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Abstract— Sampling-based kinodynamic planners, such as
the popular RRT algorithm, have been proposed as promising
solutions to planning for systems with dynamics. Nevertheless,
complex systems often raise significant challenges. In particular,
the state-space exploration of sampling-based tree planners
can be heavily biased towards a specific direction due to the
presence of dynamics and underactuation. The premise of this
paper is that it is possible to use statistical tools to learn quickly
the effects of the constraints in the algorithm’s state-space
exploration during a training session. Then during the online
operation of the algorithm, this information can be utilized
so as to counter the undesirable bias due to the dynamics
by appropriately adapting the control propagation step. The
resulting method achieves a more balanced exploration of the
state-space, resulting in faster solutions to planning challenges.
The paper provides proof of concept experiments comparing
against and improving upon the standard RRT using MATLAB
simulations for (a) swinging up different versions of a 3-link
Acrobot system with dynamics and (b) a second-order car-like
system with significant drift.

I. INTRODUCTION

Many interesting physical systems exhibit challenging dy-

namics and underactuation that complicate motion planning.

One prototypical problem in this context is swinging up an

Acrobot system in the presence of gravity [1], [2], as dis-

played in Figure 1. This is an important benchmark because

many classes of robots, especially walking robots, exhibit

similar levels of underactuation and dynamic constraints.

One approach for planning with dynamics is the frame-

work of sampling-based kinodynamic algorithms, such as

the popular RRT method [3], [4] and alternatives [5], [6].

These methods aim to cover as quickly as possible the

state space through sampling. Specifically the RRT algorithm

makes use of an implicit Voronoi bias when selecting states

and controls to expand a reachability tree into the state

space. This favorable bias, however, is no longer available

if there is no good distance metric in the state space or

if drift and other dynamic constraints introduce undesired

biases. Figure 2 illustrates the challenges in planning with the

standard RRT for the Acrobot. The figure provides the six-

dimensional states (three angles and three angular velocities)

along the reachability tree produced by RRT after 50,000

iterations. The states are projected onto the torus defined by

the orientations of the Acrobot’s first two links. The state-

space exploration is severely biased due to the dynamics and

the vicinity of the goal (swinging up the Acrobot: θ1 = π
2

,

θ2 = π
2

) has not even been approached yet.
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Fig. 1. A 3-link Acrobot. The controls are the joint torques. θ1, θ2 and θ3

are the global orientations of the links. The state of the system also includes
angular velocities. In this paper’s experiments each link has 0.5Kg weight.

Fig. 2. A projection of the states explored by the standard RRT algorithm
after 50,000 iterations to a torus that corresponds to θ1 and θ2. The black
dot corresponds to the initial state (0, 0, 0, 0, 0, 0), where all the links face
horizontally to the right and have zero angular velocity. Due to dynamics,
including gravity, the exploration is heavily and undesirably biased.

The main ideas in this paper is to (a) learn the biases intro-

duced by the dynamics in the state space exploration process

during an offline training phase and then (b) counteract the

effects of these undesired biases during the online operation

of the algorithm so as to achieve a more balanced coverage

of the state space. As a feasibility study of these ideas, this

paper utilizes a classical statistical tool for building predictive

models, that of Principal Component Analysis (PCA) [7], [8],

[9]. Even though PCA is a linear method and the Acrobot

is a non-linear system, it is still possible to acquire useful

information about the exploration bias because the system is

highly constrained. During the online step, the exploration

procedure is modified so as to promote the propagation of

the search tree towards the direction of the least significant

components. In the context of the RRT, this can be achieved

by selecting at each iteration the control which brings the

system closer to a modified version of the random state

sample.
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This paper provides indications that the above procedure

is beneficial when planning for highly constrained systems.

Experimental results suggest that it is possible to solve

planning problems for the Acrobot, as well as for a car-

like system, faster, since the state space is covered more

efficiently. At the same time, the computational overhead

during the online operation of the algorithm is minimal. On

average, each iteration of the PCA-based algorithm is only

1.15% more time consuming than an iteration of the standard

RRT. Only a few matrix transformations and operations have

to be executed to achieve the desired result. Concerning the

cost of the offline training procedure there are two issues:

• How large should the trees be during the offline process?

• How many trees should be propagated during training?

Experiments indicate that a small number, even just one, of

small size trees is sufficient. Overall, the experiments show

that the combined cost of the offline step and the online step

is smaller than the cost of a solution with the standard RRT.

An important advantage of the methodology is that it

does not heavily depend upon the underlying system. As

sampling-based planners are general methods, similarly the

proposed approach does not depend on the properties of

specific systems. Nevertheless, the more constrained the

system is, the more beneficial the modification is expected

to be. If the system does not suffer from any bias, then the

technique is automatically equivalent to a standard RRT.

Furthermore, while the idea is described in the context of

the RRT, it could be also paired with alternative methods. In

particular, there are techniques for adapting the sampling pro-

cess in sampling-based tree planners [10], [11] and methods

for producing motion primitives [12], [13]. The current work

is complementary to many of these existing methodologies.

Another important advantage of the proposed method

is that it is not necessary to study the coverage of the

complete state space but instead to focus on a task space

that is important for the problem’s solution. For instance, the

dynamical version of the Acrobot has a six-dimensional state

space but it is fairly straightforward to apply the PCA on a

subspace. For example, if the goal is specified only in terms

of the configuration that has to be achieved (i.e., the three

orientations of the links so that the Acrobot is vertical), then

PCA can be run only in the configuration space (C-space)

and not the complete state space, since this is the space that

it is important to be covered to solve the problem.

Last but not least, this work, as a proof of concept, opens

the door to many exciting extensions, such as the online

computation of the principal components and the online

adaptation of the exploration procedure. It can also lead to a

hierarchical and local learning of the principal components so

as to deal with different biases in different parts of the state

space. A challenging variant of the method is to automati-

cally select a projection of the complete state space where

the PCA should be executed. It is similarly interesting to

study the application of non-linear dimensionality reduction

[14], more complex models of dynamical systems that make

use of physics-based simulation, as well as the effects of

obstacles and collisions to the computation of the biases.

II. RELATED WORK

Direct or kinodynamic planning searches directly the en-

tire state space (X ) of a dynamical system. There are many

ways to approach such problems in the related literature:

• Optimal control can be applied for direct planning [15]

but handles only simple systems. Algebraic solutions are

known only for 2D point masses [16], [17].

• Numerical optimization [18] is expensive and suffers from

local minima.

• Search-based methods compute optimal paths with grid-

based approximations in X but depend exponentially to the

resolution [19], [20].

A polynomial-time, search-based approximation algorithm

solves the problem efficiently for a point mass with dy-

namics [21] and extends to more complicated systems [22],

[23]. Sampling-based tree planners, such as RRT [3], [4],

Expansive Spaces [5], and the PDST algorithm [6], can be

seen as extensions of such search-based methods that employ

heuristics to evenly explore X .

These methods follow a selection-propagation scheme to

construct the tree data structure in the state space. At each

iteration they first select a node/state along the tree that is

already connected with a path to the start state. Then they

apply a control from the selected state. In particular, the RRT

algorithm selects the initial state for expansion (xnear) by

randomly sampling a state xrand and then finding the closest

state along the tree to xrand. If the metric used for finding

the closest state is appropriate and if the propagation step

is not biased then the algorithm has a Voronoi bias. This

implies that the larger unexplored sections of the state space

have higher probability of being explored.

There are also bidirectional versions of the algorithm that

considerably improve performance [24]. The bidirectional

RRT, however, requires a “steering method” to connect two

specific states or a way to address gaps in the merging

process of the two trees, which for certain systems is possible

to achieve [25], [26]. Nevertheless, the application of the

bidirectional tree approach is challenging for the type of

systems considered in this paper.

Alternative schemes to RRT use different mechanisms

to implement the selection-propagation step. For example,

the PDST algorithm uses an adaptive subdivision scheme

of X and a scoring system over edges for guaranteeing

probabilistic completeness. This is an approach that has been

tested on the Acrobot system [27].

Many recent methods focus on applying RRT-like solu-

tions to challenging problems that involve manipulators or

grasping, or high-dimensional systems, or underactuated and

dynamical systems [28], [29], [30], [31], [32], [33], [34].

Many of these techniques make use of the idea that the search

can be focused in a subspace of the complete state space

[28], [35], [32], [34], [33]. Then this subspace corresponds

to the task space, the space defined by the specific task and

goal that has to be achieved. Recent work applies task-space

control tools to the problem of planning for the Acrobot [29],

[28], and together with the work on PDST, it has motivated

the focus of this paper on this specific benchmark.
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There have also been previous efforts to utilize tools such

as Principal Component Analysis (PCA) in motion planning

from which this work is inspired. The idea has been to use

PCA in an online fashion in order to accelerate the search

procedure of RRT-like algorithms once the tree has already

reached the narrow passage [36]. In this online PCA approach

for geometric planning, the idea is to bias the exploration of

the tree so as to favour the directions in which the variance

of the growing tree is high. There have also been efforts

that utilize PCA in the study of protein motion [37], [38].

To the best of the authors’ knowledge there has not been an

application of PCA in motion planning so as to express the

effects of dynamic constraints in the exploration performance

of sampling-based algorithms.

III. USING PCA TO IMPROVE COVERAGE

The approach proposed in this paper is split into two steps,

an offline learning procedure and a modification of the online

operation of the RRT algorithm. For the offline part, the

approach first applies a standard sampling-based algorithm,

such as RRT-Connect, to grow a tree with a certain number

of nodes. Once the desired tree has been expanded, a PCA

is executed on the coordinates of all the nodes/states to

calculate a new basis. This basis can be used to represent

the principal directions that the tree has expanded inside

the state space. For the online part, the approach alters the

random state (xrand) towards which the tree is extended.

The modification encourages the tree to favor directions in

which the variance is low in the offline tree.

A. Principal Component Analysis and Offline Step

Principal Component Analysis (PCA) is a statistical tool

to investigate the underlying dimensions of a dataset [7], [8].

It provides a transformation from a number of possible in-

terrelated data to a smaller number of independent variables,

which are called principal components. The first component

found accounts for the direction of the highest variance in

the dataset. Subsequent components account for decreasing

levels of variance. PCA returns a new basis for the original

data as well as the corresponding variance in each direction.

These correspond to the eigenvectors and the eigenvalues

produced by the method respectively. PCA assumes that the

underlying operation of the system can be expressed by a

linear process.

In the general case PCA operates over a matrix/dataset M

with dimension n × d, where each observation of d values

corresponds to a row. There are n total observations. In the

first step, the basic version of the algorithm subtracts the

mean from each dimension of the data. Then, it computes

the covariance matrix C with dimension d × d and its

eigenvectors b, as well as the corresponding eigenvalues

l. Finally, the method transforms each observation data

point by the new basis b. In this work, the observations

correspond to n states extracted from the tree computed by

RRT-Connect. These states correspond to the last state

of each propagation step in the algorithm. For the Acrobot

system the dimensionality of each state is 6, the three

joint angles and three angular velocities. For the current

implementation only the orientations of the three links are

used for each state, since the modification is applied only in

the configuration space where the goal state and the metric

is defined. Algorithm 1 summarizes the offline step of the

proposed approach.

Algorithm 1 Offline Step - INPUT: n

T ← RRT-Connect(n)

M ← coordinates of T’s nodes

(b, l)← PCA(M)

B. Online Step

For the online step, the pseudo-code is provided in Algo-

rithm 2. As it can be seen, the proposed approach follows

the basic structure of the RRT algorithm but modifies the

sampled state xrand before calling the Extend step.

Algorithm 2 Online Step - Input: x0K, b, l

T .init(x0)

for i = 1 to K do

xrand ← sample X
xnear ← find nearest x ∈ T to xrand

x′

rand ← Transform( inv(b), xrand )

x′
new ← Modify( l, x′

rand )

xnew ← Transform( b, x′
new )

xedge ← Extend( xnear, xnew )

T .AddVertex(xedge)

T .AddEdge( xnear, xedge )

The algorithm first samples a random state xrand in the

state space X . Then the nearest state along the tree is found

according to a metric ρ(·, ·) : X ×X → R. Once the nearest

neighbor is found, then the coordinates of the randomly

sampled state are transformed into the basis b computed

by the offline part. Then for each principle component, the

algorithm modifies the corresponding coordinate according

to the eigenvalues of the corresponding matrix.

More specifically the function “Modify” executes the

following steps. Let l1 > . . . > ln > 0 be the eigenvalues

of the covariance matrix, and b1, . . . , bn the corresponding

eigenvectors. The coordinates of the adjusted random state

x′
new is given by:

∀i ∈ [1, n], x′i
new =

l1

li
x′(i)rand (1)

For each principal dimension, the algorithm rescales the

sample coordinate. The adjustments keep the direction with

the most variance unchanged, while it projects low variance

directions outwards depending on their eigenvalues. The next

step transforms x′
new back into the coordinates of the original

state space X , resulting to the state xnew, and then attempts

to connect the nearest node xnear to the modified sample

xnew by calling function Extend.

Algorithm 3 details the operation of Extend. The function

tests k random controls from the state xnear and integrates
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Fig. 3. Trees created through sampling in highly constrained spaces tend
to explore certain directions in the state space much more than others.
Algorithm 2 alters the sampling process so as to bias the expansion of
the tree towards the least explored dimensions.

them for time t. The resulting state of each integration

is denoted as xext. For each xext the function computes

the distance to xnew. The closest xext to xnew and the

corresponding control are selected for the expansion step of

the algorithm.

Algorithm 3 Extend( xnear, xnew )
ρmin ←∞
for i = 1 to k do

urand ← sample U
xext ← Integrate(xnear, urand, t)

ρ← ρ(xext, xnew)
if ρmin > ρ then

ρmin = ρ

xnew = xext

return xnew

Figure 3 illustrates the difference in the growth of a

sampling-based tree data structure computed by a standard

RRT in highly-constrained spaces and the effects of the

proposed version of RRT that uses PCA. The oval in the

figure illustrates the probability of growth along different

directions. The dynamic constraints of real systems, such

as the Acrobot, distort the expected isotropic distribution

of the state-space exploration into an ellipsoidal one. The

PCA adjustment proposed here biases the expansion of the

tree towards the principal dimension that the standard RRT

algorithm would least explore.

IV. EXPERIMENTAL RESULTS

A. Acrobot Model and Setup

The algorithm is tested on a 3-link Acrobot robot system,

shown in Figure 1. All joints of the robot can be both actu-

ated and passive. The control input corresponds to torques at

Fig. 4. (up) The nodes/configurations reached by the RRT algorithm
after 1000 iterations for an APP Acrobot. (down) The nodes/configurations
reached by the proposed PCA-based variation after 1000 iterations.

the joints. Each link has 0.5m in length and 0.5 kilograms in

mass and there is an assumption of uniform density. There

are no angle limits but the maximum absolute value for the

torque at each joint is 20 Nm, unless specified otherwise.

Tests were conducted for different modes of the system. For

example, all joints can be actuated, a mode that is referred

to as AAA. The mode APP indicates that only the first

joint, that is connected to the fixed base, is actuated and the

subsequent two are passive. Consequently, this is a highly

underactuated mode. Similar naming conventions apply to

AAP, PAA and PPA.

For the distance measure the implementation ignored the

effect of velocities, and the distance between two states is de-

fined to be equal to the distance between two configurations.

The topology of the configuration space for the Acrobot is

a three dimensional torus, corresponding to the three joint

angles. The distance measure between two configurations is

defined as the sum of the distances of the corresponding

angles. The distance between two angles θi and θ′i for the

i-th joint is defined as:

d(θi, θ
′

i) = min∀k,k′ |2kπ + θi, 2k′π + θ′i|

where k, k′ are integers. Consequently, the overall distance

metric between two states x = (θ1, θ2, θ3, θ̇1, θ̇2, θ̇3) and

x′ = (θ′
1
, θ′

2
, θ′

3
, θ̇′

1
, θ̇′

2
, θ̇′

3
) = is:

ρ(x, x′) =

3∑

i=1

d(θi, θ
′

i).
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Fig. 5. APP mode: (up) The coverage of the configuration space by the PCA -based approach for incrementally larger number of iterations. (down) The
standard RRT. The last column corresponds to a view from a different 3D viewpoint for both algorithms.

Unless otherwise specified, the figures in this paper display

a projection of the trees in the C-space (q = (θ1, θ2, θ3)).
Note that the angles θi are relative the global reference

frame and do not correspond to the angles between con-

secutive links. In the configuration (0, 0, 0) all the links of

the Acrobot are horizontal, pointing towards the right. An

Acrobot in the up-swing configuration has a configuration of

(π
2
, π

2
, π

2
). Furthermore, the figures display only the nodes

of the resulting trees. For the Extend function, the values

k = 10 and t = 0.2sec were used in the experiments. The

algorithms have been implemented on MATLAB and tested

on a machine with Intel 2.0 Dual Core CPU and 2GB RAM.

B. Evaluation

Coverage in APP mode: The algorithms were tested on

different modes of the Acrobot starting with the most

underactuated case (APP mode). Figure 4(up) shows the

performance of RRT-Connect with 1000 nodes, where the

exploration is severely constrained to one direction. In Figure

4(down), the exploration is better distributed when using PCA

for the same number of nodes (1000). Figure 5 provides an

incremental comparison between the standard RRT and the

PCA-based solution. Moreover, the computational overhead

for the transformation and modification step is very low and

does not exceed on average 1.15% of the time spent by the

standard RRT. The table below shows the average duration

and the associated variance of building trees with 1000 nodes

with the standard RRT and with the PCA-based RRT, over

100 experiments on MATLAB.

Computation time Average duration Variance

Standard RRT (seconds) 5.731 0.13

PCA- based RRT (seconds) 5.797 0.137

TABLE I

TIME TO COMPUTE A TREE WITH 1000 NODES IN SECONDS.

Fig. 6. AAA mode: (up) Coverage for the standard RRT algorithm along
the θ1 and θ2 orientations after 5,000 nodes (left) and after 50,000 nodes
(right) - (down) Similar results after the PCA-based modification.

Coverage in AAA mode: The second test case involved

the Acrobot in AAA mode. The results are shown in

Figure 6, where the top figures correspond to the coverage

performance of the standard RRT and the bottom ones to

the PCA-based modification. As it can be seen, after 50,000

nodes the proposed modification manages to cover most of

this projection of X .

Comparison: Table II is a summary of the above and similar

experiments. It displays the number of nodes necessary for

different algorithms and different modes of the Acrobot to

solve a planning challenge. The planning problem required
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Standard RRT (iterations) PCA-based RRT (online iterations)

AAA 46.8 K 17.3 K

AAP 52.1 K 26.3 K

APP Failed (>120,000) 96.9 K

TABLE II

AVERAGE PERFORMANCE: STANDARD RRTVS. PCA-BASED RRT.

Fig. 7. The three principal components for different sizes of the same tree
as it expands using the standard RRT algorithm.

the robot to move from an initial configuration of (0, 0, 0)
with zero velocities, to a vertical position of (π

2
, π

2
, π

2
),

denoted by the black asterisk in Figure 4. The goal was

considered achieved regardless of the velocity of the system

at the vertical position and if the planner was able to produce

a configuration within five degrees of all the angles. As figure

6 exhibits, this is a hard problem for sampling-based planners

as it requires extensive exploration in order to cover the

space. The part of the configuration space which corresponds

to the goal is the last to be reached by the algorithm. For

the PCA-based solution, an offline tree was extended using

the standard RRT algorithm for 2,000 iterations.

Note that for these problems, the more the links of the

acrobat weigh the more difficult the problem is. For the

AAA mode, the absolute value of the input torque was

limited to 20Nm, while for the APP mode it was limited

to 30Nm. For the AAP mode, the first joint has a limit of

30Nm and the second one has a limit of 20Nm. As the

table shows, more difficult problems (i.e., APP is much

harder than AAA) require more iterations to be solved.

In every case, however, the PCA-based solution performs

always better than the standard RRT even if the offline

cost is included to the cost of the PCA-based solution

(2,000 iterations). This provides some evidence that we can

take advantage of such offline information to considerably

improve state-space coverage performance.

How large offline trees are needed? Experiments indicate

that it is possible to grasp the effects of the dynamic

constraints at the beginning of the exploration process

with a small number of nodes. In order to investigate this

issue, the following experiment was executed. A tree was

expanded using the RRT algorithm up to 5,000 iterations.

Every 1,000 iterations the PCA algorithm was executed

to compute the principal components given all the nodes

produced up to that point. Figure 7 visualizes the principal

Fig. 8. The directions of the principal component after running PCA on
different trees computed with the standard RRT(blue for least principal
component). In all of the above cases, the vector for the least principal
component points in a similar or in a negative direction. Overall, there is
not significant deviation between the bias detected by the algorithm.

components from this experiment. Red lines indicate the

first principle components for each PCA run. Green and

blue lines indicate the rest of the principal components.

While the mean of the nodes changes as the tree grows, the

direction of the eigenvectors does not change significantly.

And even the mean changes only along the direction

of the principal component, which does not effect the

proposed algorithm. Similar results have been achieved

over multiple experiments, which due to space limitations

are not presented here. Overall, there are indications that

for dynamically constrained systems a small exploration

tree may be sufficient to grasp the major constraint influence.

How many offline trees are needed? There are also indi-

cations that running PCA over a small number of trees

offline is enough to grasp the principal components. Figure

8 shows an example with the principal component computed

for different trees using the standard RRT on the constrained

version of the problem (APP). The resulting vectors are quite

similar meaning that the differences on the online operation

of the technique would not be significant. Similar results

are acquired for experiments with a much larger number of

trees than the one depicted on Figure 8. Furthermore, note

that in all of the previous experiments and comparisons only

one offline tree was used during the training session. This

was sufficient in order to get the improved coverage and

performance in planning.

C. Second System: Car-Like Vehicle

The proposed approach has also been tested on a different

system other than the Acrobot. In particular, a second-order

car-like system has been chosen with state-update equations:

ẋ = w cosζ cosθ x ∈ [−150, 150]

ẏ = w cosζ sinθ y ∈ [−150, 150]

θ̇ = w sinζ θ ∈ [−π, π]

ẇ = u1 w ∈ [0, 4]

ζ̇ = u2 ζ ∈ [−
π

6
,
π

6
]
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w = 0 500 nodes 1K nodes 3K nodes 5K nodes

Standard RRT 0.01887 0.045 0.22328 0.53474

PCA on same size 0.01453 0.04786 0.12898 0.28111

PCA on 1K nodes 0.10724 0.21055

w = 2 500 nodes 1K nodes 3K nodes 5K nodes

Standard RRT 0.01368 0.03482 0.21007 0.49757

PCA on same size 0.0137 0.02837 0.12754 0.32466

PCA on 1K nodes 0.13136 0.26946

w = 4 500 nodes 1K nodes 3K nodes 5K nodes

Standard RRT 0.012807 0.03034 0.17893 0.44894

PCA on same size 0.01077 0.02698 0.12814 0.32617

PCA on 1K nodes 0.13404 0.32699

TABLE III

VARIANCE OF DENSITY IN CELLS IN THE C-SPACE.

where u1 and u2 are the control inputs (acceleration and

derivative of the steering angle correspondingly), x, y are the

Cartesian coordinates of a point on the robot, θ is orientation,

w is the forward velocity and ζ the steering angle. The

bounds for the state parameters are also provided in the above

equation, from which it becomes apparent that the car can

only move forward. The bounds for the control parameters

are as follows: −0.03 ≤ u1 ≤ 0.03 and −0.06 ≤ u2 ≤ 0.06.

This is a system that is not small-time locally controllable

everywhere and given the above bounds has significant drift.

The distance measure used was the following: s1 ∗ (x1 −
x2) + s2 ∗ (y1− y2) + s3 ∗ (θ1− θ2) + s4 ∗ (w1−w2) + s5 ∗
(ζ1−ζ2), where si is a scaling factor for each state parameter

and depends on the bounds for the corresponding parameters

(s1 = s2 = 1

300
, s3 = 1

2π
, s4 = 1

4
, s5 = π

3
). As with the

Acrobot, special care has to be taken when considering the

difference in orientation. The PCA was run on a projection

of the states onto the C-space of the system, which in this

case corresponds to (x, y, θ).
Figure 9 provides a comparison of the different kind

of trees that result after the application of the standard

RRT and the PCA-based RRT on the car-like system. Both

algorithms were applied for 2,000 iterations. The initial

state corresponds to the car-like system having its maximum

velocity (w = 4). The result of the PCA-based outcome is

using the principal components learned from a tree of size

2,000 nodes expanded by standard RRT.

In order to quantitatively estimate the coverage, a dis-

cretization of the C-space was employed. Each dimension of

the C-space (x, y, θ) is divided into 50 intervals. This results

into the definition of 50 × 50 × 50 cells into the C-space.

Initially the density of each cell is zero and increases every

time that a node of the tree lies on the cell. A tree that covers

nicely the state space should result into cells with relatively

equal densities. Thus, a metric of the C-space coverage is the

variance of the density over the cells. For the same size tree,

the lower the variance the better. For the example in Figure

9, the variance of the density achieved by RRT is 0.15, while

the PCA alternative achieves 0.07.

Table III provides the variance of the density of cells for

trees of different sizes (500, 1000, 3000, 5000 nodes), for

different initial conditions (velocity w = 0, w = 2, w =
4) and for different algorithms (standard RRT, PCA-RRT

using learning on a tree of the same size and PCA-RRT

using learning on a tree of 1,000 nodes). Each value is the

average variance metric achieved over 10 experiments. The

standard deviation for the variance metric is quite low. Notice

that in the majority of the cases the PCA-RRT achieves

lower variance for the same tree size. This means that it

explores the C-space more evenly. The comparison becomes

increasingly more favorable for larger trees. Furthermore,

if the tree used for offline learning is smaller than the

constructed tree, there is no degradation in performance. On

the contrary, it appears to be beneficial in terms of coverage.

V. DISCUSSION

This paper presents a method that utilizes Principal Com-

ponent Analysis (PCA) to improve the coverage efficiency

of sampling-based methods in the presence of dynamic

constraints and underactuation. An offline step is executed

first so as to learn the major influence from the constraints

using PCA. A modification to the online step of the popular

RRT algorithm is also presented that introduces a counter-

measure to the bias and balances the overall exploration

of the state-space. The approach is tested on a typical 3-

link Acrobot system with varying levels of actuation and

a second-order, not small-time locally controllable car-like

system. The experimental results indicate that it is possible

to benefit from the application of the PCA. The coverage of

the state-space is improved and the cost of finding a solution

to specific planning challenges is reduced. There are also

experimental indications that for the tested systems a single

small tree is sufficient for offline learning.

In the presented work PCA is used in a global fashion

and only once. Future work will focus on executing PCA

online, as well as locally. An online variant would hopefully

be able to adapt to the changes caused by the modifications

to the algorithm, since once PCA is used, the algorithm is no

longer exhibiting the same kind of bias as the offline tree.

A local approach brings the promise of being able to better

approximate the underlying non-linear bias by decomposing

the space into regions where the bias may be varying.

Another way to address the underlying non-linearity of the

physical system is to consider more sophisticated methods,

such as Isomap/LLE, and in general non-linear dimensional-

ity reduction algorithms. An important issue, especially for

higher-dimensional challenges, is to use the PCA process so

as to identify a projection of the complete state space that

should be used for more effective planning. For example, in

the current experiments the distance metric and the PCA are

computed on a projection space that ignores the velocities,

since the goal is specified in terms of the joint angles. In the

general case, however, it might be possible to automatically

identify the appropriate projection of the complete state space

that is sufficient to cover using the PCA adaptation. There

has been recent work on the performance of random linear

projections for sampling-based motion planning [39]. Finally,

future work will also deal with how the information collected

through a PCA procedure can assist the online solution of

problems that involve obstacles and collisions.
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Fig. 9. Trees with 2000 nodes projected on the x, y plane. They are computed with the standard RRT (left) and the PCA-based solution (right) for the
car-like system. The initial state is (x, y, θ, w, ζ) = (0, 0, 0, 4, 0), which means that the car has its highest velocity in the initial state.
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