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Abstract— In this paper, we identify a class of struc-
turally distinguished machines, called quotient kine-
matics machines (QKM). A QKM realizes a motion
task, typically characterized by a subgroup G of rigid
transformation group SE(3), through coordinated mo-
tion of two mechanisms called modules. One is re-
ferred to as a subgroup module H and the other a com-
plementary or quotient module G/H of H in G. Since
QKM can retain both large workspace/rotation range
of SKMs and speed/accuracy of PKMs by appropriate
choice of modules, it is often implemented in high end
machine design for semiconductor die/wire-bonding
and 5-axis machining, etc. To promote QKM technol-
ogy beyond occasional studies and applications, we
use differential geometric techniques to develop a rig-
orous and precise treatment of QKMs, including: (i)
modeling and analysis of QKMs; (ii) classification and
synthesis of QKMs; (iii) PKM realization of quotient
modules.

I. Introduction

A. Problem statement

In multi-axis machine and multi-DoF (Degree of Free-
dom) manipulator design, a mechanism’s end-effector
link can go through multiple degrees of translations and
rotations in a continuous finite range. If the range of
motion agrees with a Lie subgroup G (or a submani-
fold N) of the rigid transformation group SE(3) on a
neighborhood U of identity motion e ∈ SE(3), we say
the mechanism has (or generate) a motion type ([1], or
motion pattern [2]) of Q (Q = G or N).

Given a desired motion type Q, mechanism synthesis

refers to an interconnection of rigid links through a basic
set of joints (or pairs) so that one particular movable link,
identified as the end-effector, has the motion type of Q.
Commonly used joints include the lower pairs: revolute
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(a) M1=C(o,z) M2=T2(z) (b) M1=C(o,z) M2=T2(z)

(c) M1=C(o,z)M2=X(z)/C(o,z) (d) M1=X(z)/T2(z) M2=T2(z)

Fig. 1. A collection of X QKMs:(a) (C, T2(z)) QKM with a C
SKM and a T2(z) PKM;(b) (C, T2(z)) QKM with a C PKM and a
T2(z) PKM;(c) (C,X/C) QKM with a C SKM and a X/C PKM;
and,(d) (T2(z), X/T2(z)) QKM with a T2(z) PKM and a X/T2(z)
PKM.

joint R, prismatic joint P , helical joint H, cylindrical
joint C, spherical joint S, and composite pairs: universal
joint U , omni wrist O [3] parallelogram Pa, ball-joint
parallelogram P ∗a , spatial parallelogram U∗ [4]. Lower
pairs are all subgroup generators of SE(3); while com-
posite pairs in general generate submanifolds of SE(3).
We have used the same notation for Lie subgroups and
submanifolds as in [1].

Three types of machines can be synthesized using basic
joints: the serial kinematics machine (SKM), the parallel

kinematics machine (PKM) and the hybrid kinematics

machine (HKM). Their pros and cons are well under-
stood in principle.

Aside from the three types of traditional kinematics
machines, there is a fourth type of machines, which we
call the quotient kinematics machines (QKM). A QKM
Q(M1,M2) consists of two mechanisms M1,M2 called
modules, both end-effectors of which act in unison so
that one generates a motion type of Q w.r.t. the other.
Given a Lie subgroup G of SE(3) for instance, its QKM
usually consists of a subgroup module that generates a
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subgroup H of G, and a quotient module that generates
a submanifoldM of G, which can be intuitively explained
as a quotient by eliminating H from G. We refer to such
motion type a quotient motion type, denoted by G/H .
Fig.1 shows 4 examples of X(z) QKMs.

By splitting a large DoF motion task into two with less
DoFs, a QKM can retain advantages of SKMs and PKMs
while avoiding their shortfalls. QKMs are also struc-
turally rich, with different choices of subgroup/quotient
modules and SKM/PKM/HKM realizations. QKMs is
also suited for modular and reconfigurable designs, since
off-the-shelf modules can be used in QKM design, leading
to low cost and high reliability design. Different modules
can be combined to synthesize task motions with various
requirements.

B. Literature review

Although QKMs have been practised in industries
for some time, there appears to be very few literatures
available, providing a formal and systematic treatment of
QKM as a distinct kinematics structure. Tsai and Joshi
proposed a SE(3)(T (3), S(o)) QKM (which they misin-
terpreted as a HKM) which completely splits translation
from rotation [5]. In other words, there is no parasitic

rotation in the translation module and no parasitic trans-

lation in the rotation module.
For 5-axis machine tool design, Bohez enumerated all

QKMs that split a PPPRR SKM into two SKM mod-
ules, and conducted workspace properties comparison
among such QKMs [6]. However, the motion type of
5-axis machining task is not explicitly given, causing
the enumeration results to be incomplete. Besides, no
PKM/HKM modules are considered in [6]. Recently,
there is a surge of study and application on design of 5-
axis QKMs with PKM modules [7], [8], [9], [10], [11]. But
the current state of study on QKMs is on a occasional
basis and largely incomplete.

C. Organization of this paper

We present in this paper a rigorous and precise treat-
ment of QKMs. Rigorous modeling, analysis and clas-
sification of QKM and systematic synthesis of QKM is
given in Section II; PKM realization of quotient modules
is given in Section III. Finally, conclusions and future
works are given.

II. QKM Concept and Synthesis

In this section, we give a formal treatment of QKM
classification and synthesis. We assume that readers are
familiar with basic concepts of differentiable manifold
and Lie group theory (see [12], [13], [14], [15] for more
detailed treatment). Key concepts to be grasped include
the special Euclidean group SE(3) and its Lie subgroups
and submanifolds; For Category I submanifolds and cat-
egory II submanifolds and its application to mechanism
synthesis, please refer to [1].

Motion type Q  SE(3)Motion type Q  SE(3)

M1  QM1  Q M2  QM2  Q

Quotient modules

M1: Motion type M1M1: Motion type M1 M2: Motion type M2M2: Motion type M2

Acting in unison

QKM Q(M1,M2)QKM Q(M1,M2)

Motion type M 1
1 ·M2 = QMotion type M 1
1 ·M2 = Q

(Equality deÞned in a nbhd. of e)(Equality deÞned in a nbhd. of e)

o1

o2

o

g1

g2

M1

M2

Fig. 2. A QKM consists of two motion modulesM1 andM2 acting
in unison. Their relative rigid displacement is given by g−1

1 · g2 ∈

M−1
1 ·M2 or g−1

2 · g1 ∈M
−1
2 ·M1.

A. QKM concept and quotient manifolds

Definition 1: (Quotient Kinematics
Mechanism) A quotient kinematics mechanism
(QKM) consists of two mechanism modules M1 and
M2 acting in unison, as shown in Fig. 2. Let M1 and
M2 also denote the set of rigid displacements generated
by the end-effectors of the respective mechanisms,
expressed in a common coordinate frame O. The QKM,
denoted Q(M1,M2), is said to have the motion type
of Q if the set of relative displacements, M−1

2 ·M1 or
M−1

1 ·M2, agree with Q (or a conjugate member of Q)
in a neighborhood of the identity e:

M−1
1 ·M2 = Q (or M−1

2 ·M1 = Q) (1)

♦
Remark 1: In Def.1, M−1

i stands for the kinematics
inverse of Mi, given by:

M−1 ≜ {g ∈ SE(3)|g−1 ∈M} (2)

It is not difficult to verify TeM = TeM
−1. ♦

In respect of Def.1, we are ready to review the X(z)
QKM example given earlier in a more rigorous manner.

Example 1: X(z) QKM As shown in Fig. 1, there
are several choices for the two modules M1,M2. In Fig.
1(a) and (b), both modules are subgroup modules; in Fig.
1(c) and (d), one module is a subgroup module, and the
other a quotient module. For the QKM shown in Fig.
1(a):

C(o, z)T2(z) = T2(z)C(o, z) = X(z) (3)

can be easily verified, or equivalently (by inverse function
theorem, [12]):

TeC(o, z)⊕ TeT2(z) = TeX(z) (4)

We see that kinematics inverse of a subgroup module
does not change the QKM’s motion type. Besides, (3)
implies that the two modules can be interchanged.

The QKM shown in Fig.1(d) consists of a subgroup
module T2(z), and a quotient module M1 = X(z)/T2(z)
which is a spatial version of a 4-bar linkage. By analyzing
the constraint wrench system, TeM1 = TeC(q, z).

TeT2(z)⊕ TeM1 = TeM
−1
1 ⊕ TeT2(z) = TeX(z) (5)
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is verified. But M1 6= C(q, z) since there exists parasitic
translation in the rotation generated by a 4-bar linkage.

The quotient module M2 = X(z)/C(o, z) shown in
Fig.1(c) is also contained in X(z). Its verification can
be conducted in a similar way. ♦

Generalizing from this example, we see that the two
modules of a QKM can be inverted (inverse property)
and interchanged (symmetry property). Moreover, when
Q is a Lie subgroup G and M−1

1 ,M2 ⊂ G, (1) is equiva-
lent to a more convenient linear algebraic condition:

TeM1 ⊕ TeM2 = g (6)

We have shown by Example 1 that a quotient module
M = G/H is defined by:

H ·M =M ·H = G (7)

or equivalently:

h⊕ TeM = g (8)

It is standard linear algebra ([16]) that (8) is equivalent
to TeM being isomorphic to the quotient space g/h by
the natural projection π:

π : g 7→ g/h, π(v̂) = v̂ + h (9)

TeM is called a representative of g/h. In other words,
given a basis {v̂i}

r
i=1 of TeM and a basis {ŵj}

n
j=1 of h

where dim h = n, r = dim g−dimh, {v̂i, ŵj}
r,n
i,j=1,1 forms

a basis of g. This gives us a systematic way ([1]-Lemma.1-
4) to classify all representatives of g/h along with an
ordered basis {v̂i}

r
i=1. Using canonical coordinates of

the 1st and 2nd kind of SE(3), we immediately have
two systematic ways to generate two special classes of
quotient modules, namely:

1) 1st canonical submanifolds:

{e
∑

r

i=1
viθi |θi ∈ (−ε, ε), i = 1, . . . , r} (10)

2) 2nd canonical submanifolds:

{ev1θ1 · · · evrθr |θi ∈ (−ε, ε), i = 1, . . . , r} (11)

2nd canonical submanifolds or POE correspond to motion
types of a SKM, i.e. manifolds that is synthesizable
by a SKM. Note that Cat. 2 submanifolds are POEs
themselves. For example:

X(x) ·X(y) = T (3)U(o, x, y)

= {eê1θ1 · · · eê5θ5 |θi ∈ ℝ}
(12)

In fact, most works on PKM type synthesis are concerned
with PKM and subchains with POE motion types [17],
[18], [19], [20], [21], [1]. Its systematic generation is also
clear by [1]-Lemma.1-4.

1st canonical submanifolds are largely overlooked in
mechanism synthesis, and thus deserves more explana-
tion here. Recall that the motion type of omni wrist [3],

x y

z

d

(a)

x y

z

(b)

Fig. 3. Omni wrist and 3-RSR PKM

x1

y1

z

y2

x2

g1

g2

Fig. 4. Configuration of a 5-axis machine with spindle symmetry:
g1 ∼ g2 iff g−1

1 g2 ∈ R(o, z)

as shown in Fig.3(a), is:

O(o, dz) ≜

{[

e2x̂θ1+2ŷθ2 − 1
2d(e

x̂θ1+ŷθ2 − I)2e3
0 1

]∣

∣

∣

∣

θi ∈ (−ε, ε)

}

(13)

The rotation part of O(o, dz) (ignoring parasitic transla-
tion) is in the form of a 1st canonical submanifold, which
we denote by Ũ :

Ũ(o, z) ≜
{

eê4θ1+ê5θ2 |θi ∈ (−ε, ε)
}

(14)

Ũ is equivalent to zero torsion rotation [22]. However,
previous works ([22], [23], [24]) did not use the notion
of motion type and fail to discover their underlying rela-
tionship. Other examples of 1st canonical submanifolds
includes the motion type of the symmetric 3-RSR PKM
[25], as shown in Fig.3(b),whose motion type is:

P (o, z) ≜
{

eê3θ1+ê4θ2+ê5θ3 |θi ∈ (−ε, ε)
}

(15)

and the QKM consisting of a 3-PRS Z3 PKM module
and a T2(z) module, whose motion type is:

T (3) · Ũ(o, z) =
{

e
∑

5

i=1
êiθi |θi ∈ (−ε, ε)

}

(16)

General representatives M of G/H defined by (7)
can be thought of as hypersurfaces of 2nd canonical
submanifolds. For example, the motion type O(o, dz) of
omni wrist is a submanifold of P (o, z) (15), which is the
exponential image of a surface in span(e3, e4, e5).

Besides quotient modules of QKMs, motion types
defined by a quotient space also arise in the case of 5-axis
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machining. As shown in Fig.4, the tool spindle of a 5-axis
machine has an axial symmetry characterized by R(o, z),
two configurations g1, g2 of the spindle are considered
equivalent if g−1

1 g2 ∈ R(o, z). Thus the configuration
space of 5-axis machining is the 5 dimensional quotient
manifold SE(3)/R(o, z) [26]. The motion type of a 5-
axis machine is such a submanifold M of SE(3), that
for each configuration [g], M contains a configuration g′

such that g′ ∈ [g]. Considering the motion type of 5-axis
machine, we are looking for submanifolds M of G that
are locally in one-to-one correspondence with G/H , that
is M such that π|M : M 7→ G/H is a diffeomorphism
(smooth and invertible, and the inverse is also smooth).
By inverse function theorem [12], this is equivalent to (8).
Thus a 5-axis machine is a quotient motion generator
of SE(3)/R(o, z). In particular, T (3) · U(o, x, y) and
T (3) · Ũ(o, z) are two particular rep.s of SE(3)/R(o, z).

B. Classification and synthesis of QKM

Motivated by the potential application of QKM in
5-axis machine design, we propose in this subsection
synthesis of general QKMs.

Proposition 1: (QKM classification and synthe-
sis)

The following statements are true:

S1) if H ⊂ G are subgroups of SE(3), then G(H,G/H)
is referred to as normal QKM synthesis;

S2) if N1 ⊂ T (3), N2 ⊂ S(p), then N1 ·N2(N1, N2) is a
QKM with pure translation/rotation modules;

S3) if G1, G2 and H = H1 · H2 ≜ G1 ∩ G2 are sub-
groups of SE(3), then G1 ·G2({G1/H1}, {G2/H2})
is referred to as dependent QKM synthesis;

S4) if H ⊂ G′ ⊂ G are subgroups of SE(3), then
{G/H}({G/H ′}, {H ′/H}) is referred to as gener-

alized QKM synthesis. In particular, {G/H ′} is
referred to as expansion of denominator, {H ′/H}
is referred to as reduction of the numerator.

Example 2: (translational quotient modules)
Consider synthesis of 5-axis QKM using the generalized
QKM synthesis (S4). Given G = SE(3) and H = R(o, z),
we can choose G′ = S(o), then the resulting QKM
is ({SE(3)/S(o)}, {S(o)/R(o, z)}). The {SE(3)/S(o)}
module can be referred to as a translational quotient

module (TQM). Most industrial serial robots use a
TQM module to position its wrist, such as the spherical
type SKM (R(o, z)R(o, x)T (y) ∈ {SE(3)/S(p)}) shown
in [27]-Fig. 8.6. The other type, as illustrated by the
TY head of ESEC used for rapid positioning of the
bonding head [28], corresponds to T (x)R(o, z)R(o, y) ∈
{SE(3)/S(p)}.
{X(v)/R(o, v)}, v ∈ ℝ

3 is a particular subclass of
{SE(3)/S(o)}, with parasitic rotation of R(o, v) but
not that of S(o). For example, the Heckett SKM400
3-axis milling machine tool [29] has a motion type of
R(p, x)Pa(y, v1)Pa(y, v2) ∈ {X(x)/R(o, x)}.

Example 3: {SE(3)/PL(z)} modules Consider the
QKMs of ({SE(3)/PL(z)}, {PL(z)/R(o, z)}) type.

(a) M1 = {SE(3)/PL(z)} M2

= T2(z)

(b) M1 = {SE(3)/PL(z)} M2

= T2(z)

Fig. 5. A collection of 5-axis mechanisms:(a) a QKM consisting
of a Z3 PKM with a decoupled XY PKM table;and (b) a QKM
consisting of a Exechon PKM with a decoupled XY PKM table

{SE(3)/PL(z)} quotient module is usually identified
with the 1T 2R Cat.1 submanifold T (z)U(o, x, y), whose
module synthesis is considered in [30], [9], [11].

The Sprint Z3 PKM, as shown in Fig.5(a), is another
{SE(3)/PL(z)}module. Its kinematics is studied in [22],
and its motion type M1 is given by:

M1 =























e
(ê1 cos θ+ê2 sin θ)a

r
2 cos 2θ(1− cos a)
− r2 sin 2θ(1− cos a)

z
0 1









∣

∣

∣

∣

∣

∣

∣

∣

θ ∈ [0, 2π], z ∈ (−ε, ε), a ∈ (−ε, ε)

}

(17)

from which we get TeM1 = span(ê3, ê4, ê5). Thus (8) is
satisfied:

TeM1 ⊕ TePL(z) = TeM1 ⊕ se(2) = se(3) (18)

Note that M1 is obviously not equal to T (z)U(o, x, y)
due to existence of parasitic translation in T2(z). If
we let θ1 = a cos θ and θ2 = a sin θ, the rotation
matrix of Z3 are elements from Ũ(o, z). This implies
that (M1, T2(z)) ∈ ({SE(3)/PL(z)}, {PL(z)/R(o, z)})
is a T (3) · Ũ(o, z) QKM.

The Exechon PKM (Fig.5(b)), though being used as
a TQM in [31], is also a {SE(3)/PL(z)} as we shall
see. For ease of computation, take the kinematics inverse
of Exechon, its motion type M−1

1 is given by equating
T2(x) · U(o, x, y) with T2(y)S(−re3):

M−1
1 =























e
ê1θ1
e
ê2θ2

0
r sin θ1 sin θ2

z
0 1









∣

∣

∣

∣

∣

∣

∣

∣

θi ∈ (ε, ε)















(19)
M−1

1 translates along z and rotates like a universal joint,
with parasitic translation in T (y). This implies that
(M1, T2(z)) ∈ ({SE(3)/PL(z)}, {PL(z)/R(o, z)}) is a
T (3) · U(o, x, y) QKM. It is also interesting to note that
the inverted Exechon is an overconstrained version of a
3-PRS PKM with two coplanar subchains. ♦
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III. PKM realization of quotient modules

Given a quotient motion type {G/H}, its PKM synthe-
sis problem amounts to: (i) find submanifolds Mi’s that

contain a rep. Q ∈ {G/H}; (ii) verify that ∩Mi = Q; and
(iii) generate subchains for each Mi. In this subsection,
we propose two methods to synthesize quotient PKMs.
They are both based on the expansion and reduction
rules in Prop.1-S4, which can be readily used to find
Mi’s. Then we can use VMC/FMC of [1]-Prop.6 to verify
the resulting PKM. The subchain synthesis is already a
mature topic in most cases [1] and thus shall not be a
focus of our study.

Algorithm 1: indirect synthesis The indirect syn-

thesis method refers to PKM synthesis with an explicit
rep. Q of {G/H}:

Input) H ⊂ G ⊂ SE(3), r ≥ dimG/H , and a set of
basic joints, B;

A1) Specify a rep. Q ∈ {G/H};
A2) Apply expansion and reduction rule: specify

Gi ⊇ G and Hi ⊆ H , and rep.s Mi ∈ {Gi/Hi}
such that Q ⊂Mi;

A3) Verify the velocity matching condition (VMC,
[1]):

TeQ = TeM1 ∩ · · · ∩ TeMr (20)

or, equivalently the force matching condition

(FMC, [1]):

T ∗eQ
⊥ = T ∗eM

⊥
1 + · · ·+ T ∗eM

⊥
r (21)

where

T ∗eQ
⊥ ≜
{

f ∈ ℝ
6|〈f, ξ〉 = 0, ∀ξ ∈ TeQ

}

(22)

denotes the subspaces of constraint (reciprocal)
forces (wrenches) for TeQ.

A4) if VMC or FMC is satisfied, M1‖ · · · ‖Mr is
a parallel motion generator of Q ∈ {G/H}.
Synthesize Mi subchains using B, e.g. method
used in [1]. If VMC and FMC fails, go back to
A2).

Example 4: indirect synthesis of {SE(3)/PL(z)}
module Choose the motion type of Z3 ∈
{SE(3)/PL(z)} for instance. Since Z3 ⊂ T2(y)Ũ(re1, z)
due to zero torsion, the PKM M1‖M2‖M3 with:











M1 = T2(y)Ũ(re1, z)

M2 = Ig0
(T2(y)Ũ(re1, z))

M3 = Ig2

0

(T2(y)Ũ(re1, z))

, g0 =

[

eê3
2π

3 0
0 1

]

(23)

is an overconstrained version of Z3. An immediate me-
chanical realization is given by a PKM with 3 symmetric
PPaO subchains. Due to the parasitic translation of
omni wrist which is z-axial symmetric, its motion type

is given by:

M =























e
(ê1 cos θ+ê2 sin θ)a

x
y
z

0 1









∣

∣

∣

∣

∣

∣

∣

∣

θ ∈ [0, 2π],
a ∈ (−ε, ε),
z ∈ (−ε, ε)















x =
r

2
cos 2θ(1− cos a)− d sin θ(1− cos

a

2
) sin
a

2

y = −
r

2
sin 2θ(1− cos a) + d cos θ(1 − cos

a

2
) sin
a

2
(24)

in reference to (13) and (17). The PKM is overcon-
strained and thus less prone to singularities. It also has
a maximal tilting angle of ±95◦ in all directions due to
the adoption of omni wrists. For insufficiency of space,
we do not give a picture here. ♦

Algorithm 2: direct synthesis The direct synthesis

method refers to PKM synthesis without an explicit rep.
Q of {G/H}:

Input) H ⊂ G ⊂ SE(3), r ≥ dimG/H , and a set of
basic joints, B;

A1) Apply expansion and reduction rule: specify
Gi ⊇ G and Hi ⊆ H , and rep.s Mi ∈ {Gi/Hi}
such that Q ⊂Mi. In addition, ∩ri=1Mi should
also be verified for (local) submanifold property
(see p. 75, [12]);

A2) Verify the velocity matching condition (VMC,
[1]):

TeQ⊕ h = (TeM1 ∩ · · · ∩ TeMr)⊕ h = g (25)

or, equivalently the force matching condition

(FMC, [1]):

T ∗eQ
⊥ ∩ h∗⊥ = g∗⊥ (26)

A3) if VMC or FMC is satisfied, M1‖ · · · ‖Mr is
a parallel motion generator of Q ∈ {G/H}.
Synthesize Mi subchains using B, e.g. method
used in [1]. If VMC and FMC fails, go back to
A1).

Example 5: direct synthesis of {X(z)/T2(z)}
modules To directly synthesize a {X(z)/T2(z)} PKM,
we first consider expansion of numerator, the only case of
which being Gi = SE(3). Given ∀Mi ∈ {SE(3)/T2(z)},
it is not difficult to see that Mi∩X(z) is the desired rep.
Q ∈ {X(z)/T2(z)}:

∀Mi ∈ {Gi/H} with G ⊂ Gi, Q ≜Mi ∩G ∈ {G/H}
(27)

For example, the motion type of a revolute-spherical
dyad (RS subchain, [32]) is a rep. of {SE(3)/T2(z)}.
Using (27), we have:

Q = R(o, x)S(de2) ∩X(z) = Pa(x, de2)R(de2, z) (28)

If we let M1 = R(o, x)S(de2) and M2 = X(z), we get
a PKM M1‖M2 with motion type Q ∈ {X(z)/T2(z)}.
Then we consider reduction of denominator by letting
Hi = T (vi), vi ⊥ z, i = 1, 2 such that T2(z) =
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T (v1)T (v2). For example, Mi = T (z)R(pi, z)R(pi +
l1vi, z), i = 1, 2, then:

M1 ∩M2 = T (z) ·N (29)

where N is the 1 dimensional submanifold of a four-
bar linkageR(p1, z)R(p1+l1v1, z)R(p2+l2v2, z)R(p2, z).
Finally, a combined expansion and reduction effort can
be considered. We let Mi = U(pi, vi, z)S(liê3vi), vi ⊥
z, i = 1, 2 and M3 = X(z). M1‖M2 is a {SE(3)/T2(z)}
PKM by reduction rule since the universal-spherical dyad
U(pi, vi, z)S(pi+ liê3vi) is a rep. of {SE(3)/T (ê3vi)}, i =
1, 2. ThusM1‖M2‖M3 is a {X(z)/T2(z)} PKM by expan-
sion rule. A mechanical realization of the PKM is given
in Fig.1(d). The {X(z)/C(o, z)} PKM shown in Fig.1(c)
is synthesized in a similar manner. ♦

IV. Conclusions

In this paper, we have given a systematic treatment
of QKMs. Its classification and systematic synthesis is
solved using the notion of quotient motion type. PKM
realization of quotient modules are systematically solve
for the first time. Our study gives a unified understanding
of the many QKM case studies, and offers a systematic
way to synthesize novel QKMs.

Our future work is focused on systematic synthesis of
quotient PKMs, and further study on parasitic motions.
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