic feedbacks. With such sensory data, researchers

have to take into account sensory noises and partial shapes.

Using local visual features, methods are proposed to find

planar grasps, i.e., looking for 2D locations where the robot

can place its fingertips [14], [15], [16], [17]. For non-

planar grasps, a schema structured method is presented to

deal with simple objects [18]. Also with schema structured

learning, Platt et al. [19] proposes a method that assumes

segmentation and fits ellipsoids to objects. Edsinger and

Kemp [20] designed an algorithm to grasp cylindrical objects

with power grasp using visual servoing.

Our method resembles methods proposed by Saxena et al.

[21], and more specifically [2]. The early work [22] only

considers intensity image data to learn the features. Later

methods [2] include depth information and design a multi-

stage processing which combines the method in [22] and

motion planning. In detail, they use a single-point classifier to

get a large number of candidates for grasping [23]. Then they

apply a second classifier which combines geometric features

to rank grasp configurations. These configurations are fed to

a motion planner to determine the final grasp.

As mentioned earlier, there are two main issues with

that approach. The first issue is accuracy and stability of

grasps. As the method in [2] is divided into several stages,

the errors get bigger after each stage. We also notice that

because their method is based on a single-point classifier

(one contact point) at the lowest level, the grasps are usually

not stable. The second issue is due to computation, or more

specifically, an extensive use of motion planning. This is

because classifiers in early stages have a very low Area under

the ROC score, the motion planner has to handle the chore

of finding a good configuration for a large number of points.

III. A BRIEF SUMMARY OF OUR SYSTEM

Our system makes use of both depth and visible light

image data. To capture depth data, we used an active tri-

angulation sensor [24] (see Figure 2). An important feature

of this sensor is that it gives very detailed depth data (also

called depth map or point cloud). However, the key ideas in

this paper can be applied to depth data captured by other

types of sensors such as stereo cameras.

Fig. 2. Image data and depth data captured by our robot. Left: visible light
image data. Right: depth data (note: missing back face of objects).

Given the depth map and intensity image data, our system

has two main steps: ranking candidates and planning motion.

Using the data, the robot first generates all grasp candidates

for the scene.2 Our system then extracts relevant features for

each candidate. Based on the features, the robot uses a trained

SVM model to compute a “score” for each candidate and

rank the scores to get top 10 candidates for grasping. Finally,

these top 10 candidates will be fed to a motion planner to

remove any collision and inverse kinematics infeasibility. To

grasp multiple objects, the robot has to execute the above

two-step procedure many times.

The grasp candidates are generated from the edge images

of depth and visible light images. The edge images are

computed by the Canny edge detection algorithm. Using

the distance between the contact points, we can prune any

candidates with contact points that are too far apart. For

instance, if the hand can only grasp objects of no larger than

10cm, we can prune away any three points that are more

than 10cm apart.

To train the SVM model, we collected training data

with human labels. During training time, for each grasp

candidate, a human editor will choose to label as either “Bad”

or “Good”or “Very Good”. Here, “Bad” indicates that the

candidate is impossible to grasp; “Good” indicates that the

candidate might be possible to grasp; “Very Good” indicates

that the candidate can be grasped very well. Sometimes, this

may require the human editor to operate the robot in order

to decide the labels. Given the labels, we used a ranking

SVM algorithm which optimizes a measure that prefers better

ranking for top candidates. Details regarding the features and

the training method are explained in the following sections.

The system has several key novelties. First, instead of

modelling power grasps around a point, our system learns the

contact points themselves. Second, many new and intuitive

features are designed to improve grasping results. Finally,

our system uses a ranking method to achieve better results

than a standard classifier.

Our method can work with two-contact-point candidates

(for a two-fingered hand) or three-contact-point candidates

(for a three-fingered hand). To simplify the language, we are

going to use pairs for feature illustration.

Finally, we note that the algorithm works by first finding

the candidate contact points, then extracting features based

2Here, each candidate contains contact points for all fingers. For example,
if the robot hand has three fingers then we have 3 contact points per
candidate.

5063

on the contact points. Once all candidates are ranked, the

fingers can be placed approximately close to the contact

points.3 Hence, in practice, there is a small difference be-

tween finger placement locations and contact points (see

Figure 3). The main reason for this little discrepancy between

finger placement and contact point is that contact points can

be selected easily on the edge map.

Fig. 3. Edge map (white), contact points (green crosses), and finger
placements (blue circles). This edge map is extracted from the mug picture
in Figure 1. See text for more details.

IV. FEATURES

In our system, we consider features from intensity image

and depth map data. In this section, we will elucidate some

of the most important features that have significant influences

on grasping results.

A. Gradient angle features

The basic intuition for this feature is that when we grasp

at multiple points, there is a correlation between the vector

connecting the contact points and the gradient vectors at each

contact point. Figure 4 shows that, in case of two contact

points, to grasp objects well, the gradient vectors and the

connecting vectors should form a straight line.

An important note here is that the gradient at a pixel

location is usually noisy. Yet, the key insight is that the

histogram of the gradients at a patch around this pixel can

give interesting information. In this sense, our gradient angle

features resemble SIFT features [25] and HOG features [26].

Fig. 4. Illustration of gradient angle features computed for grasping with
pairs. The features are computed as the angles between the current gradient
vector (blue line) and the vector connecting the current point with other
contact points (magenta line). This feature is highly discriminative because
it can tell apart between a good pair (left), a worse pair (middle) and a very
bad pair (right). In case of the good pair, the blue lines and the magenta
line are approximately in a straight line.

3In our experiments, finger placement locations are 1cm wider than the
contact points.

To compute the gradient vectors, we first extract a 10x10

patch around each contact point in both depth and visible

light images. Then we convolve each patch with an edge

kernel and construct a histogram of gradients for a particular

patch location using the idea in [26]. Using this histogram,

we can extract the strongest gradient vector (the mode of the

distribution). These steps are shown in Figure 5.

Given this mode gradient vector, we will use the angles

formed between it and the connecting vectors to express the

correlation mentioned earlier. These angles themselves are

the features we are interested in. More explicitly, denote by

g the mode gradient at the contact point and v a connecting

vector from another contact point to the current contact point,

the angle α is computed by

α = arccos
g⊤v

‖g‖‖v‖
(1)

Fig. 5. Gradient computed at a contact point. Top left: an object with a
contact point (red square). Top right: gradient angles at each pixel computed
by convolving a Sobel edge kernel with the patch. Bottom left: histogram
computed from the angles (−9o is the mode of this distribution). Bottom
right: the gradient (blue line) computed for the red square.

The main reason for the use of angles instead of a mere

vector dot product is that angle is more robust to changes

in lightning conditions: if the room is darker or brighter, the

magnitude of the gradient vectors changes, while the angle

does not.

In our system, we compute this feature for three types

of edge detection algorithms (Prewitt, Roberts and Sobel)

in both depth map and intensity image. For grasping with

two-contact-point candidates (also called pairs), this gives 6

features for each contact point.

These features are our attempt to robustly capture force

stability for grasps by incorporating local information (gra-

dient at a contact point) and global information (vector con-

5064

necting contact points). Note that these features are similar to

the concept of surface normals. Yet, unlike surface normals,

which can be unstable to compute near edges (computed by

SVD, cf. [27]), our features are generally stable and less

noisy.4 Second, note that if we design a system with one

contact point in mind, it is hard to discriminate between good

grasps and bad grasps. For instance, two results (Figure 4 left

and 4 right) have the same left point but they can turn out

to be very good or very bad depending on the choice of the

next contact point.

Gradient angle features are quite powerful and robust to

illumination, rotation and translation. They, however, have

several problems (see Figure 6). First, pairs that are on

shadows, textures on the object can be considered as good

pairs (Figure 6, left). This problem can be addressed by

taking into account collision (sphere feature, see Section IV-

D). The second problem is that pairs that belong to different

objects may be misclassified as good pairs (Figure 6, right).

This can be solved by i) knowing the distance between the

two points (see Section IV-B) and ii) considering the depth

variation from one point to another (see Section IV-C).

Fig. 6. Some problems with the gradient feature. Left: shadows and
textures, this can be solved by sphere feature. Right: pairs in two different
objects, this can be solved by distance and depth variation feature.

B. Distance features

In our system, we use distance between pairs to rule out

pairs that are physically impossible for the robot hand to

grasp (they are too far apart). Moreover, even in the case

that the pairs are close, the hand may prefer to grasp pairs

that are in some certain sizes. As an example, in the case

of Barrett hand, it prefers to grasp pairs with distance 5cm

than pairs with distance 10cm or 1cm, even though they may

be both physically feasible. So our distance feature can be

computed as follows

d = ‖dpair − doptimal‖ (2)

where dpair is the distance of the pair in depth image,

and doptimal is the optimal grasp size of the robot hand.

For dpair, we used X-distance, Y-distance, Z-distance (in

the robot’s frame) and Euclidean distance (i.e. we have 4

distance features).

Another type of distance features we used is the distance

from the base of the robot to the pair itself. Using this

4The features are unstable in the case that the distribution is multimodal
(patches are at corners). To solve this, we tried the idea of using top two
gradients but this idea only slightly improved the results. So, to simplify
the description we only use only one gradient.

knowledge, the learner can learn to prefer pairs that are closer

than pairs that are further away.

C. Depth and pixel intensity variation features

As illustrated earlier, using gradient angle features alone,

it is hard to know whether pairs belong to different objects

or not. To address this problem, we can use the changes in

depth as a feature. Figure 7 shows that if the pair belongs to

different objects, there are a lot of changes in depth than if

the pair belong to the same object.

To compute this feature, we use the depth of the pixels

belong to the connecting line of the two contact points to

compute summary statistics of the depth variation. Some rel-

evant statistics are i) the variance of depths, ii) the maximum

depth minus the minimum depth and iii) the number of times

the line crosses depth discontinuities.5

Fig. 7. Depth variation features: we can use the changes in the depth as
a feature. Top row: a bad pair and corresponding change in depth taken
from the connecting line (magenta). Bottom row: a better pair and the
corresponding change in depth. Notice that the depths change more in the
bad pair than in the good pair.

A similar idea can be applied to the pixel intensity of

visible light image (see Figure 8).

One may view these features as a simple way to approx-

imate segmentation. Segmentation, nevertheless, is avoided

in our approach because it can be a lot harder to perform in

a cluttered scene.

D. Sphere feature

This feature is a simple way to implement collision

detection in the early stage of predicting. The goal of this

feature is to differentiate pairs that are possible to grasp and

pairs that are physically impossible to grasp. Pairs that are

impossible to grasp are ones that if the fingers move there,

there must be some collision.

Figure 9 shows a case when this feature is useful. This

feature can only be computed in the depthmap. For this

feature, we find the two spheres at the locations where the

fingers should be if the contact points are used. The radii of

the spheres are equal to the size of the fingertips. The features

are computed by counting the total number of points in the

5We do not need complete 3D models to do this, only the front face of
objects with surrounding environment is enough.

5065

Fig. 8. Pixel intensity variation features: we can use the changes in the
pixel intensity as a feature. Top row: a bad pair and corresponding change
in pixel intensity taken from the connecting line (magenta). Bottom row:
a better pair and corresponding change in pixel intensity. Notice that the
pixel intensities change more in the bad pair than in the good pair. Note that
there are more points in the x-axis of this figure than the previous figure
because of missing depth readings.

point cloud inside the two spheres. The spheres that have zero

point inside will potentially have no collision. However, due

to noise in sensory data, there might be some points inside

the spheres despite being good pairs. So we can only use this

as a feature in a learning algorithm such that the algorithm

can figure out a good threshold.

For example, the learner will learn that the case in Figure

9 is not graspable because the total number of points inside

the two spheres is too high and there must be collision when

the fingers get there.

Fig. 9. Sphere feature: we can implement a simple form of collision
detection in the early stage of predicting. The sphere features are the number
of points inside the two spheres (in the depth map, but we visualize the
spheres only in 2D). In this case, the number of points inside the left sphere
is zero and the number of points inside the right sphere is over a hundred.
The green crosses are the contact points.

E. Other features

In our algorithm, we also consider other features such as

raw depth data, raw image pixel data. These features only

slightly improve the algorithm.

V. LEARNING WITH RANKING SUPPORT VECTOR

MACHINES

A. Why learning?

As can be seen from the previous section, all of our

features are powerful but not perfect. To combine information

provided by different features, one might consider to hard

code rules to weight different features. In practice, we find

that finding good hard-coded rules is usually difficult even

with a lot of tweaking. A better way is to use learning

algorithms to learn these grasping concepts from data.

B. Performance metric and learning method

In this section, we will discuss an accuracy metric and

a learning method that are probably more relevant to the

grasping task than previous work.

The proposed methods in [1], [2] employ a classifier to

learn to classify a grasp point to be “Good” or “Bad”, yet

at prediction time the classifier is used to rank grasp points

and then pick top points to grasp. There are two issues with

this approach. First, if we would like to compare two sets

of grasping results, we cannot use classification accuracy

because the robot only considers top pairs to grasp. This

leads to the second issue: optimizing classification accuracy

is suboptimal because the learner has to make sure that all

pairs are classified correctly even though top pairs are what

matters.

We will take a full advantage of some recent developments

in learning to rank and information retrieval. In such fields,

a search engine has to rank search results and return top

documents. In this particular setting, classification accuracy

is not a meaningful measure and other ranking metrics are

used to compare and optimize rankers. It has been shown

that it is better to employ measures such as AUC (Area under

ROC), Precision@k [28], or NDCG (Normalized Discounted

Cumulative Gains) [29], [30], [31]. In this paper, we consider

a ranking method that optimizes NDCG (first described in

[31]). Here, we briefly survey the metric and the learning

algorithm. Interested readers should refer to [31] for a

detailed treatment.

Suppose we have a training set {xqi, gqi} where q =
1, . . . , n indexes the scenes in the training set. xqi is a vector

describing the features for the i-th pair corresponding to

scene q. gqi is the numerical grade assigned to that pair

(Bad=0/Good=1/Very Good=2).

Now, assume that for each scene we have xq =
(xq1, . . . , xqmq

) which contains all features for grasping

pairs of scene q. Also suppose that our ranker outputs ranking

yq (a permutation over {1, . . . ,mq}) where yqi = r which

means i-th pair has rank r.

The NDCG score for scene q is defined as [29]

NDCGk(y, q) =
1

Nq

k∑

i=1

D(yi)Φ(gqi), (3)

where D is called the discount function D(r) = 1
log(1+r) ,

Φ(g) = 2g − 1 and Nq is a normalization constant such that

the optimal ranking based on the values of gqi has score 1. k

is called a truncation level (in the case of search engine k =
10). Intuitively the NDCG is a ranking evaluation criterion

that puts strong emphasis at the topmost items, and between

these items, there is a small decaying factor.

As an example, suppose if we have 100 pairs on the scene

to grasp and if we misclassify top 5 pairs, we might just

end up with a classifier with 95% classification accuracy;

5066

whereas, if we use NDCG as the measure with k = 10,

i.e., we care only about top 10 pairs, because Φ has an

exponential component, any misranking of the top pairs will

result in a bigger loss for NDCG10.

Because NDCG focuses on ranking for top pairs, it is

extensively used to measure and compare the performances

of rankers or search engines. Methods that optimize this

measure tend to perform well in practice.

The method in [31] optimizes the following objective

min
w,ξq

λ

2
w⊤w +

∑

q

ξq

s.t. ∀q,∀y 6= yq, w⊤Ψ(xq, yq) − w⊤Ψ(xq, y) ≥ ∆q(y) − ξq

where ∆q(y) = 1−NDCGk(y, q), Ψ(xq, yq) is the features

we have just described, and w is the parameter vector that

we need to learn. This optimization objective is convex and

thus can be solved efficiently via cutting plane and Hungarian

Marriage algorithms (software is available in [32]). Note that,

at prediction time, the scores for all pairs are computed as

w⊤Ψ(xq, yq), then a sort operation is sufficient to obtain

ranking results.

To recapitulate, we will use NDCG as the ’offline’ perfor-

mance metric to compare different learners. In addition, we

will optimize NDCG measure because it usually gives better

ranking for the top pairs. We will show that optimizing such

measures substantially improves the outcome of grasping.

VI. MULTIPLE CONTACT GRASPING

For the ease of presentation, we illustrate most main

concepts and features in the case of grasping with two contact

points. In practice, it is usually more stable to grasp objects

with more than two-finger. For example, for a Barrett hand,

grasping with three fingers are much more stable than with

two fingers.

The method described above can be applied to the case of

grasping with multiple contact points. For example, for the

gradient angle feature, instead of having one angle for two

contact points, we can have one angle for any pair of contact

point in the case of grasping with three contact points.

Likewise, for the distance feature, instead of having one

distance feature, we will have three distance features; each

corresponds to the distance between every pair of contact

points. As a result, we will have more features and rely on the

learning algorithm to learn the right combination of features

that give the most stable grasping.

In fact, all of the experiments in the next section are

performed with a robot with 3 fingers (i.e., three contact

points).

VII. DESCRIPTIONS OF THE ROBOT

We performed our experiment on the STanford AI Robot

(STAIR2). This robot has a 7-DOF arm (WAM, Barrett

Technologies) and a three-fingered 4-DOF hand.

To capture depth data, the robot uses an active triangu-

lation sensor which contains a laser projector and a camera

[24]. The camera returns a 640x480 gray scale image. The

active triangulation sensor returns a very dense depth map

for most pixels in the image. This sensor, however, suffers

from problems such as occlusions and noisy readings at the

edges or shiny objects. Figure 2 shows data captured by the

camera and the active triangulation system.

The whole system (arm, camera, laser) is calibrated by

our recently proposed algorithm for joint calibration [33].

The average calibration errors of the entire system are often

less than 5mm.

VIII. EXPERIMENTS

We consider three sets of experiments. The first set of

experiments is performed offline on a hold out test set with

the purpose of verifying the performance metric and compar-

ing different methods. In the second set of experiments, we

compare our method and method in [2] when grasping novel

objects. In the third set of experiments, we demonstrate the

our method is effective for the task of cleaning up a table.

In our experiments, we consider grasping triples only, this

means there are three contact points per candidate. The main

reason is that our robot hand (Barrett) has three fingers.

A. Offline test

Our dataset contains 8 scenes and 420 grasping candidates.

We split the dataset to 6 scenes with 336 candidates for

training and 2 scenes with 84 for a hold-out test set. The

training set is further split to training and validation set for

model selection. All the data are collected with real objects:

simple wooden blocks and boxes (see Figure 10).

Fig. 10. Training object examples.

This test is entirely offline, i.e. without robot execution.

The goal is to determine the capability of the software

component. We also would like to compare the generalization

power of our method against previous approach. For this test,

we will use NDCG as the performance measure. All methods

are trained with linear models.

To make the two systems comparable, we label the grasp-

ing triples densely and any one-point result returned by

[2] will query a motion planner to find three corresponding

contact points. If the three contact points are close to any

three contact points given by the label, we consider that as

a successful triple.

In the first experiment, we would like to make sure that

optimizing NDCG in the training set can give good perfor-

mance in the test set. Table I shows that optimizing NDCG

indeed gives a big improvement in ranking performance

(5% increase in NDCG). Note that, although classification

5067

accuracy gets worse when optimizing NDCG, this is not

a big problem because classification accuracy considers

suboptimal triples which are never used in the grasping. Also

note that NDCG of 88.52 is considered to be very good

(informally, every time we issue a query, 88% of the ranking

results are good).

In the second experiment, we would like to confirm that

grasping with multiple contact points improves grasping

results compared to [2]. The results of the experiment

(shown in Table II) show that it is indeed the case. This is

because grasping with multiple contact points can give more

discriminative features compared to grasping with one point

and that combining multiple stages in [2] removes errors.6

TABLE I

ADVANTAGES OF USING RANKING SVMS: OPTIMIZING NDCG WILL

RESULT IN BETTER RANKING PERFORMANCE.

Measure Optimize classification Optimize NDCG
accuracy

Accuracy 93.67% 91.43%

NDCG10 83.27% 88.52%

TABLE II

PERFORMANCE OF OUR METHOD AND PREVIOUS METHOD [2].

Measure Previous method [2] Our method

Accuracy 76.21% 91.43%

NDCG10 72.04% 88.52%

B. Grasping novel objects with the STAIR2 robot

Fig. 11. Examples of objects we used in grasping-novel-objects experiment.
Note that for some objects, it is hard to separate the object from the
background.

In this test, we are interested in the task of grasping novel

objects, the objects that never appear in the training set. The

objects we consider in our experiment are slightly harder

than objects used in [2]. For each object, we extensively

performed 20 trials, and compared our method with method

in [2]. Each trial is considered as success if the hand can

grasp the object and move it to the bin. To speed up the

method in [2], we hard coded the table height for their

method such that the motion planner does not need to spend

time looking at random locations on the desk. However, for

our system, we did not hard-code the table height, which

6Note that, for method in [2] we optimized both NDCG and classification
accuracy and found out that optimizing NDCG gives better ranking NDCG
score for the test set. The results reported in Table II are obtained by
optimizing NDCG in the training set.

makes the problem harder for our algorithm. We reported

the average success rates in Table III.

As can be seen from the table, our method significantly

outperforms method in [2] for 8 out of 9 objects. The reason

for the improvement is that our approach gives more stable

grasps than [2] does.

TABLE III

PERFORMANCE OF OUR METHOD AND PREVIOUS METHOD [2] FOR THE

TASK OF GRASPING NOVEL OBJECTS.

Object Previous method [2] Our method

Football 50% 70%

Cup 70% 85%

Mug 80% 90%

CD Holder 75% 95%

Wooden robot arm link 70% 80%

Foam (deformable) 70% 85%

Nerf gun 50% 75%

Helmet 90% 75%

Mean/Std 69.37 ± 13.74% 81.87 ± 8.42%

Fig. 12. Performance of two methods in bar chart.

For some objects, we were unable to match the perfor-

mance reported in [2]. There are several possible reasons for

this mismatch. The first reason is that although the objects

have the same name, they look quite different and harder to

grasp than those in [2]. Furthermore, in our experiments, the

objects are placed in rather difficult locations and unless the

predictor makes a very good prediction, the grasp is going to

fail. Finally, unlike [2], we performed 20 trials per object, and

this makes the statistics more stable than their experiments.

For some objects, the performance of their method is higher

than reported in [2] because our sensor has higher resolution.

In the introduction, we already elucidated the main intu-

ition why grasps produced by [2] are unstable. This basic

intuition indeed translated to their failure cases in the ex-

periments. The main problem is that despite trying to learn

features for power grasps, some of the features do not work

well because the first stage gives bad pinch grasp predictions.

Their method thus has to depend on motion planning to make

the choice of finger placements. As explained earlier, this is

problematic because the motion planning does not consider

force stability.

Interestingly, the method in [2] outperforms our method

in the case of helmets. In general, our method works for

5068

observable triples: the triples that can be captured by a

camera. Most of observable triples in the case of helmets are

either too far apart or unstable to grasp. The method in [2]

simply queries the motion planner and luckily most answers

given by the motion planner are good. In this direction, we

are considering a hybrid approach where both methods can

play a role in the prediction.

Except from the helmets, most of our failures are mostly

related to missing sensor readings due to occlusions (the

camera cannot see the laser beam). A smaller faction of

failures is due to the fact that sometimes the hand cannot

hold the object strongly even though the predictions are good.

There are also a few cases where the raw predictions are bad.

C. Cleaning up desks with the STAIR2 robot

Finally, we apply our method to clean desks that contain

a few objects. In this setting, we use the counts of suc-

cess/failure of the first attempt per object and use this as

the performance metric. Unlike [2] where only an object is

grasped from a cluttered scene, we would like to grasp all

objects in a table. The results reported will be the average

success rates for all objects.

We performed experiments with at tables with increasing

difficulties: number of objects (ranging from 2 to 8) and

different textures on tables. Figure 13 shows an example

scene. Again, we would like to compare our method with

the method in [2].

Fig. 13. An example scene which our STAIR2 robot tries to clean.

To make the comparison formal, we use similar desk set-

ups for the competitive methods. For each algorithm, we

performed 10 trials. And the rate of success of our algorithm

is around 80% vs. 70% for the method in [2]. These statistics

agree closely with the average performance reported in the

previous section.

We also conducted several experiments with our algorithm

only counting failures if the objects are moved out of the

robot’s vision. In this setting, our robot can autonomously

clean up tables with 5 to 10 objects completely. We note

that in our experiments, the objects are lying very close to

and sometimes touching each other (see attached video).

In the attached video, we show some example cases that

the robot cleans the table using our algorithm. More full

length video sequences will be uploaded in the STAIR

website http://stair.stanford.edu .

ACKNOWLEDGMENT

We thank John Duong Dang, Morgan Quigley, Josh Taylor,

Lawson Wong and STAIR teams for the help with the project

and the paper. Support from the Office of Naval Research

under MURI N000140710747 is gratefully acknowledged.

REFERENCES

[1] A. Saxena, J. Driemeyer, and A. Y. Ng, “Robotic grasping of novel
objects using vision,” IJRR, 2008.

[2] A. Saxena, L. Wong, and A. Y. Ng, “Learning grasp strategies with
partial shape information,” in AAAI, 2008.

[3] V. Nguyen, “Constructing stable force-closure grasps,” in ACM Fall

joint computer conference, 1986.
[4] ——, “Constructing stable grasps,” IJRR, 1989.
[5] J. Ponce, D. Sam, and B. Faverjon, “On computing two-finger force-

closure grasps of curved 2d objects,” IJRR, 1993.
[6] K. Lakshminarayana, “Mechanics of form closure,” in ASME, 1978.
[7] J. Salisbury, “Active stiffness control of a manipulator in cartesian

coordinates,” in IEEE Conference on Decision and Control, 1980.
[8] ——, “Kinematic and force analysis of articulated hands,” Ph.D.

dissertation, Stanford University, 1982.
[9] M. Cutkosky, “Machanical properties for the grasp of a robotic hand,”

CMU, Tech. Rep., 1984.
[10] H. Hanafusa and H. Asada, “Stable prehension by a robot hand with

elastic fingers,” in Seventh Inter. Symp. on Industrial Robots, 1977.
[11] R. Pelossof, A. Miller, and T. Jebera, “An SVM learning approach to

robotic grasping,” in ICRA, 2004.
[12] K. Hsiao and T. Lozano-Perez, “Imitation learning of whole-body

grasps,” in IROS, 2006.
[13] K. Hsiao, L. Kaelbling, and T. Lozano-Perez, “Grasping POMPDPs,”

in International Conference on Robotics and Automation, 2007.
[14] E. Chinellato, R. Fisher, A. Morales, and A. del Pobil, “Ranking planar

grasp configurations for a three-finger hand,” in ICRA, 2003.
[15] J. Coelho, J. Piater, and R. Grupen, “Developing haptic and visual

perceptual categories for reaching and grasping with a humanoid
robot,” in Robotics and Autonomous Systems, 2001.

[16] D. Bowers and R. Lumia, “Manipulation of unmodelled objects using
intelligent grasping schemes,” IEEE Trans. on Fuzzy Systems, 2003.

[17] A. Morales, E. Chinellato, P. Sanz, and A. del Pobil, “Learning to
predict grasp reliability for a multifinger robot hand by using visual
features,” in International Conference AI Soft Computing, 2004.

[18] R. Platt, R. Grupen, and A. Fagg, “Improving grasp skills using shema
structured learning,” in ICDL, 2006.

[19] R. Platt, A. H. Fagg, and R. Grupen, “Learning grasp context dis-
tinctions that generalize,” in IEEE-RAS International Conference on

Humanoid Robots, 2006.
[20] A. Edsinger and C. Kemp, “Manipulation in human environments,” in

IEEE/RAS International Conference on Humanoid Robotics, 2006.
[21] A. Saxena, “Monocular depth perception and robotic grasping of novel

objects,” Ph.D. dissertation, Stanford University, 2009.
[22] A. Saxena, J. Driemeyer, J. Kearns, and A. Ng, “Robotic grasping of

novel objects,” in NIPS, 2006.
[23] L. Wong, “Robotic grasping on the Stanford artificial intelligence

robot,” 2008.
[24] M. Quigley, S. Batra, S. Gould, E. Klingbeil, Q. Le, A. Wellman,

and A. Y. Ng, “High accuracy 3D sensing for mobile manipulators:
Improving object detection and door opening,” in ICRA, 2009.

[25] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
in International Journal of Computer Vision, 2004.

[26] N. Dalai and B. Triggs, “Histograms of oriented gradients for human
detection,” in CVPR, 2005.

[27] A. Ng, A. Zheng, and M. Jordan, “Link analysis, eigenvectors, and
stability,” in IJCAI, 2001.

[28] T. Joachims, “A support vector method for multivariate performance
measures,” in In Proc. Intl. Conf. Machine Learning, 2005.

[29] K. Jarvelin and J. Kekalainen, “Cumulated gain-based evaluation of ir
techniques,” ACM Transactions on Information Systems, 2002.

[30] C. Burges, R. Ragno, and Q. Le, “Learning to rank with nonsmooth
cost functions,” in NIPS, 2007.

[31] O. Chapelle, Q. Le, and A. Smola, “Large margin optimization of
ranking measures,” in NIPS Worskop in learning to rank, 2007.

[32] C. Teo, S. Vishwanathan, A. Smola, and Q. Le, “Bundle methods for
regularized risk minimization,” in JMLR, 2010.

[33] Q. Le and A. Ng, “Joint calibration of multiple sensors,” in IROS,
2009.

5069

