
Reconfiguration Algorithms for Mobile Robotic

Networks

Nilanjan Chakraborty

Robotics Institute

Carnegie Mellon University

Pittsburgh, PA-15213

Email: nilanjan@cs.cmu.edu

Katia Sycara

Robotics Institute

Carnegie Mellon University

Pittsburgh, PA-15213

Email: katia@cs.cmu.edu

Abstract—For a deployed mobile robotic network to function
usefully, the robots should have the capability to adjust their
positions, while maintaining the network connectivity. In this
paper, we present algorithms that allows a robot to decide when
it is feasible for it to move to a desired point by adjusting its own
positions (and the positions of some other robots in the network),
while maintaining all the network connectivity constraints. Under
the assumption of a disc model of communication, we show that
the problem can be formulated as a convex optimization (or fea-
sibility) problem (actually a second order cone program). Thus,
the problem can be solved in polynomial time by centralized
interior point algorithms. However, this requires the robot to
have knowledge of the position of all the nodes in the network.
Our main contribution is the development of an incremental
algorithm, that solves the feasibility problem (of whether the
robot can move to its desired goal) by obtaining the information
about the position of the robots and their immediate neighbors
only if they are required to move. We present simulation results
comparing the performance of the centralized algorithm with the
incremental algorithm for randomly generated networks. From
simulation results, we observe that the time required by the
incremental algorithm to solve the feasibility problem is relatively
independent of the size of the network.

Index Terms—robotic networks, network reconfiguration, sec-
ond order cone program (socp), convex optimization.

I. INTRODUCTION

Mobile robotic networks with communication capabilities

have received wide attention recently because of their po-

tential applications in environmental monitoring, search and

rescue operations, extraterrestrial exploration. In a deployed

mobile robotic network, it is desirable for the robots to have

the capability of adjusting their positions according to the

demands of the situation. It is also necessary to ensure that the

communication network formed by the robots stay connected

after the adjustments have been made. An example scenario

is presented in Figure 1 where the robots, in order to be

robust to any communication link failure, wants to form a 2-

connected network (i.e., at least two edges in the graph need

to be removed for it to become disconnected). One way to do

this is to move the robot 1 within the communication range

of robot 10 without breaking any of the communication edges

already present in the network.

We note that our problem is different from the formation

control problem of moving the whole robotic network while

Fig. 1. An example network of 10 robots. The robot 1 wants to move within
the communication range of robot 10 to form a 2-connected network.

maintaining connectivity (as studied in [1], [2]). The distinc-

tion is in terms of the scale of the distance to be moved. To

get an intuitive understanding of the distinction, let us consider

the convex hull of all the robots positions and let the diameter

of the convex hull polytope be its characteristic length. In our

problem, the distance to be moved by a robot is much smaller

than the characteristic length of the convex hull while in [1],

[2] it is much larger. Thus, we call the problems that we are

studying network reconfiguration (or repositioning) problems.

In this paper, we consider two related abstract network

reconfiguration problems: (a) design algorithms to decide

whether it is possible to reconfigure the network (i.e., adjust

the position of the robots while satisfying the constraints of

each robot) to bring a specified robot within a given distance

of a known point, (b) design algorithms to decide whether it

is possible to reconfigure the network to bring at least one

robot within a given distance of a known point. Note that

if we can solve the problem (a), we can solve the problem

(b) by repeating the algorithm for solving (a) for every robot

in the network. Thus, the basic problem that we address in

this paper is problem (a) and it can be written as follows:

Let P = {qj = (xj , yj)}, j = 1, 2, . . . , n, be the set of

positions of n mobile robots (or nodes). Let Cj be a convex

set specifying the communication area of robot j and Sj be

a convex set specifying the processing1 area of robot j. Let

P ′ ⊂ P be the set of robots that has to stay within the

1We use the term processing to denote any generic operation that may be
physically interactive like sample collection or non-physical like sensing.

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 5484

processing area of their current positions. Is it possible for

the robots to adjust their positions (while maintaining all the

previous network constraints) such that a given point q0 falls

within the processing zone of a given robot i? We assume the

communication area and processing area of each robot to be

discs with possibly different radii.

We show that the above problem is equivalent to checking

the feasibility of a second order cone program (SOCP) and can

thus be solved in polynomial time by a centralized interior

point algorithm. Moreover, within the same framework, we

can also optimize the total distance moved by the robots (so

that the energy expended in repositioning can be minimized).

For the centralized algorithm, the robot i (or the centralized

processor) needs to know the coordinates of all the robots in

the network. Thus, the centralized algorithm may be useful

when (a) the number of robots in the network is small or (b)

the architecture of the deployed mobile robotic system is such

that there is a base station that keeps the updated information

about the position of all the robots in the network. However,

in general, the centralized algorithm is not scalable. Therefore,

we present an incremental algorithm, that solves the feasibility

problem by obtaining the information about the position of the

robots and their immediate neighbors only if they are required

to move. For network reconfiguration problems, usually only a

small fraction of the total number of nodes need to be moved.

Therefore, as verified by our simulation results on randomly

generated networks, the computation time for obtaining the

feasible solution is relatively independent of network size. This

scalable incremental algorithm is our main contribution.

The paper is organized as follows. After a discussion of

related work in Section II, we review the relevant mathemat-

ical background in Section III. We present the formulation

of the network reconfiguration problems in Section IV and

describe the centralized and incremental algorithms for solving

the problems in Section V. We present our implementation

results in Section VI, discuss the inclusion of obstacles in our

framework in Section VII, and conclude with a discussion of

future work in Section VIII.

II. RELATED WORK

The network reconfiguration problem for improving sensing

quality has been studied by Kansal et al. [3] in the context of

a network of camera sensors. In their problem the cameras

had limited tilt, pan and zoom capability and they wanted

to reconfigure the camera network utilizing this mobility to

improve the resolution or quality of the image obtained.

However, since the cameras were statically located, there

was no issue of loss of connectivity. An alternative body

of recent literature concentrates on maintaining connectivity

of a network of mobile robots while they are moving [4],

[5], [1], [6]. In [4], [6], the authors present control laws

for maintaining the connectivity of the network. The main

goal of the control laws are to move the robots so as to

maintain the connectivity and the objective of any robot having

a desired goal is a secondary objective. In our work, the desired

goal (if achievable) is the primary objective and we want

to ensure that the connectivity constraints are maintained at

the final positions of the robots. In that sense this work is

complementary to the control theoretic approaches.

Convex optimization techniques have been used in the

literature to solve network localization problems in sensor

networks [7], [8] and shape formation problems [9], [10].

In [7] the authors formulated the sensor network localization

problem as a semi-definite program that is solved using a

centralized algorithm. Thereafter, much effort has gone into

formulating the problem as a SOCP and developing distributed

algorithms to solve the resulting SOCP (see [8] and references

therein). The shape formation problem was proposed as a

SOCP in [9] and a centralized solution was given to the

problem. Thereafter, distributed algorithms were proposed to

solve the problem [10]. Our problem is distinct from that in

[9] because we do not know the positions the robots should

move to, whereas, in the shape changing problem, the final

shape, i.e., final coordinates of the robots are given.

III. MATHEMATICAL PRELIMINARIES

Undirected graph: An undirected graph G is an ordered

pair, G = (V, E), where V = {v1, v2, . . . , vn} is a set of n

nodes, and E ⊆ V × V is a set of edges. Two nodes vi and

vj are called neighbors of each other if (vi, vj) ∈ E. The set

Ni = {vj |(vi, vj) ∈ E} is the set of vi’s neighbors, and |Ni|
is defined as the degree of node vi.

Connected graph: A path between two nodes in a graph,

G = (V, E), is said to exist if there is a sequence of edges

from E joining the two nodes. An undirected graph is called

a connected graph, if there is a path between any two pairs of

nodes in the graph.

Convex Set: A set U ⊆ Rn is called a convex set if for any

two points u1, u2 ∈ U and any λ with 0 ≤ λ ≤ 1, we have

λu1 + (1 − λ)u2 ∈ U.

Convex Function: A function f : Rn → R is convex if the

domain of f (dom f) is a convex set and for all u1, u2 ∈ dom

f and any λ with 0 ≤ λ ≤ 1, we have

f(λu1 + (1 − λ)u2) ≤ λf(u1) + (1 − λ)f(u2).

Second Order Cone: A set U is called a cone, if u ∈ U implies

λu ∈ U for all λ > 0. It is called a convex cone, if U is also

a convex set. A second order cone is a convex cone defined

by the Euclidean norm.

U = {(u, t) ∈ R
n+1| ‖u‖ <= t} (1)

Second Order Cone Program (SOCP): A second order cone

program is a optimization problem where the objective func-

tion is linear and the constraints are either linear or second

order cones. From the definition, it follows that a SOCP is a

convex optimization problem.

IV. NETWORK RECONFIGURATION PROBLEMS

The basic problem addressed in this paper can be

formulated in graph theoretic terms. Let G = (V, E) be

the communication graph of the given set of robots, where

5485

each node in V represents a robot and an edge e ∈ E

exists between two nodes (robots) if they are within the

communication set of each other (for simplicity assume the

communication model is a disc model with ri being the

communication radius of robot i). We assume that G is a

connected graph, i.e., any two robots can communicate with

each other. The basic problem that we are considering in this

paper can be stated as follows:

Problem 1 (P1): Consider a set of robots in R
2, whose

communication graph2, G = (V, E), is a connected graph.

Let vi ∈ V be a given robot with position qi, and Q (with

coordinates q0 ∈ R
2) be a fixed point such that the robot i

needs to come within a distance ρi of Q. Also, let V ′ ⊂ V

be a set of nodes that has to be within the processing zone

of their original position. Determine, if it is feasible for the

robot i to get within ρi of point Q while maintaining all

the previous network connections and satisfying the other

processing constraints.

If the above problem is feasible, we want to find the

robots that should be moved and their final positions. We

may also want to minimize other objective functions like

the total distance moved by the robots. Note that if the set

V ′ is empty, there always exists a feasible solution to the

problem. The trivial feasible solution is to translate each

robot along the vector from qi toward q0. The magnitude of

translation is equal to the difference of their current distance

and ρi. However, there may be other feasible solutions for

which the distance traveled (and hence energy consumed)

in reconfiguring may be much lesser, so finding the feasible

solution such that the total distance traveled by the robots is

minimized is desirable.

We can write the problem P1 as an optimization (or

feasibility) problem and the resulting problem is a convex

optimization problem. Let n be the total number of robots,

i.e., |V | = n, and m be the total number of edges in the

graph, i.e., |E| = m. Let I be the index set of the robots in

the set V ′. Let qj ∈ R
2 be the coordinates of node vj after

repositioning and let q̃j ∈ R
2 be the coordinates of the nodes

before moving. The coordinates of each robot, q̃j , is known

in a global reference frame, i.e., the robots are assumed to

be localized and the coordinates of the point Q, i.e., q0, is

known in the same global frame. Let q, q̃ ∈ R
2n be the vectors

formed by concatenating the vectors qj and q̃j respectively.

The problem P1 can be then written as:

min f0(q)

s.t. ‖qj − qk‖
2 ≤ djk, ∀(vj , vk) ∈ E

‖qj − q̃j‖
2 ≤ ρj , j ∈ I

‖qi − q0‖
2 ≤ ρ2

i

(2)

where djk is the square of the maximum distance between

node j and k for which connectivity can be maintained, and

2For clarity of exposition, we are implicitly assuming that the communi-
cation graph is undirected. All of the discussion in the paper goes through
for directed graphs, in which case we assume G to be a strongly connected
graph.

ρj
3, j ∈ I is the square of the processing radii each node in

V ′. The first set of constraints in Equation 2 represents the

communication constraints and the second set of constraints

represent the processing constraints of the robots. The last

constraint represents that robot i should be within a distance of

ρi of the given point q0. The objective function f0 : R
2n → R

is assumed to be a convex function. For the feasibility problem,

the objective function is 0, and for the minimum motion

problem, the objective function is

n∑

i=1

‖qj − q̃j‖
2 (3)

which is a convex function. It is easy to verify that the

quadratic constraints in Equation 4 are convex quadratic func-

tions. Since both the objective function and the constraints

are convex quadratic functions the optimization problem in

equation 2 is a convex optimization problem or a quadratically

constrained quadratic program (that can be written as a SOCP).

We note that we can also consider other functions apart from

minimizing the total distance traveled by the robots. An alter-

native objective function could be minimizing the maximum

distance traveled by any robot. This function is also a convex

function, hence this problem is also a convex optimization

problem. In other words we can solve all variations of the

problem P1 that keeps the problem as a convex optimization

(or feasibility) problem. Since the problem in Equation 2 is a

convex optimization problem the problem P1 can be solved

in polynomial time using interior point methods.

As mentioned earlier, another problem of interest is recon-

figuring the network such that a given point is within a certain

distance of at least one of the robots in the network. This

problem can be written more formally as:

Problem 2 (P2): Given a connected graph G = (V, E), a

set V ′ ⊂ V in which the robots should remain within the

processing radii around their original position, and a fixed

point Q, is it possible to bring any robot in the network within

a given distance of the point Q while maintaining the original

connectivity of the network and satisfying the other proximity

constraints.

As in the problem P1, here also we are interested in finding

the robots to be moved, and their final positions, if the problem

is feasible. An objective of minimizing the total distance or

the maximum distance traveled by a robot can also be used.

We can also write the problem P2 as an optimization problem

as follows:

min f0(q)

s.t. ‖qj − qk‖
2 ≤ djk, ∀(vj , vk) ∈ E

‖qj − q̃j‖
2 ≤ ρj , j ∈ I

minj=1,...,n{‖qj − q0‖
2 − ρj} ≤ 0

(4)

where the notation is same as before. Note that the difference

between the problem defined by Equation 2 and the problem

defined by Equation 4 is in the last constraint. The last

3ρj may also be 0; for example in a sensor network with static and mobile
nodes, ρj = 0 for the static nodes.

5486

constraint in Equation 4 is not convex and hence the problem

P2 as written in Equation 4 is not a convex optimization

problem. However, the problem in Equation 4 can be solved

if we solve n versions of the problem in Equation 2, one for

each robot, and take the solution in which the optimal value

of the objective function is minimum. Since the problem in

Equation 2 can be solved in polynomial time in the number

of robots, the problem in Equation 4 can also be solved in

polynomial time in n (an additional factor of n will be present

in the expression of time complexity).

V. SOLUTION ALGORITHMS

In this section, we discuss the solution algorithms for the

network reconfiguration problems described above. We will

present our solutions in the context of problem P1. The

solution of problem P2 involves repeated solution of problem

P1. Since the problem given by Equation 2 is a convex

optimization problem, we can solve it in polynomial time using

a centralized interior point algorithm [11]. For implementation

of the centralized algorithm, a network node needs to maintain

and update the information about all other robots in the

network via message passing. In addition, the computational

cost also increases at least cubically with the number of

robots; hence the centralized algorithms may not be scalable.

Therefore, we present an incremental algorithm, which solves

Equation 2 by solving a series of optimization problems,

collecting information about positions of other robots in the

network only when needed.

A. Centralized Solution

Theoretically, solving the optimization version of Equa-

tion 2 has the same computational complexity as solving

the feasibility problem. Moreover the optimal solution using

Equation 3 as the objective function is also a solution to

the feasibility problem. Therefore, for the rest of this section

we present the discussion in the context of the optimization

version of Equation 2 with the objective function given by

Equation 3.

We can rewrite Equation 2 as a SOCP as shown below:

min
∑

j=1,...,n

sj

s.t. ‖qj − qk‖
2 ≤ djk, ∀(vj , vk) ∈ E

‖qj − q̃j‖
2 ≤ sj , j = 1, . . . , n

‖qi − q0‖
2 ≤ ρ2

i

sj ≤ ρj , j ∈ I

(5)

The objective function above is linear, the first three sets of

constraints are cone constraints and the last set of constraints

is linear; hence the optimization problem in Equation 5 is a

second order cone program. The optimization variable is a

3n × 1 vector, x = [s;q], where s is a n × 1 concatenated

column vector of sj , j = 1, . . . , n. The number of constraints

is (1+m+n+ |V ′|). So, the theoretical complexity of solving

this problem is O(m + n)3.5 [11].

For a networked system of mobile robots the utility of

the centralized algorithm depends on the architecture of the

deployed system and the number of robots in the network. If

the architecture of the deployed system is such that there is

one robot that keeps the information about the positions of all

the robots, then a centralized algorithm can be used for solving

the problem. However, the centralized algorithm scales poorly

with the size of the network.

B. Incremental Algorithm

In this section, we present the incremental algorithm. We

will present our discussion in the context of the feasibility

problem version of Equation 2. We first consider the related

optimization problem of minimizing the distance between the

robot i and the point Q subject to all the constraints. The

problem can be written as

min ‖qi − q0‖
2

s.t. ‖qj − qk‖
2 ≤ djk, ∀(vj , vk) ∈ E,

‖qj − q̃j‖
2 ≤ ρj , j ∈ I

(6)

The difference between the feasibility version of Equation 2

and Equation 6 is that the last constraint in Equation 2 is

the objective function in Equation 6. The feasible set for

Equation 6 is non-empty and so Equation 6 always has a

solution (the robots being at the positions where they started

is a trivial feasible solution). When the optimal value of the

objective in Equation 6 is less than ρi, the optimal solution

for Equation 6 is a feasible solution for Equation 2.

In our incremental algorithm, we solve the optimization

problem given by Equation 6, where we do not put all the

constraints at once but put in the constraints as required. Note

that the robot i is constrained by its neighbors only, each of

which is constrained by their neighbors and so on. If it is

possible for robot i to come within ρi of Q with its neighbors

staying at their previous positions, then robot i should do so.

Therefore, we start by putting in the constraints for robot i

only and this results in the following problem:

min ‖qi − q0‖
2

s.t. ‖qi − q̃j‖
2 ≤ dij , ∀(vi, vj) ∈ E

(7)

By not putting in the constraints for the other robots, we are

essentially saying that they cannot move, i.e., qj = q̃j , j =
1, . . . , n, j 6= i. Let the value of the optimal solution to

Equation 7 be d∗i0. If d∗i0 ≤ ρi we have a feasible solution

with the new position of robot i being qi and other robots

remaining in their original position. If d∗i0 > ρi, we can

find the set of constraints in the solution of Equation 7 that

are active at the optimal solution, i.e., the j’s for which

‖qi − q̃j‖2 = dij . For ease of exposition, let us assume

that there is only one active constraint and let this constraint

correspond to the kth robot. The fact that there will be at

least one active constraint in the final optimal solution is

a fundamental fact of convex optimization [12]. Obviously,

the robot i cannot progress further towards the point Q, if

these active constraints cannot be relaxed, i.e., if robot k

5487

cannot be moved. So, in the next step, we allow the robots

constraining the motion of robot i to move, i.e., we remove

the set of constraints ‖qi − q̃k‖2 ≤ dik, k ∈ K from

Equation 7 and add the set of constraints ‖qi − qk‖
2 ≤ dik,

‖qk − q̃ℓ‖2 ≤ dkℓ, (vk, vℓ) ∈ E, k ∈ K to Equation 7. The set

K consists of all the robots that were preventing the motion of

robot i at the previous step. Again we solve the optimization

problem, check the value of the optimal solution, identify the

active constraints and repeat the procedure until d∗i0 ≤ ρi.

In the optimal solution of the problem in Equation 7, the

Lagrange multipliers (or dual variables) corresponding to the

active constraints is positive and so the active constraints can

easily be identified by checking the dual variables.

To illustrate the above mathematical description of the

incremental algorithm, let us consider the example that we

introduced in Figure 1. We consider a network of 10 robots,

where the robot 1 wants to move within the communication

range of robot 10. Now, if we allow only robot 1 to move

towards robot 10, robot 2 and 4 will constrain its motion if they

are fixed. This corresponds to the first step of the incremental

algorithm where we will obtain the active constraints as 1− 2
and 1 − 4. So, in the second step, we will allow 1, 2, and 4
to move. Now the position of 2 and 4 will be constrained by

robot 3. Robot 1 will then be constrained by either 2 or 4 or

both. The new active constraints that will be obtained from the

second step of the incremental algorithm is 2 − 3 and 4 − 3.

Therefore, in the third step, we will allow robots 1, 2, 3, and

4 to move. In this step the robot 1 can reach its goal, hence

we obtain the final reconfigured network.

Fig. 2. An example network of 10 robots. The robot 1 wants to move
within the communication range of robot 10 such that the network becomes
2-connected. Only the robots 1, 2, 3, 4 need to move to their new position
1′, 2′, 3′, 4′ for the network to be 2-connected. The dashed lines shows the
new communication edges after the network has reconfigured.

Once we obtain the feasible solution, we can also obtain

the total distance moved by the robots by adding the distances

moved by the robots that are allowed to move. However, this

is an upper bound on the minimum distance that the robots

need to move since the d∗i0 may be strictly less than ρi.

If we are interested in finding the solution to the minimum

distance problem we can now solve Equation 2 with only the

constraints present in the optimal solution of Equation 7.

Technically, the incremental algorithm described above is

also a centralized algorithm, because the computation is done

by one robot only (the robot i that wants to move). In terms of

computational complexity, the worst case performance of the

incremental algorithm is similar to the centralized algorithm.

However, unlike the centralized algorithm, the node i does not

need the information about the whole network at once, but can

collect the information as required. At each step, the robot i

collects the position information about only the neighbors of

the robots that need to be moved. Thus, in practical problems,

where the network adjustment can be done by moving only a

few nodes, the incremental algorithm may result in substantial

savings in computational and communication effort. For a

node which is more than 1 hop away from the robot i, a

path is known for requesting the required position information,

because within the active set there will be a sequence of active

constraints starting from robot i to that particular robot.

C. Solution Algorithms for P2

For problem P2, it can be easily seen that by solving

problem P1 for all the n robots and finding the solution

with minimum objective value among them we can solve P2.

However, in practice, because of the geometric structure of the

network, it may not be required to solve P1 for all possible

robots but only for robots that are within a certain distance of

Q. We are exploring this further.

VI. SIMULATION RESULTS

In this section we present some preliminary simulation

results showing the performance of the centralized and in-

cremental algorithms on randomly generated networks. We

present simulation results for problem P1 only. We used

YALMIP [13] for modeling the optimization problem and used

Sedumi [14], for solving second order cone programs. All the

coding was done in MATLAB. For simplicity, we assumed

that the communication radii of the robots are identical and

equal to 1. Furthermore, in the simulations we considered only

the communication constraints, i.e., the set V ′ was assumed

to be empty. We generated the networks randomly (ensuring

that it is connected at the beginning). For each generated

network, the robot i to be moved was chosen randomly and

the point Q was also chosen randomly within a distance of 7-

hops from the robot i. We ran both the centralized algorithm

and the incremental algorithm for each problem instance and

the average run time over 50 instances for each value of n is

shown in Table I. Note that the choice of 7-hops is arbitrary

and is there to ensure that the distance from i to point Q is

much smaller than the diameter of the convex hull of the robot

positions. As can be observed from table I, the computation

time for the incremental algorithm is relatively insensitive to

the size of the network. Moreover, in all cases the solution was

obtained with less than 30 robots moving to new positions.

VII. DISCUSSION ON OBSTACLE AVOIDANCE

In all of the above discussion, we have assumed that a

robot can move to any point in the environment, i.e., there

are no obstacles in the environment. Presence of obstacles

in the environment can (a) make candidate final positions in

5488

Number of Centralized Incremental
nodes Algorithm Algorithm

Run Time (s) Run Time (s)

1 10 1.4 1.2

2 50 2 1.4

3 100 2.7 1.8

4 200 4.8 3.4

5 500 19 7.6

6 1000 130 8.1

TABLE I
SAMPLE RUN TIMES, IN SECONDS, FOR THE CENTRALIZED ALGORITHM

AND INCREMENTAL ALGORITHM SOLVED USING SEDUMI IN MATLAB.
THE RUN TIMES WERE COMPUTED BY AVERAGING OVER 50 RANDOMLY

GENERATED NETWORKS. ALL DATA WAS OBTAINED ON A 2.53 GHZ

INTEL(R) P87000 DUAL CORE CPU WITH 2 GB OF RAM.

the environment infeasible and (b) change the feasible path

for moving from initial position to final position. Since our

goal in this paper is to obtain the final feasible positions (and

not on computing the paths to move to the final position)

we will consider the problem (a) above in this section.

We note here that the convex optimization framework and

algorithms presented in this paper can be extended to take

into consideration obstacles. We assume that the obstacles can

be defined as a union of convex sets where each convex set

is a polytope. Since any obstacle O is a convex polytope,

it can be represented as an intersection of half planes, i.e.,

O = {q ∈ R
2|aT

j q + bj ≤ 0, j = 1, . . . , p}. Assuming

the robots to be point robots, for the robot to avoid being

positioned inside the obstacle, the distance between the robot

and the obstacle should be greater than 0. An alternate way

of writing the collision avoidance constraint for robot i and

obstacle O is as follows:

maxj=1,...,p{a
T
j qi + bj} ≥ 0 (8)

Since the constraint above is a pointwise maximum of a

finite number of linear functions in qi, it is a convex function

in qi [11]. Thus, we can write each collsion constraint at

the final position as a convex constraint (actually as a set of

linear inequality constraints). Therefore incorporating collision

avoidance constraints would involve adding a collection of

linear inequalities to Equation 2 and the problem remains a

convex optimization problem.

The incremental algorithm for the feasibility problem can

thus be implemented by taking into considerationthe collision

avoidance constraints for all the robots that can move. How-

ever, the solution obtained from the feasibility problem will not

necessarily lead to the solution for minimum distance moved.

VIII. CONCLUSION

In this paper we have provided algorithms for solving the

network reconfiguration problem of moving a robot in the

network within a specified distance of a given point. We

showed that the above problem is a second order cone program

(SOCP) and can thus be solved in polynomial time by a

centralized interior point algorithm. However, the centralized

algorithm is not scalable. Hence, we presented an incremental

algorithm, that solves the feasibility problem by obtaining

the information about the position of the robots and their

immediate neighbors only if they are required to move. From

our simulation results on randomly generated networks, we

observed that the computation time for obtaining the feasible

solution is relatively independent of the size of the network.

Future Work: We note that both the algorithms that we have

presented are in essence centralized, because only one robot

is doing the computation. Therefore, for problems, where a

large fraction of the robots have to move the incremental

algorithm will perform similar to the centralized algorithm.

The optimization problem given by Equation 2 has a separable

objective function. Hence it may be possible to obtain a dis-

tributed algorithm for this problem using dual decomposition

techniques (analogous to what is done in [2]). The distributed

algorithms will give rise to issues concerning synchronization.

Moreover, if only a small percentage of the nodes are to be

moved, most of the computation of the nodes may be wasteful.

The tradeoff’s associated with the various algorithms is an

interesting question to pursue.

ACKNOWLEDGEMENTS

This research was partially supported by MURI grants

FA9550-08-1-0356 and N00014-08-1-1186. Thanks to S.

Okamoto and R.Zivan for early discussions on a different

version of the problem.

REFERENCES

[1] M. Ji and M. Egerstedt, “Distributed formation control while preserving
connectedness,” in IEEE Conference on Decision and Control, San
Diego, CA, December 2006, pp. 5962–5967.

[2] R. L. Raffard, C. Tomlin, and S. P. Boyd, “Distributed optimization for
cooperative agents: Application to formation flight,” in IEEE Conference

on Decision and Control, Bahamas, December 2004, pp. 2453–2459.
[3] A. Kansal, W. Kaiser, G. Pottie, M. Srivastava, and G. Sukhatme,

“Revonfiguration methods for mobile sensor networks,” ACM Transac-

tions on Sensor Networks, vol. 3, no. 4, pp. 22:1–22:28, October 2007.
[4] M. Zavlanos and G. J. Pappas, “Distributed connectivity control of

mobile networks,” IEEE Transactions on Robotics, vol. 24, no. 6, pp.
1416–1428, December 2008.

[5] M. C. DeGennaro and A. Jadbabaie, “Decentralized control of connec-
tivity for multi-agent systems,” in IEEE Conference on Decision and

Control, San Diego, CA, December 2006, pp. 3628–3633.
[6] A. Muhammad and M. Egerstedt, “Network configuration control via

connectivity graph processes,” in ACC, June 2006.
[7] L. Doherty, K. S. J. Pister, and L. E. Ghaoui, “Convex position

estimation in wireless sensor networks,” in Proceedings of IEEE Infocom

2001), vol. 3, 2001, pp. 1665–1663.
[8] S. Srirangarajan, A. H. Tewfik, and Z.-Q. Luo, “Distributed sensor

network localization using socp relaxation,” IEEE Trans. on Wireless

Communications, vol. 7, no. 12, pp. 4886–4895, December 2008.
[9] J. Spletzer and R. Fierro, “Optimal positioning strategies for shape

changes in robot teams,” in IEEE International Conference on Robotics

and Automation, vol. 1, Barcelona, Spain, April 2005, pp. 754–759.
[10] J. Derenick and J. Spletzer, “Concex optimization strategies for coor-

dinating large scale robot formations,” IEEE Transactions on Robotics,
vol. 23, no. 6, pp. 1252–1259, December 2007.

[11] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge University Press, 2004.

[12] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming:

Theory and Algorithms. New York, USA: John Wiley, 1993.
[13] J. Lofberg, “Yalmip: A toolbox for modeling and optimization in

MATLAB,” in Proc. of the CACSD conference, Taipei, Taiwan, 2004.
[14] J. F. Sturm, “Using sedumi 1.02, a MATLAB toolbox for optimization

over symmetric cones,” Optimization Methods and Software, vol. 11-12,
pp. 625–653, 1999.

5489

