
Maintaining Connectivity in Environments with Obstacles

Onur Tekdas∗ Patrick A. Plonski Nikhil Karnad Volkan Isler

Abstract— Robotic routers (mobile robots with wireless com-
munication capabilities) can create an adaptive wireless net-
work and provide communication services for mobile users on-
demand. Robotic routers are especially appealing for applica-
tions in which there is a single mobile user whose connectivity
to a base station must be maintained in an environment that
is large compared to the wireless range.

In this paper, we study the problem of computing motion
strategies for robotic routers in such scenarios, as well as
the minimum number of robotic routers necessary to enact
our motion strategies. Assuming that the routers are as fast
as the user, we present an optimal solution for cases where
the environment is a simply-connected polygon, a constant
factor approximation for cases where the environment has a
single obstacle, and an O(h) approximation for cases where the
environment has h circular obstacles. The O(h) approximation
also holds for cases where the environment has h arbitrary
polygonal obstacles, provided they satisfy certain geometric
constraints – e.g. when the set of their minimum bounding
circles is disjoint.

I. INTRODUCTION

Suppose a mobile user operating in a large environment

needs network connectivity to a base station. The user may be

a tele-operated robot and the base station may be a gateway

to the Internet. Without a communication infrastructure, the

mobility of the user would be restricted by the communica-

tion radius of the base-station. The traditional solution for

providing long-range network connectivity is to deploy a

network of static wireless routers which cover the entire area

of interest. However when the environment is large, covering

it can be costly. Moreover, in some scenarios (such as natural

disasters or hazardous conditions) it might be impossible to

manually deploy this network in advance.

On the other hand, we can deploy a small number of robots

to act as mobile routers. These robots can autonomously

relocate themselves according to the movement of the user

and maintain their connectivity with the base station. In order

to demonstrate the potential gain attained by using robots, let

us consider the scenario shown in Figure 1. In this scenario,

a user u navigates inside a circular arena, and wishes to

remain connected to the base station at c at all times. Suppose

the communication range of all devices is σ. If we deploy

a stationary network to cover the arena, the number of

necessary routers is Θ(R2/σ2). Instead, Θ(R/σ) robotic

routers can maintain the user’s connectivity by staying on

the line segment [cu] (the details of this strategy is given
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in Section III). Hence, the number of routers used can be

drastically reduced by using the mobility of robots.
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Fig. 1. An example which demonstrates the potential gain of using robotic
routers. We need Θ(R2/σ2) static routers whereas Θ(R/σ) robots are
sufficient to keep the user connected. When the user moves from u to
u′, robotic routers move with the same angular velocity to keep the user
connected.

In this paper, we study the problem of computing the mini-

mum number of robotic routers (and their motion strategies)

in order to maintain the connectivity of a single user to a

base station. After an overview of related work, we formalize

the robotic routers problem in Section II. In Section III, we

present an optimal solution for simply-connected polygons.

In Section IV, we present a constant-factor approximation for

a polygonal environment with a single obstacle. In Section V,

we present an O(h)-approximation algorithm for polygons

with multiple obstacles.

A. Related work

Exploiting the controlled mobility of robots to improve

connectivity has received significant attention. Related prob-

lems include establishing connectivity [8], [15], building a

bridge between two points [20], network coverage [6], [16],

repairing a network’s connectivity [5], [1], and improving

it [4], [10]. In sensor networks literature, robots are used

as mobile sensors to extend sensing regions [7], [11] or to

collect data from stationary sensors [21], [17]. Moreover, a

network of robots can be used for improving the communi-

cation in search and rescue tasks [12], [13].

In our recent work, we studied the problem of maintaining

connectivity between a mobile user and a base station for

two different user motion models [19]. We presented optimal

algorithms to compute the minimum number of routers to

maintain connectivity for both models. While the algorithms

can incorporate arbitrary communication link models, their

running times are exponential in the number of robots. In

this work, we focus on geometric domains and geodesic

distance based connectivity models, and present polynomial

time approximation algorithms.

In other related work, Stump et al propose two metrics for

characterizing connectivity and present a framework which
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chooses the best local decision to maintain the connectivity

of an independently moving target [18]. Here, we are able to

give global guarantees by controlling the number of robots.

In a related paper [9], Dixon et al study the problem of

forming a chain of robotic relays and present an algorithm

to control robots along the chain to improve the signal-to-

noise ratio. A similar problem is considered by Kutylowski

et. al [14]. They presented a global strategy for using a chain

of robots to create a communication bridge between a sta-

tionary camp and a mobile explorer. In [2], they extend this

strategy to local (distributed) strategies. However, in complex

environments with obstacles, topologies more general than

chains must be used. This is the main focus of the present

work.

II. PROBLEM FORMULATION AND NOTATION

In this section, we present the terminology and notation

used throughout the paper, and formalize the robotic router

problem.

A robotic router is a mobile robot which can communicate

wirelessly. Robotic routers are subject to communication and

motion constraints such as limited communication range and

a bounded maximum speed. The base station is a static entity

to which the user wishes to establish connection. All entities

are contained in a shared environment denoted by P. The user

is connected to the base station through a communicating

bridge of robotic routers.

Throughout the paper, we assume that the time domain

is continuous. We denote the position of the user at time

t as u(t), and that of the ith robotic router as ri(t). We

assume that both the robotic routers and the user have the

same maximum speed. We call this requirement as the motion

constraint. We will prove the correctness of our strategies

by showing that the speed of each robotic router at time t
is less than or equal to the speed of the user at time t. In

other words, let |u̇(t)| and |ṙi(t)| be their respective speeds;

we show that |ṙi(t)| ≤ |u̇(t)| always holds.

We measure the distance between any two points x, y ∈
P by the length of the geodesic path from x to y, i.e. the

shortest path from x to y that lies inside P and does not

cut through any obstacles. For any time t, we denote the

geodesic shortest path from the base station b to the user

u(t) as SP (t). The shortest geodesic distance between x
and y is denoted by d(x, y)

Various models for radio propagation are studied in the

literature. Due to various environment dependent effects

(such as multi-path, fading, occlusion, etc.), it is difficult to

provide a generic model which incorporates all these effects.

In this work, we assume that two points x ∈ P and y ∈ P are

connected if d(x, y) ≤ σ holds. This is the communication

constraint. With this threshold, we can address the fading

effects with our model in which σ is a communication

distance threshold. Moreover, this model implicitly addresses

the occlusion (absorption) effects. If there exist a line-of-

sight between x and y the geodesic distance is same as

the Euclidean distance. However, when the polygon or an

obstacle occludes between x and y, the geodesic distance

increases.

To simplify the notation, we scale all distances by the

communication distance threshold σ. Throughout the paper,

without loss of generality, we assume that the communication

distance is the unit distance. Let D be the longest geodesic

shortest path from b to any point ∈ P; m∗ = ⌈D− 1⌉+ 1 =
⌈D⌉ is a lower bound on the minimum number of robotic

routers necessary to connect any point in P to b, including

the base station as a robotic router.

We define the number of robots used as follows. For a

given user trajectory µ = u(t), let n(µ) be the number

of robots required to connect the user to the base station.

For a given environment, the number of robots required is

the maximum number over all possible user trajectories, i.e.

n = maxµ n(µ). When computing n, we do not require that

the routers know the user’s trajectory in advance. However

we assume that the robotic routers in the network are all

continuously made aware of the current position of the user1,

and they can instantaneously choose their movements based

on this information.

Problem Statement: Given an environment P (possibly

with obstacles) and a base station b ∈ P, find the minimum

number of robotic routers and their motion strategies such

that wherever the user u moves, it is connected to the base

station at all times, and the motion and communication

constraints are satisfied.

III. ENVIRONMENTS WITH NO OBSTACLES

In this section, we present a strategy to maintain connec-

tivity using an optimal number of m∗ = ⌈D⌉ routers. The

strategy, which we call EQ-DIST, involves maintaining an

equidistant separation along SP (t). We show that this can

be achieved without violating communication and motion

constraints.

We say that the Evenly Spaced Property (ESP) holds at

time t if all the routers are positioned uniformly along SP (t).
We will refer to this chain of routers as an arm. We assume

that ESP holds at time 0 (i.e. the user is willing to wait until

the initial connection is established).

It is well known that SP (t) is a polygonal path {p0 =
b, p1, p2, . . . , pj , u} from b to u, where any pi for i > 0 is a

vertex of P. Observe that j ≤ n where n = m∗ is the number

of robotic routers used by our strategy. In this sequence, the

parent node of any point z on SP is defined as the node

between b and z that is the closest to z (Figure 2).

We will need the following technical lemma. Due to space

limitations, we present its proof in an associated technical

report [22].

Lemma 1. For any t there exists a sufficiently small dt > 0
and a shared point s ∈ SP (t)∩SP (t+dt) such that SP (t)
and SP (t+dt) only differ along a single line segment, from

their respective endpoints to s.

We now show that the robots can maintain connectivity

using EQ-DIST:

1e.g. this information can be provided by the user
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Fig. 2. Robots ri only translate along SP while robots rj rotate about s
and translate.

For any point z(t) ∈ SP (t), let z†(t) denote its parent

node. Parameterize the velocity ż(t) into a radial component

ż‖(t), along [z†(t) z(t)], and a tangential component ż⊥
orthogonal to ż‖(t). We have |ż(t)| =

√

|ż⊥(t)|2 + |ż‖(t)|2.

For any robot ri(t), we denote its velocity components as

ṙi‖(t) and ṙi⊥(t) (see Figure 2).

Only the radial component of the user’s velocity affects the

length of SP . Let λ be a differential change in the length of

SP . We have λ = u̇‖(t). To satisfy ESP, the robotic routers

should move proportional to λ along the radial component.

ṙi‖(t) =
i

n + 1
u̇‖(t) (1)

When the user moves, some line segments along SP
rotate, while others remain the same. The tangential velocity

of any robot is thus a function of which side of the shared

point s the robot lies on.

If ri lies between s and u, we can show using similar

triangles that

|ṙi⊥(t)|
|u̇⊥(t)| =

||s ri(t)||
||s u(t)||

Where ||s ri(t)|| is the length of line segment [s ri(t)]
and ||s u(t)|| is the length of line segment [s u(t)]. Since

ri(t) is closer to b than u(t), we have ||s ri(t)|| < ||s u(t)||,
i.e.

|ṙi⊥(t)| < |u̇⊥(t)| (2)

The robots between s and b have a tangential component

of zero.

Therefore, for any robot, (1) and (2) show that the robot

only needs to move at most as fast as the user to stay on the

geodesic from b to u while maintaining ESP.

Theorem 1. In a simply-connected polygon, the number of

mobile robots that the EQ-DIST strategy requires is optimal.

Proof: Recall that the cost of the optimal solution is

the required number of robots to connect any user trajectory.

u(t)
u(t + dt)

q(t), q(t + dt)

P O
c

b

s

wrapping arm

connecting arm

Fig. 3. Illustration of the first case of our strategy.

When the user goes to a location where SP is maximized,

the optimum solution has to use at most m = ⌈D⌉ robots.

We have seen that EQ-DIST can maintain connectivity using

the same number of robots.

IV. CONVEX ENVIRONMENTS CONTAINING A SINGLE

OBSTACLE

In this section, we present robotic router strategies where a

user is connected to b in a convex environment with a single

obstacle. First we present a solution for circular obstacles.

Let O be a circular obstacle and let c and r be the center

and radius of O. Our strategy is as follows. First, we connect

every point on O to b by extending an arm starting from b
and wrapping it around O. We call this our wrapping arm,

and the robotic routers in it are stationary (see Figure 3).

After connecting O to b, we use a connecting arm which

rotates around O and connects the user to O which is then

connected to b through the wrapping arm.

We place robots so that ESP property is satisfied; these

locations can be easily found by using geometric properties

of lines and circles. The bounds on the length of the arm and

the number of robots used will be obtained in Theorem 2.

The connecting arm’s responsibility is to connect user

to O and consequently to b. We achieve this by moving

robotic routers on the SP between u and O. To guarantee

that the connecting arm is always connected to O, we use an

additional robotic router q which moves along the boundary

of O. Robot q acts as a base station for the connecting arm.

Let SPO(t) be the shortest geodesic path between O and u(t)
(this path is the subset of SP between c and u(t)). Robot q
always remains at the beginning of this path on O.

We analyze the connecting arm strategy in two cases:

(i) u(t) has a parent node different than q(t) (ii) u(t) has

q(t) as the parent node.

Case (i): If there exists a parent node s of u(t) such that

s 6= q, then we can find a dt and a shared point s such

that the shortest paths SPO(t) and SPO(t + dt) differ only

along their last line segment (Lemma 1). Since both shortest

paths pass through s and the shortest path from O to s is

same, q does not move, i.e. q̇(t) = 0 (See Figure 3). In this

case, the connecting arm can execute EQ-DIST and maintain

connectivity.
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Fig. 4. Illustration of the second case of our strategy.

Case (ii): If the parent node of u(t) is q, we can move q
and the robots on the connecting arm in such a way that

they maintain the ESP property without violating motion

and communication constraints. As we did in Section III,

we divide the velocity u̇(t) into two components: radial

velocity u̇‖ and tangential velocity u̇⊥. Since q is moving

on the boundary of O its radial velocity is 0. If q is the

common parent node for u(t) and u(t + dt), these shortest

paths rotate around c and rotation is due to the tangential

component of u (see Figure 4). As angular velocity is the

same for the user and each robot on SPO, we can conclude

that |q̇⊥(t)| ≤ |ṙi⊥(t)| ≤ |u̇⊥(t)|. Since q̇‖(t) = 0 and

|q̇⊥(t)| ≤ |u̇|, we have |q̇(t)| ≤ |u̇(t)|. Otherwise, if u(t)
and u(t + dt) do not have q as their common parent node,

we can show that a time interval dt′ < dt can be found such

that the above condition holds. The proof is the same as in

Lemma 1.

Suppose u̇‖(t) is positive; in this case SPO increases in

length. To satisfy ESP, the robotic routers have to move

towards u. The distance from q to ri must increase by
i

nc
|u̇‖(t)| where nc is the number of robots in the connecting

arm, including q, and i is the robot index in the connecting

arm (the 0th robot refers to q). The even spacing causes the

distance from ri to u to also increase. This is only possible

when |ṙi‖| ≤ |u̇‖|. Now suppose u̇‖ is negative; it can be

shown in this case that |ṙi‖| ≤ |u̇‖|. Therefore, for all times,

the robotic routers have a smaller radial speed than the user.

Moreover, from constant angular velocity observation we

know that |ṙi⊥(t)| ≤ |u̇i⊥(t)| holds, hence we conclude that

|ṙi(t)| ≤ |u̇(t)|, and the motion constraint is satisfied.

Theorem 2. In a polygon with single circular obstacle, let

m∗ be the minimum number of robots required to maintain

connectivity. The strategy presented in this section uses at

most 5m∗ robots.

Proof: Let pc and pf be the closest and furthest

points on O from b, respectively. By definition, we know

b

c

x

r

d(c, x)− r

d
(x

,b
)
≤

D

d(b, c) − r

Fig. 5. Bounding the length of the connecting arm using triangle inequality.

b

c pc
pf

pt

p′t

r

θ

Fig. 6. The shortest geodesic distance from b to pf and the length of
wrapping arm in a convex polygon.

that d(b, pf ) ≤ D where D is the maximum SP from b.

The length of the wrapping arm equals to the sum of the

SP distance from b to O and the circumference of O, i.e.

2πr + d(b, pc).
We find an upper bound on the length of the connecting

arm using triangle inequality. For any point x in the polygon,

due to triangle inequality, we have d(c, x) ≤ d(c, b)+d(b, x).
We subtract r from both sides: (d(c, x) − r) ≤ d(x, b) +
(d(b, c) − r). The connecting arm has length d(q, x) where

q is the closest point on O from x. This distance equals to

d(c, x) − r and it is upper bounded by d(b, pc) + D ≤ 2D
(Figure 5).

Next, we find a bound on the length of the wrapping arm

(Figure 6). We start by showing that πr ≤ D holds. By

definition, we have d(b, pf) ≤ D. We prove that πr
D ≤

πr
d(b,pf ) ≤ 1 holds. First, we calculate the maximum value

of this ratio for a special case where P does not intersect

with the tangents [b pt] and [b p′t]. In this case, the ratio is
πr

r(θ+cot(θ)+π/2) . Using basic calculus, we can show that the

maximum value of the ratio is 1.

We now show that if P intersects with one or both of the

tangents, the ratio is reduced. Hence, the upper bound found

in the special case is valid for any case.

Two types of vertices of P exist which can intersect with

one or both of the tangents. Figure 7 shows these cases. The

furthest point pf on obstacle has the property that it has

two shortest paths from the opposite sides of the obstacle.

Any other point on the obstacle has a unique shortest path.

For example, in Figure 6, these shortest paths are SP1 =
{b, pt, pf} and SP2 = {b, p′t, pf}. Since both shortest paths

are equal, we can find d(b, pf ) = SP1 = SP2. Moreover,

since both shortest paths start from b and end at pf , their

union constructs a convex hull around O and b. Hence, we
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Fig. 7. Two types of vertices of P which can obscure with [b pt] and
[b p′t]

can say that d(b, pf) is half of perim(H) where perim(H)
is the perimeter of the convex hull H = {b, pt, pf , p′t}.

First, we consider the first type of vertex (top Figure 7).

Let s be a vertex which interferes with [b pt]. The distance

of the furthest point on O from b is half of perim(H)
where H = {b, pt, pf , p′t}. Now assume that we remove

s; the distance of furthest point on O from b becomes the

half of perim(Hnew) where Hnew = {b, pnew
t , pnew

f , p′t, b}.

By triangle inequality (d(b, pnew
t ) ≤ d(b, s) + d(s, pt) +

d(pt, p
new
t )), we can show that perim(H) is longer than

perim(Hnew). Hence, by introducing s, we reduce the ratio:
πr

d(b,pf ) .

Let s be a vertex of the second type (bottom Figure 7)

which interferes with both [b pt] and [b p′t]. Observe that
πr

d(s,pf ) ≤ 1 holds due to the special condition that we

discussed before. Because d(b, pf ) = d(b, s) + d(s, pf ), the

following inequalities hold: πr
d(b,pf ) ≤ πr

d(s,pf ) ≤ 1.

Finally, the ratio between the number of robots used by our

strategy and the optimal solution including the base station

is:

⌈d(b, pc) + 2πr⌉ + ⌈d(b, pc) + D⌉
⌈D⌉ ≤ ⌈3D⌉ + ⌈2D⌉

⌈D⌉ ≤ 5

Remark. We can also extend the cicular obstacle strategy

into convex and non-convex polygonal obstacles. For both

cases, the same approximation ratio holds as in the circular

obstacle case. The details can be found in [22].

V. CONVEX ENVIRONMENTS WITH MULTIPLE OBSTACLES

Let P be a convex polygonal environment containing two

or more non-intersecting obstacles. If the convex hulls of

the obstacles are disjoint, we can extend the strategies for

the single obstacle case as follows. First, we partition P into

cells, such that each cell is convex and contains exactly one

obstacle.

P

u

ui

si

Ci

b

Fig. 8. Power diagram edges are shown in blue (light color). Circular
obstacles are shaded. The connection from b to cell Ci is shown, along
with the construction of the point ui.

For each cell we execute a strategy similar to the one we

used in domains with a single obstacle: we have a wrapping

arm that connects to b and wraps around the obstacle in the

cell, and we have a connecting arm that, whenever u is in

the cell, connects u to the closest point to u on the obstacle.

We start by presenting the partitioning strategy for the case

when all of the obstacles are circular.

A. Power diagrams for circular obstacles

Our partitioning strategy relies on the concept of power

diagrams [3]. The power pow(x, s) of a point x with respect

to a circle (or in our case a circular obstacle) s in the

Euclidean space R
2 is given by d2(x, z) − r2, where d

is the Euclidean distance function, and z and r are the

center and the radius of s. For a finite set of circles S in

R
2, the power diagram of S, denoted PD(S), is a cell

complex that associates each s ∈ S with the convex domain

{x ∈ R
2|pow(x, s) < pow(x, t), ∀t ∈ S−s}. An example is

shown in Figure 8. When r = 0, i.e. the circles degenerate to

points, PD(S) becomes the Voronoi diagram. The following

properties about PD(S) are relevant to our partitioning

strategy (see [3] - §2.2: Observations 1 and 2, and Lemma 1).

• When the circles are non-intersecting, the edges of

PD(S) do not intersect any of the circles.

• If the cardinality of S is k, then PD(S) contains at

most k cells.

Let S be the set of finite circular obstacles in our environ-

ment. We intersect each cell in PD(S) with P to get a convex

tessellation of P, with each resulting cell Ci containing one

obstacle. We include the power diagram edges that bound Ci

as part of Ci.

The strategy to maintain connectivity is as follows: At

any time, let Cu be the cell that contains the user u. The

routers in Cu will move according to the strategy presented

in Section IV, and maintain the user’s connectivity.

The other routers move to “guard” their regions . Let Ci

be a region which does not contain u. We project the user
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onto the boundary of Ci by finding the closest point in Ci to

u using the Euclidean distance (i.e. we ignore the obstacles).

Let ui be the closest point to u in Ci (see Figure 8). The

routers in Ci maintain ui’s connectivity to b. This can be

done by executing the strategy presented in Section IV by

exchanging the role of q with ui. This guarantees that the

user’s connectivity is maintained by the connecting arm in

Ci as soon as the user enters this cell.

We now bound the number of routers.

Lemma 2. Let m∗ be the number of robotic routers used by

any optimal solution, including the base station, to guarantee

connectivity between u and b in a convex environment with h
circular obstacles. Our robotic router strategy uses at most

5m∗ · h robots.

Proof: For each cell, we need 5m∗ robots which

directly comes from Theorem 2. Since we have h cells, the

proof follows.

Discussion (extension to non-circular obstacles). When the

obstacles are non-circular, the notion of a radius is undefined

and power diagrams cannot be applied as such. However, if

we can find an enclosing circle for each obstacle such that

the circles are disjoint, it is straightforward to extend the

previous result. In certain cases, a partition exists even if the

disks defined by minimum enclosing circles are intersecting.

Further details can be found in [22].

VI. CONCLUSION

In this work, we studied a novel application of robotic

sensor networks in which the robots act as mobile routers and

maintain the connectivity of a user to a base station. Given a

complex environment where two entities can communicate if

the geodesic distance between them is less than a threshold,

we presented algorithms to compute the minimum number

of necessary robotic routers and the strategies they should

use. Specifically, we presented an optimal (in terms of the

number of routers) algorithm for simply-connected polygons,

a constant factor algorithm for a polygonal environment with

a single obstacle, and an O(h)-approximation algorithm for

environments with h obstacles.

Our future work includes improving the O(h) approxi-

mation ratio. It is easy to see that the lower bound of ⌈D⌉
is loose in some instances. For example, when h obstacles

are arranged on a
√

h ×
√

h grid, the number of necessary

routers is clearly more than D. Improving the lower bound

will yield better a approximation ratio.
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