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Abstract— We present an investigation of dynamic team for-
mation strategies for robot ensembles performing a collection of
single and two-robot tasks. Specifically, we consider the abstract
“stick and pebble” problem, as a variation of the “stick pulling”
problem discussed in the literature. We present a formulation
of the dynamic team formation problem that is independent of
ensemble size and develop a macroscopic analytical description
of the ensemble dynamics. The macroscopic model is then used
to determine the optimal teaming strategy for two different
performance metrics. We present agent-based simulation results
to support the validity of our macroscopic analysis.

I. INTRODUCTION

We are interested in developing dynamic team formation

strategies for simultaneous execution of various tasks by

a robot ensemble. The objective is to enable robots to

autonomously form sub-teams, or coalitions, and cooperate

on tasks that cannot be accomplished by a single robot.

The dynamic coalition formation and multi-robot assignment

problem is akin to the resource allocation problem [1] and

in general is NP-hard. We seek to develop decentralized

strategies where team formation can be achieved dynami-

cally, without requiring knowledge of team size and robot

identities. We are also interested in strategies that rely solely

on local information that can be obtained with minimal

communication and sensing requirements. This is critical for

large ensemble sizes since it is often impractical to provide

individual robots with access to global information.

Existing works that consider the coalition formation prob-

lem include [2], where sensor and actuator sharing between

robots is achieved by abstracting individual robot controllers

to a set of schemas over the task, sensor, and actuator space.

This method then computes the task appropriate ensemble of

robotic agents. In [3], heuristic ideas from software coalition

forming are adapted to develop a market-based approach to

task execution. Both [2], [3] rely on combinatorial decision

making and high communication rates to optimize the team

formation. The dynamic team formation problem for team

of heterogeneous robots is considered in [4] while the dis-

tributed dynamic task allocation problem is discussed in [5].

Both [4], [5] formulate the respective problems as variations

of the dynamic traveling repairman problem.
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Recently, chemical reaction networks have been employed

to model, analyze, and synthesize robot ensemble task allo-

cation strategies [6], [7]. These works employ a multi-level

representation of ensemble activity. At the lowest, or micro-

scopic level, individual robot behaviors are represented by

probabilistic finite state machines. At the highest, or macro-

scopic level, chemical reaction network theory (CRNT) is

employed to obtain continuous models with a degree of

predictive power to describe the ensemble dynamics. In

[6], an adaptive multi-robot task with no explicit inter-

agent communication or global knowledge is modeled as a

stochastic process. A similar approach towards collaborative

manipulation is presented in [8], where a discrete-time

macroscopic model is used to analyze the collective behavior

of the robot ensemble.

Dynamic assignment and reassignment of a robot swarm

to multiple parallel independent tasks using a top-down syn-

thesis approach is presented in [7], [9]. The desired swarm

allocation is achieved by using the macroscopic models to

optimize the individual robot task preference probabilities.

Macroscopic models for a robot swarm executing collabora-

tive tasks are used in [10] to show the effects of controller

parameter heterogeneity on team performance when external

environmental conditions are unknown. These works focus

on the allocation problem and not on the dynamic team

formation problem.

Similar to [6]–[9], we propose a multi-level representation

of robot ensemble behavior. We follow a top-down design

approach towards the synthesis of individual robot controllers

that result in dynamic team formation at the agent level. We

build on [8] and consider the deployment of a robot ensemble

to execute a collection of single and two-robot manipulation

tasks. Our proposed approach assumes individual robot dy-

namics are described by discrete states where state transitions

are governed by stochastic processes and robots have the

ability to form two-robot teams or operate independently.

We develop models to describe the ensemble dynamics using

CRNT and optimize the individual robot transition proba-

bilities to maximize ensemble performance. Different from

existing methodologies, this approach results in a strategy

that is invariant to team size and enables a formulation of

the resource allocation problem that scales only in terms of

mission complexity. We present the resulting strategies based

on two different metrics and present microscopic simulation

results to support our findings.

II. PROBLEM FORMULATION

Assume an ensemble of N non–communicating robots

and two sets of spatially distributed tasks S and P . Let S

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 4970



denote the set of tasks that can only be completed by two

collaborating robots, i.e., two-robot tasks, and P denote the

set of single-robot tasks. The objective is to determine the

appropriate team formation strategy to meet some desired

ensemble performance metric.

We consider a variation on the stick-pulling experiment

[6], [11], where ∣S∣ = S sticks and ∣P∣ = P pebbles are

scattered within a given workspace. Each robot is tasked

to wander the workspace and remove as many sticks and

pebbles as possible. Similar to existing work, we assume

that sticks are large enough that they can only be removed by

two collaborating robots. Pebbles, on the other hand, can be

removed by a single robot. This toy example provides a nice

abstraction for more complex missions that are composed of

various single and multi-robot tasks, e.g. search and rescue.

If we assume sticks of varying weights such that some sticks

can be removed by �i robots while others require �j robots,

we would be able to consider the general problem of forming

different teams sizes within the ensemble. We limit ourselves

to the investigation of combinations of single and two-robot

tasks in this work.

Assume the individual robot controller consists of five

states: 1-WANDER, 2-WANDER, REMOVE-P, REMOVE-S,

and HOLD. Robots initially wander the workspace looking

for tasks, i.e., sticks or pebbles, either in a 1-robot team,

1-WANDER, or a 2-robot team 2-WANDER. For a uniform

distribution of tasks within the workspace, the rate at which

a single or a pair of robots encounters a task in the workspace

depends on M = S + P , �S = S/M or �P = P/M ,

the workspace geometry, and possibly other factors. Accord-

ingly, we define the discovery rate for a stick or pebble,

denoted by kdS and kdP , as the rate a robot encounters a

stick or pebble normalized by such factors. While kd∗ can

be difficult to model, for a given set of parameters, it is

possible to obtain kd∗ empirically. In this work, we will

assume that kdS = kdP = kd and every time a task is

completed, it is immediately replaced with a task of the

same kind randomly placed within the workspace. This will

enable us to assume that kd∗ remains constant throughout

the simulated experiment.

When a single robot encounters a pebble, it switches from

the 1-WANDER mode to the REMOVE-P mode. Similarly, if

a 2-robot team encounters a stick, the pair switches from

the 2-WANDER mode to the REMOVE-S mode. Once either

the pebble/stick is removed the 1-robot/2-robot team reverts

to either 1-WANDER/2-WANDER mode. However, if a single

robot encounters a free stick, it switches from the 1-WANDER

mode to the HOLD mode and waits for some time interval � .

Should another single robot happen upon the same stick,

the two would then switch to the REMOVE-S mode and

cooperatively remove the stick. After removing the stick, the

two single robots can decide to remain as a team or split

up. Similarly, if a 2-robot team encounters a free pebble, it

switches from the 2-WANDER to REMOVE-P mode. Once the

pebble has been removed, the 2-robot team can decide to stay

as a pair or dissolve into two 1-robot teams. Finally, robots

can switch accordingly from 1-WANDER to 2-WANDER and
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REMOVE-P

2-WANDER

REMOVE-S

kd

kR

�D

�F

kTF

kTD

�F

�D

kd

kd

kdkd

kd

Fig. 1. The individual robot controller. The k∗ represent rates of transition.
The �∗ represent a weighting on the rates. �D + �F = 1.

vice versa as they wander the workspace and encounter one

another. The individual robot controller is shown in Fig. 1.

Rather than choose a constant waiting time interval when

a robot encounters a stick, we assume robots draw their �i
from an exponential distribution with an expected value of � .

This enables us to parameterize the exponential distribution

by kR = 1/�i and refer to this parameter as the release

rate of the sticks by single robots. Similarly, 1-robot teams

will probabilistically decide to form 2-robot teams with

propensity �F after removing a stick and 2-robot teams will

decide to dissolve into two 1-robot teams with propensity

�D after removing a pebble.

For large enough N and M , we model the dynamics of

the pebble and stick removal problem as a chemical reaction

process and define the following population variables:

nR Single robots

n2R Two robot teams

mS Free sticks

mP Free pebbles

mSR Occupied sticks

� = (S + P )/N Ratio of total tasks to agents

�S = S/M Fraction of sticks in M
�P = P/M Fraction of pebbles in M

The following robot reaction processes describe the produc-

tion and consumption of each of these elements:

nR +mS

kd

⇄
kR

mSR (1a)

nR +mP
kd−→ nR +mP (1b)

nR + nR

kTD

⇆
kTF

n2R (1c)

n2R +mS

{

kd�D∣S−−−−→
kd�F ∣S−−−−→

nR + nR +mS

n2R +mS

(1d)

n2R +mP

{

kd�D∣P−−−−−→
kd�F ∣P−−−−→

nR + nR +mP

n2R +mP

(1e)

nR +mSR

{

kd�D∣S−−−−→
kd�F ∣S−−−−→

nR + nR +mS

n2R +mS

(1f)

n2R +mSR
kd�D−−−→ nR + n2R +mS (1g)
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where kTF and kTD denote the team formation and dissolu-

tion rates respectively. Process (1a) describes the formation

and release of sticks held by 1-robot teams. Process (1b) de-

scribes the removal of pebbles by 1-robot teams and process

(1c) describes the formation/dissolution of 2-robot teams.

Process (1d) and (1e) describe the removal of sticks and

pebbles, respectively, by 2-robot teams and their subsequent

propensity to stay as 2-robot teams or dissolve into two 1-

robot teams. Process (1f) describes the removal of sticks by

two 1-robot teams and their subsequent propensity to remain

as two single robots or form 2-robot teams. Process (1g)

describes the encounter of a 2-robot team with a held stick.

The above reactions result in the set of rate equations

shown in Fig. 2. These equations describe the time evo-

lution of the population of 1-robot and 2-robot teams,

nR and n2R, and the populations of free and held sticks,

mS and mSR. The state of the system is given by c =
[nR, n2R, mS , mSR]

T . The system is subject to the

conservation constraints N = nR + 2n2R +mSR and S =
ms +mSR since N and S are constant. While the number

of robots, sticks, and pebbles are obviously integers, we

treat them as continuous numbers in our formulation. This is

justifiable for the large values of N and M .1 Although kd�D
and kd�F are parameters of the macroscopic model, they

are also the transition rates that define the transition rules

between controller states for the individual robots. Lastly, in

our formulation, the complexity of the coordination problem

depends solely on the complexity of the mission at hand and

is invariant with respect to N .

To determine a productivity-maximizing strategy, i.e., an

optimal strategy, we define two metrics. The first metric

describes the average rate in which the ensemble removes

pebbles and sticks from the workspace and is given by

E1 =�S(kdmSRnR + kdn2RmS + kdn2RmSR)+

�P (kdnRmP + kdn2RmP ) (2)

where �S , �P > 0 are constant weights. The first term in (2)

is the average removal rate for a stick while the second term

is the average removal rate for a pebble. In our formulation,

we assume �S = �P = 1. The second metric describes

the average time a pebble or stick has to wait before being

removed and is given by:

E2 =TS + TP

where TS =
mS

kdmSRnR + kdn2RmS + kdn2RmSR

TP =
mP

kdnRmP + kdn2RmP
. (3)

In this work, we assume the N is fixed and S and P
are given a priori. The objective is to determine the optimal

values of nR and n2R and the related values of kd�S and

kd�F given S and P .

1To further justify this, we can assume that the original integers N
and M are normalized by comparing to some large constant P such that
Ncontinuous = N/P and Mcontinuous = M/P .

III. ANALYSIS

In this section, we analyze the equilibrium conditions

for the system shown in Fig. 2. In the case when an

optimal strategy exists in the space of feasible solutions, we

show how the optimal mix of 1-robot/2-robot teams can be

achieved for any combination of 1-robot/2-robot tasks using

two metrics.

A. Stability of Equilibrium Solutions

Recall, the state of our system is given by c =
[nR, n2R, mS , mSR]

T . We refer to elements of c as

species and reactions (1a-g) are made up of complexes,

i.e., the reactants and byproducts of the reactions. The rate

equations (Fig. 2) can be represented as a graph, G = (V , ℰ),
whose nodes represent the complexes and the edges denote

the reactions. We define Ψ(c) = [nR + mS , mSR, nR +
mSR, n2

R, n2R, n2R +mP , n2R +mS, nR +mP , n2R +
mSR, n2R + nR]

T as the vector of complexes with the rate

equations equivalently expressed as

d

dt
c = Y AkΨ(c). (4)

In general, given I species and J complexes, Y is an I×J
matrix such that Yij = 1 if one degree of species i is part of

complex j and Yij = 0 otherwise. Ak is the J × J negative

weighted directed Laplacian matrix for G given by

Akij =

⎧

⎨

⎩

−kij (i, j) ∈ ℰ
∑

l∈ℰ kil i = j
0 otherwise

System (1), represented by the graph G, is weakly re-

versible because we assume that every completed task is

immediately replaced with an equivalent new task. By the

zero deficiency theorem [12], the system given by Fig. 2 with

constant N , S, and P has a single stable positive equilibrium.

Furthermore, the stability of the equilibrium is independent

of the reaction rates. Such a property allows us to select the

appropriate team formation and dissolution rates, kTF , kTD,

and �∗s, based on the desired ensemble performance metric

without affecting the stability of the system.2

B. Team Formation Strategy

In this section, we determine the optimal teaming strategy

based on two metrics: average task removal rate (2) and

average task wait time (3). We parameterize the workspace

using the values: � = (S + P )/N which is the proportion

of total tasks to robots, �P = P/M , and �S = S/M .

For this analysis, all kd∗ are assumed to be one. From our

conservation constraints the domain of the population is

D =

⎧





⎨





⎩

nR ≥ 0
n2R ≥ 0

N − nR − 2n2R ≥ 0
�S�N −N + nR + 2n2R ≥ 0

(5)

2When completed tasks are not replaced by new tasks, the resulting rate
equations will no longer be weakly reversible. However, in this scenario,
the number of uncompleted tasks will always be decreasing, and as such
one can employ a Lyapunov argument to show that the system is stable.
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ṅR = 2kd�TDn2R(mS +mSR +mP ) + 2kTDn2R + kRmSR + kd�TDnRmSR ⋅ ⋅ ⋅
− kdnRmS − kd�TFnRmSR − 2kdkTFn

2

R

ṅ2R = 1

2
kdkTFn

2

R + kd�TFnRmSR − kd�TDn2R(mS +mSR +mP )− kTDn2R

ṁS = kRmSR − kdnRmS + kdnRmSR + kdn2RmSR

ṁSR = kdnRmS − kRmSR − kdnRmSR − kdn2RmSR

Fig. 2. Rate equations obtained from the reactions outlined in (1). The analysis contained in this work was done on the system with replacement. This
means that the sticks and pebbles that are removed from the space are immediately replaced.

1) Case 1: Heterogeneous Robots: We consider the case

when we limit 1-robot teams to only execute on 1-robot

tasks and 2-robot teams to only execute on 2-robot tasks.

This is equivalent to case when (1b-d) and (1g) are the only

governing reactions in the system. Then the metrics (2) and

(3) simplify to

E1 = �S(kdn2RmS) + �P (kdnRmP )

E2 =
n2R + nR

kdn2RnR

respectively. If �P /�S > 0.5, a population of all 1-robot

teams will maximize E1. If �P /�S < 0.5, all 2-robot teams

will maximize E1. This is because E1 rewards completion

of 1-robot and 2-robot tasks equally. Since E2 does not

depend on the number of sticks nor the number of pebbles

the optimal allocation of results when nR = (
√
2−1)N , and

n2R = (1−
√
2/2)N .

2) Case 2: Homogeneous Robots: In this section we

consider the case when robot teams are not limited to specific

types of tasks, i.e., when all of the reactions in (1) are valid.

a) Average Removal Rate:: Under (2), robots have the

incentive to remove as many items out of the workspace as

possible. The gradient of E1 with respect to nR and n2R is

given by

∇E1 =

[

N − 2nR − 2n2R + �P�N
�N − 2nR

]

From the above equation, E1 has an equilibrium point at,

[

nR

n2R

]

= N
2

[

�

(1− �S�)

]

with the Hessian of E1 given by

ℋ(E1) =
[

−2 −2

−2 0

]

⇒ saddle point

The saddle equilibrium in the system dictates that the

maximal removal rate must lie on the boundary of the

domain. Since the Hessian is constant, the location of the

saddle point determines the optimal population distribution.

Fig. 3 shows the shape of E1 versus n2R and nR. The saddle,

marked with an × is visible in the center. The black squares

are optimal values of nR and n2R.

On the boundary there are two possible solutions. When

nR = 0, the entire robot ensemble is made up of 2-robot

teams with mRS = 0 and n2R = N/2. The optimal removal

rate for the population of N/2 2-robot teams will be 1

2
�N2.

For n2R = 0 there is a range of possible solutions on the

[N − mRS/2, N ] line segment. However, nR cannot dip

Single Robots − n
R

P
a

ir
s
 o

f 
R

o
b

o
ts

 −
 n

2
R

Pulling Rate Contour plot

20 40 60 80 100

0

10

20

30

40

50 �S = 2

3

� = 3

4

Fig. 3. The removal rate E1 as a function of nR and n2R. The saddle
point is marked by × in the center and the optimal distributions of nR and
n2R are marked by the black squares are optimal values of nR and n2R.

below N−mRS/2 because that is the condition that results in

single robots staying in the hold position for ever, kR = 0. As

the robots search for occupied sticks to clear, they are equally

likely to find a new stick as they are to clear an occupied

one. The rate of occupying empty sticks is equivalent to the

rate of clearing occupied sticks.

Given that the solution is on either side of the domain, it

is useful to define a boundary in the space that delineates

equivalent strategies. The following equations gives the con-

ditions where E1 is equivalent for team configurations of

“all-pairs”, n2R = N/2, and all singles, nR = N/2, kR → 0,

respectively.

� =
2�S − 2

�2

S − 2�S
,

nR

2n2R
=

�P

�2

S

(6)
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Fig. 4. This shows how the saddle equilibrium, denoted by ×, moves for
different values of clutter, �, and proportion of pebbles, �P . The squares
on each graph represent the max of E1.
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An interesting result that emerges from this analysis is

that the all pairs solution will always be the optimal solution

when there are no pebbles. In the case of extremely low � the

pulling rate for pairs is still �N2/2. The solution for singles

has the chance to be much bigger than that. If there are many

more agents than sticks, the system could potentially reach a

point in which every stick has an agent waiting. This would

significantly outperform the pairs solution, �N2/2 < �N2.

However, due to the nature of the system, all of the sticks

being filled is extremely unlikely. When the number of

occupied sticks, mSR, equals the number of free sticks,

mS , the chance of a robot clearing the occupied stick and

occupying an empty stick are the same. This is because

mSR = mS is a stable equilibrium point for systems with

no pairs and high stick waiting times. This means that for

single robots the pulling rate is upper bounded by �N2/2,

the solution for all pairs.

b) Average Task Waiting Time:: From a queuing theory

perspective, a better behavior is one that minimizes the

average amount of time each stick or pebble has been waiting

to be pulled out of the space given by (3). Since minimizing

E2 is equivalent to maximizing E−1

2
, i.e., the harmonic

average of the pebble and stick removal rates, our discussions

will focus on the problem of maximizing E−1

2
.

There are some plain differences between the two opti-

mizations. First, E1 is indifferent about what gets removed

and thus is maximized by finding the fastest way to clear as

many objects as possible. If the system can drag out more

pebbles than sticks, then a population of all single robots

is the optimal clearing behavior. In fact, that is the optimal

solution for systems with high � and �P > �S . Under these

conditions, the optimal teaming strategy is to form no teams

and only pick up pebbles. The task waiting time strategy

throws out those solutions as it punishes queue instability.

0 50 100
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40
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0 50 100
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20

40

60

0 50 100
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0 50 100
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60
(B)
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(A)

20 Sticks

(D)

1500 Sticks

(C)

80 Sticks

Fig. 5. Harmonic mean of the rates changes with the number of sticks
mS .

It also important to note that the waiting time is in-

dependent of the number of pebbles in the space. In the

macroscopic rate equations, the pebble pulling rate is linearly

dependent on the population variable mP . This means that

the average waiting time for a single pebble is TP =

TABLE I

SUMMARY OF TEAM FORMATION STRATEGIES

{nR, n2R} Case 1 Case 2
E1 E2 E1 E2

�P > �S {N, 0} (*) {N, 0} {0, N/2}
�S > �P {0, N/2} (*) {0, N/2} {0, N/2}

(*) = {(
√

2 − 1)N, (1 −
√

2/2)N}

[kd(n2R+nR)]
−1. By observing 5, it is evident that the high

resource tasks, or sticks, dominate the behavior of the waiting

time metric. In our model, paired robot teams can execute

on any task they find, so for optimizing the average waiting

time, focusing on the resource demanding tasks while still

maintaining an ability to execute on smaller tasks gives the

population of 2-robot teams a big advantage. The average

task waiting time is a metric that quantifies how bad the

worst case is. Since TS will always be greater than TP in

this formulation, the results will strongly favor 2-robot teams.

We summarize our results in Table I.

IV. SIMULATION RESULTS

The macroscopic description of the ensemble behavior is

an approximation of the average behavior of the microscopic

system and only become exact when populations tend toward

infinity. To show that the previous analysis apply for robotic

systems, we present agent-based simulation results to support

our analysis and to claim that these macroscopic models can

be useful for analyzing and synthesizing collective behaviors.

In our agent-based simulations, robots are treated as point

masses with a fix sensing radius to model simple, non-

communicating robots. Each robot moves at unit speed

with basic collision avoidance protocol. They move in

straight lines until they encounter other robots, tasks, or the

workspace boundary. As the robots move into each other’s

collision range, they take a noisy right turn to move around

each other. When the robots hit the workspace boundary,

they turn around with a preference towards the farther wall

to avoid getting stuck in the corners. When two single robots

meet, they can join a team or stay as 1-robot teams based on

the team formation and dissolution rates obtained from the

macroscopic analysis. When a 2-robot team clears a stick,

it can go about its way or it can split up depending on the

chosen rates. For example, if �TF ∣S = p, when a pair clears

a stick, the 2-robot team will randomly choose with proba-

bility p to stay as a pair or separate. The following results

correspond to agent-based simulations of an ensemble of 30
robots, operating within a 10 × 10 workspace, possessing a

sensing radii of 0.3 units for different values of S and P .

Fig. 6 shows the correspondence of the agent-based sim-

ulations (top) with the macroscopic results (bottom). Each

shaded block in the top graph represents an (nR, n2R) pair

and the steady-state removal rate, E1, attained in the agent-

based simulation. In these figures the lighter the shade the

higher the value of E1.

V. DISCUSSION

From our analysis, regardless of the metric employed,

maximal performance for the ensemble is achieved when
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Fig. 6. Top: Steady-state removal rates, E1, for different pairs of
(nR, n2R) in the agent-based simulations. Bottom: Corresponding steady-
state removal E1 predicted by the macroscopic models.

either the entire ensemble is tasked to operate as either 1-

robot or 2-robot teams. From a utility-based point-of-view,

i.e., when one considers E1, it makes sense that either

sticks or pebbles are seldom picked up since there is no

penalty imposed for ignoring hanging tasks. From a queuing

perspective, such a solution results in queue instability.

However, if one considers the average task waiting time,

E2, there is a tendency to over-penalize the ensemble for not

finding the less likely tasks. In other words, if S << P , using

E2 results in a strategy that too strongly favors the formation

of two-robot teams. Such a behavior seems to suggest that

the metrics employed in our study are sensitive to “outliers”.

This is of significance since the 2-robot behaviors are often

more complex and difficult to implement in hardware.

Of particular interest is the development of additional

metrics that can result in mixed team initiatives that varies

as a ratio of the different tasks within the workspace.

Specifically, given the individual removal rates or task wait

times, it may be possible to develop metrics that are less

sensitive to outliers through the use of robust statistical

methods. Another incentive for considering mixed team

initiatives is in situations when the total number of tasks or

the exact mix of tasks is unknown. A mixed team ensemble

can provide added robustness to unforeseen or unmodeled

environment conditions. Lastly, we note that in situations

where dynamic team formation is desired, our macroscopic

models are capable of accurately describing the ensemble

behavior through the appropriate selection of the formation

and dissolution rates given by kTF , kTD , and �∗.

VI. FUTURE WORK

In this work we presented a study of the applicability

of the chemical reaction network models to the study of

dynamic team formations in robot ensembles. We show that

the CRNT framework enables us to model, analyze, and

design for teaming strategies that are independent of team

size and scales solely in terms of the mission complexity. Our

simulation results confirmed our analysis of the macroscopic

models and their ability to predict the behavior of the agent-

based simulations.

There are numerous directions for future work. Of par-

ticular interest is the further refining of our agent-based

simulations by incorporating more refined agent-based con-

trollers for task servicing similar to those presented in [5].

This will also require the development of new techniques to

incorporate explicit modeling of the task service times and

the effects of more deterministic navigation controllers into

the macroscopic models. Another direction for future work is

the development of on-line estimation of task distribution and

composition within the workspace to enable individual robots

to adapt the different transition rates to varying external

conditions. Lastly, we are interested in validating the macro-

scopic models against experimental data obtained from an

actual multi-robot testbed. From our agent-based simulations,

it is clear that task discovery rates vary significantly for

different team sizes and numbers of tasks. This is because as

the number of robots increase within the same workspace,

robots will spend most of their time executing collision

avoidance maneuvers rather than completing tasks.
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