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Abstract— This paper presents a method of topological lo-
calization in a home environment using only low-cost sonar
sensors. The proposed method utilizes a relative motion model
to obtain a prior information of node probability. Moreover,
the size of a local gridmap used for gridmap matching is
determined adaptively by an entropy test of node probability.
The proposed method results in a reliable and convergent
localization result even under the uncertainty and sparsity of
sonar sensros. Experimental results verify performance of the
proposed topological localization in a real home environment.

I. INTRODUCTION

One of the most important ability for an autonomous
mobile robot is self-localization. The mobile robot should
recognize its current location by comparing current sensor
data with a known environmental map data to perform
various tasks such as navigation to a goal position. For this
purpose, many researchers have developed various localiza-
tion solutions during last two decades.

In general, localization methods can be classified into
geometric and topological approaches. The geometric local-
ization represents the location of the mobile robot as exact
locations, (x, y, θ), in the environmental model with respect
to a reference frame. Monte Carlo Localization (MCL) [1]
and extended Kalman filter (EKF) based localization [2] are
typical examples of geometric localization method. Besides,
scan matching methods [3] using laser range finder is also
developed for geometric localization.

On the other hand, the topological localization recog-
nizes the location of the mobile robot as a node of an
adjacency graph structure which represents spatial relations
of the environment. To achieve the node classification, the
topological localization extracts salient characteristics for
each node. In corridor environment, geometric characteristics
for junctions and corners are used to classify the current
node such as Generalized Voronoi Graph (GVG) [4], [5].
Moreover, appearance based image matching [6], [7] and
machine learning techniques using laser range finders [8]
are also used for the topological localization.

In this paper, we focus on the topological localization
problem using only sonar sensors in home environment.
Sonar sensors which give relatively accurate range readings
are one of the most popularly used range sensor. It is cost
effective and useful for the mobile robot applications such as
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obstacle avoidance. However, the sonar sensor suffers from
a significant angular uncertainty because of its large beam
width. Due to these defects, the above localization methods
are not easy to apply to sonar sensors in home environment
directly. Even though several geometric localization methods
show successful results using range and vision sensors,
the geometric localization using sonar sensor always has a
potential possibility of failure due to the high uncertainty
of the sonar sensor. In addition, the previous topological
approach cannot be an alternative because sonar sensor data
is too sparse and node classification is not easy in home
environment than the corridor environment.

This paper presents a novel topological localization
method based on a local gridmap matching. In our pre-
vious work [9], a topological model was extracted from
the gridmap by dividing the whole gridmap into several
subregions using approximate cell decomposition and nor-
malized graph cut. A gridmap matching method was also
proposed by using Ring Projection Transformation (RPT)
and a distance vector. However, the previous method is just
a node classification using the gridmap matching and doesn’t
consider any prior information. Moreover, it doesn’t give any
criterion for the size of the local gridmap. To overcome those
limitations, a sequential topological localization method con-
sidering the mobile robot motion is proposed. The proposed
sequential topological localization is composed of two parts
: 1) obtaining node probability considering the robot motion,
2) determining the size of the local gridmap according to an
entropy of node probability.

Here, as a robot motion model, a relative distance and a
relative angle are used to calculate a prior information of
node probability. Moreover, the entropy of the node proba-
bility is used to determine whether the current local gridmap
should be expanded by accumulating more sensor data or
not. Through these processes, the proposed method provides
a successful topological localization result in a home envi-
ronment using only sonar sensors and it has several benefits.
First, the odometry error is not accumulated by using only
temporary relative robot motion model to calculate the node
probability. Second, the size of the local gridmap can be
determined adaptively to guarantee robust localization. Third,
the proposed method results in a convergent node probability
by using the effective prior information and robust gridmap
matching.

This paper is organized as follows. In Section II, our
previous work is briefly summarized. Then, the sequential
topological modeling is proposed in Section III. Section
IV presents experimental results and conclusion follows in
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Fig. 1. Offline Topological Modeling : (a) Clustering as 8 subregions (Each
cluster is represented as different color), and (b) Topological model.

Section V.

II. TOPOLOGICAL MODELING AND GLOBAL GRIDMAP

MATCHING USING SONAR GRIDMAP

This section summarizes our previous work which per-
forms a topological modeling and a node classification using
sonar gridmap [9]. The topological modeling is achieved by
partitioning navigable area in a gridmap into several subre-
gions and the node classification is performed by comparing
a current local gridmap with the original gridmap.

A. Topological modeling using sonar gridmap

The first step for the topological modeling is generating an
occupancy gridmap using sonar sensors and odometry data.
After generating gridmap, approximate cell decomposition is
applied to the gridmap. The approximate cell decomposition
divides a square cell into four smaller square cells of same
size if the original cell is composed of both free and obstacle
spaces [10]. The result of the approximate cell decomposition
provides an initial draft model of topological representation
of the environment. Each extracted cell corresponding to
empty region becomes node of the draft topological model,
and the connecting edge is determined from the adjacency
of two cells.

Finally, normalized graph cut algorithm is applied to the
draft topology model [11]. Using the draft model and an
affinity matrix W , k number of clusters are extracted with a
predefined variable k. Fig. 1 shows results of segmenting the
whole gridmap into 8 subregions. The topological modeling
for the entire environment could be achieved successfully
by considering the obtained subregions as nodes in the
topological model (Fig. 1(b)).

B. Node classification using gridmap matching

After the modeling procedure, the node classification is
achieved by comparing a local gridmap around current robot
location with the original gridmap of the entire environment.

For the local gridmap matching, we firstly extract a
template gridmap from the noisy local gridmap by filtering
out uncertain data. Using a sonar sensing model [12], a
confidence rate for each occupied grid m(x, y) in the local
gridmap is evaluated, and the template gridmap is extracted
by removing the grids which have less confidence. Fig. 2(a)
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Fig. 2. Node Classification : (a) A local grimap, (b) Template gridmap
and matching result, and (c) Matching probability.

shows an example of the local gridmap and the correspond-
ing template gridmap is acquired as shown in Fig. 2(b).

Then, a candidate location for each node is obtained by
applying a rotation invariant template matching method to the
extracted template gridmap. The rotation invariant gridmap
matching is performed by Ring Projection Transformation
(RPT) [13] which transforms 2D image data into 1D vector
P (r). By calculating normalized correlation between the
RPT vectors of the template gridmap (PT (r)) and the origi-
nal gridmap (PO(r)), the most probable location within the
node can be obtained (1).

ρ =
∑R

r=0

{
PT (r) − μT

}{
PO(r) − μO

}
( ∑R

r=0

{
PT (r) − μT

}2 · ∑R
r=0

{
PO(r) − μO

}2
)1/2

,

(1)

where μL = 1
1+R

∑R
r=0 PT (r), and μO =

1
1+R

∑R
r=0 PO(r).

Finally, a matching probability is obtained by comparing
detail distance information between the template gridmap
and the obtained candidate locations in the original gridmap.
A distance vector for the candidate location for ith node
,L(xi, yi), can be obtained as follows :

Di(θ) = min . Dist (L(xi, yi) to Occ(x, y) in θ direction),
(2)

where θ is an integer from 1 to 360, and Occ(x, y) is occu-
pied grid in the gridmap. Then, a measure of dissimilarity
between distance vectors, Di for ith node and DT for the
template gridmap.

�Di = arg min
θc

360∑
θ=1

|DT (θ) − Dk(θ − θc)|, (3)

where D(θ) = D(θ + 360) for θ < 0.
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Fig. 3. Flowchart of the proposed sequential topological localization using
sonar gridmap.

After calculating �D for every node, the similarity of
distance vector for ith candidate location is obtained as
follows:

PD(i) =
1/�Di∑k

j=1 1/�Dj

(4)

By using this similarity measure, we obtain the final
matching probability for each node like Fig. 2(c) by multi-
plying with the normalized correlation calculated from RPT
vectors.

Pmatch(i) = PD(i) × ρ(xi, yi) (5)

C. Limitations of node classification

The node classification method can provide a successful
classification result using the local gridmap matching. How-
ever, it has two limitations.

1) A prior information is not considered.
2) A criterion for the size of the local gridmap cannot

change.

The previous method doesn’t considers the robot motion
model and it should perform the node classification process
without any prior information. Furthermore, the size of the
local gridmap should be predefined as a constant time or a
constant traveling distance. The criterion can not change after
it is predefined at the first time. To overcome those limita-
tions, a sequential topological localization will be proposed
in the following section.

III. SEQUENTIAL TOPOLOGICAL LOCALIZATION

This section describes the proposed sequential topological
localization method. The sequential topological localization
performs the node classification considering a robot motion

model. By using the robot motion model, the mobile robot
can obtain node probability using not only the gridmap
matching probability but also a prior information of node
probability. For the robot motion model, a relative distance
and a relative angle are used. Moreover, to generate the local
gridmap, an entropy test of node probability is used. Using
the entropy test of node probability, the size of the local
gridmap could be determined adaptively.

Fig. 3 shows a flowchart for the sequential topological lo-
calization. Finding candidate locations and obtaining match-
ing probability are adopted from the previous node classifi-
cation algorithm. The major differences are calculating the
prior node probability using robot motion model and the
entropy test to determine the size of the local gridmap. The
following subsections describe these different processes of
the proposed sequential topological localization in detail.

A. Basic equations

The node probability using robot motion models and
observations can be calculated as follows :

P (Nt = Ni|u1:t, z1:t)
= η1P (zt|Nt = Ni, u1:t, z1:t−1) P (Nt = Ni|u1:t, z1:t−1)
= η1P (zt|Nt = Ni) P (Nt = Ni|u1:t, z1:t−1) (6)

where η1 is a normalizing factor, Nt denotes a node where
the mobile robot located at t, Ni is ith node, and u1:t, z1:t

are robot motions and observations from 1 to t, respectively.
The first part of (6) is a likelihood and the last part is a

prior information. Here, the likelihood can be obtained from
the local gridmap matching which is described in II-B (5).
The prior information can be derived from the previous node
probability and the robot motion model like (7).

P (Nt = Ni|u1:t, z1:t−1)

=
∑

j

P (Nt = Ni|Nt−1 = Nj , u1:t, z1:t−1)

× P (Nt−1 = Nj |u1:t−1, z1:t−1)

(7)

B. Sequential Node Classification using Motion Model

As aforementioned, the prior node probability can be ob-
tained from the robot motion model and the node probability
of previous time step. In this paper, the robot motion model
is used as a relative distance and a relative angle.

1) Effective Distance (ED) as a motion model: For the
node classification using the local gridmap matching, the
mobile robot should generate a local gridmap by accumu-
lating sensor data along a certain length of path. Therefore,
the motion model should be determined from the robot path
corresponding to the current local gridmap.

For this purpose, we used a distance in a straight line
between start and end points of the path, even though the
robot doesn’t move in a straight line. The distance in a
straight line is denoted as Effective Distance (ED) in the
proposed localization method. For example, consider a robot
motion shown in Fig. 4(a). Even though the real robot moved
along the dashed line, ED considers only a straight line like
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Fig. 4. Robot Motion Model : (a) Real robot motion, (b) Effective Distance
(ED), and (c) Effective Angle (EA).

(a) (b)

Fig. 5. Template gridmaps from node C : (a) Insufficient template gridmap
to perform the reliable gridmap matching, and (b) Expanded template
gridmap by accumulating more sensor data.

Fig. 4(b). Therefore, the ED for the robot path in Fig. 4(a)
is obtained as a length of straight line in Fig. 4(b).

Using the ED, the prior node probability is calculated
by the following procedures. Firstly, ED for the real robot
motion, d̂, is obtained from odometry. Then, estimated EDs
are acquired by calculating distances between candidate
locations for previous and current local gridmaps. In other
words, an estimated ED, dij is determined as a distance
between a candidate location Lt−1(xj , yj) for jth node at
time t − 1 and another candidate location Lt(xi, yi) for
ith node at time t. Finally, the first part of the prior node
probability (7) is calculated as follows:

P (Nt = Ni|Nt−1 = Nj , ED1:t, z1:t−1)
= P (Nt = Ni|Nt−1 = Nj , EDt)

= N (ED; d̂, σ2
d)|ED=dij

(8)

where N (·) is normal distribution function. Using this mo-
tion model, calculating node probabilities for every nodes
can be achieved.

2) Effective Angle (EA) as a motion model: As a sec-
ondary motion model, a relative angle of robot motion is used
to complement the ED motion model. The relative angle is
defined similarly as the ED. Because an angle should be
defined with respect to a reference, we used the direction of
EDt−1 as a reference angle for the relative angle at time
t. As shown in Fig. 4(c), Effective Angle(EA) at time t
is defined as a relative angle of EDt with respect to the
direction of EDt−1.

Using the EA, the prior node probability can be calculated
similarly as (8). However, the EA is related to not only the

state of time step t−1 but also that of time step t−2. So, the
equation for the prior node probability should be expanded
to the time step t − 2. For derivation, we assumed that ED
and EA are independent.

P (Nt = Ni|Nt−1 = Nj , ED1:t, EA1:t, z1:t−1)
= η2 P (Nt = Ni|Nt−1 = Nj , ED1:t, EA1:t−1, z1:t−1)
× P (Nt = Ni|Nt−1 = Nj , ED1:t−1, EA1:t, z1:t−1)

= η2 P (Nt = Ni|Nt−1 = Nj , EDt) ×∑
k

P (Nt = Ni|Nt−1 = Nj , Nt−2 = Nk, ED1:t−1, EA1:t, z1:t−1)

× P (Nt−2 = Nk|Nt−1 = Nj , ED1:t−1,DA1:t, z1:t−1)
= η2 P (Nt = Ni|Nt−1 = Nj , EDt)

×
∑

k

P (Nt = Ni|Nt−1 = Nj , Nt−2 = Nk, EAt)

× P (Nt−2 = Nk|Nt−1 = Nj , u1:t−1, z1:t−1) (9)

In (9), the first part is same as (8) and the last part can be
obtained from the previous motion model. The second part
of (9) can be calculated as follows:

P (Nt = Ni|Nt−1 = Nj , Nt−2 = Nk, EAt)

= N (EA; â, σ2
a)|ED=aijk

(10)

where â is EA obtained from odometry and aijk is an esti-
mated EA calculated from candidate locations Lt−2(xk, yk),
Lt−1(xj , yj) and Lt(xi, yi).

By using the ED and EA simultaneously, the prior
node probability can be obtained efficiently. Moreover, the
proposed method has an advantage that the accumulation of
the odometry error is bounded within 2 time steps because
it utilizes relative motion models.

C. Entropy test of Node probability

In general, the size of the local gridmap might be deter-
mined by a constant time or a constant traveling distance.
Unfortunately, the constant time and traveling distance cri-
terions might be insufficient for the sparse sonar gridmap.
Two template gridmaps in Fig. 5 are obtained from node C of
Fig. 1. A template gridmap in Fig. 5(a) is difficult to match
with the original gridmap due to insufficient information.
Then, the candidate locations using the local gridmap in
Fig. 5(a) might be acquired as wrong positions. In this case,
the template gridmap should be regenerated by accumulating
more sensor data like Fig. 5(b). Even though the template
gridmap in Fig. 5(b) also contains noisy data, this template
gridmap could be matched with the original gridmap to find
reliable candidate locations.

For this purpose, an entropy test is used to determine
whether more sensor data should be accumulated or not.

H(P ) =
n∑

i=1

−P (i) logn P (i) (11)

where n is the number of nodes and P (i) is a node probabil-
ity for ith node. Without loss of generality, we can say that
a successful observation should result in a convergent node
probability. A convergent result would make the entropy
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(a) (b)

Fig. 6. Experimental Setup : (a) PIONEER3-DX with 12 MURATA sonar
sensors, and (b) Experimental environment.

value of node probability decrease. Therefore, an increasing
entropy means that the template gridmap is not sufficient
to update node probability reliably. In the proposed entropy
test, we used the increasing entropy of node probability
as a criterion of accumulating more sensor data for the
local gridmap. In other words, when the entropy measure
is increased, node probability is not updated and the robot
continue to generate the local gridmap by accumulating more
sensor data. This entropy test is applied in real experiment
with some heuristics. The entropy test is applied to the
localization process if a maximum node probability is less
than a threshold value.

By using the entropy test, the size of the local gridmap can
be determined adaptively. Then, the obtained local gridmap
could be used to update node probability reliably.

IV. EXPERIMENTAL RESULTS

This section shows experimental results of the proposed
topological localization in a home environment. Experiments
were carried out using a differential drive robot PIONEER-
DX (Fig. 6(a)) equipped with 12 MA40B8 sonar sensors
from MURATA company [14] in the home environment
(Fig. 6(b)).

The environment, which is composed of several rooms and
contains a few pieces of furniture and electronics, covers
an area of 11.4m × 8.7m. The mobile robot was driven
an arbitrary path manually with an average speed of about
0.15m/s and acquired sensor data in 4Hz frequency.

For the experiments of sequential topological localization,
an environmental model in Fig. 1 is used. Fig. 7 shows a
real robot path for the localization experiment. Moving along
the path, the robot generated local gridmaps and performed
localization using the proposed method.

The experimental results of topological localization are
presented in Fig. 8. Fig. 8(a)-Fig. 8(d) show four template
gridmaps and matching results. The matched gridmaps are
obtained from the candidate locations which have maximum
node probability. For those cases, gridmap matching prob-
abilities are shown in Fig. 8(e)-Fig8(h). Using the matching
probability and the motion model, the localization results
are obtained like Fig. 8(i)-Fig8(l). As shown, the proposed
method results in a reliable gridmap matching even under
the noisy data in the local gridmaps. Moreover, the results

Start

Fig. 7. Real Robot Path

show that the node probability becomes more convergent as
the mobile robot updates the node probability.

Fig. 9 shows maximum node probabilities for each time
step. The maximum node probability also shows that the
proposed localization method results in a convergent node
probability. A few times of decreasing maximum node prob-
ability might be caused by noisy sensor data in the local
gridmap. As a whole, even though the maximum probability
decreased a few times, the maximum probability increased
as the time goes.

The experimental results in Fig. 8 and 9 show that the
proposed method provides a reliable gridmap matching and
satisfactory node probability.

V. CONCLUSIONS

This paper addressed a topological localization using low-
cost sonar sensor in a home environment. First, a relative
motion model is applied to obtain a prior information of
node probability. By using only relative motion, the proposed
method is not affected by the accumulated odometry errors.
Second, the size of the local gridmap is determined by
considering the entropy of node probability. The entropy test
determines the local gridmap size adaptively.

As a result, the proposed topological localization could
obtain the prior node probability efficiently and the entropy
test guarantees a reliable gridmap matching.

Experimental results verified that the proposed method can
be applied to a real home environment and the proposed
topological localization resulted in a convergent and success-
ful node probability.
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Fig. 8. Experimental results of topological localization (arranged in time sequence). (a)-(d) Template gridmaps and matching results, (e)-(h) corresponding
matching probability Pmatch (5), and (i)-(l) corresponding node probabilities.

Fig. 9. Maximum Node Probability
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