
Rao-Blackwellized Particle Filtering for Probing-Based

6-DOF Localization in Robotic Assembly

Yuichi Taguchi∗, Tim K. Marks∗, and Haruhisa Okuda†

∗Mitsubishi Electric Research Laboratories, Cambridge, MA, USA
†Advanced Technology R&D Center, Mitsubishi Electric Corporation, Amagasaki, Japan
∗{taguchi, tmarks}@merl.com †

Okuda.Haruhisa@ct.MitsubishiElectric.co.jp

Abstract— This paper presents a probing-based method for
probabilistic localization in automated robotic assembly. We
consider peg-in-hole problems in which a needle-like peg has a
single point of contact with the object that contains the hole, and
in which the initial uncertainty in the relative pose (3D position
and 3D angle) between the peg and the object is much greater
than the required accuracy (assembly clearance). We solve this
6 degree-of-freedom (6-DOF) localization problem using a Rao-
Blackwellized particle filter, in which the probability distribu-
tion over the peg’s pose is factorized into two components: The
distribution over position (3-DOF) is represented by particles,
while the distribution over angle (3-DOF) is approximated as
a Gaussian distribution for each particle, updated using an
extended Kalman filter. This factorization reduces the number
of particles required for localization by orders of magnitude,
enabling real-time online 6-DOF pose estimation. Each mea-
surement is simply the contact position obtained by randomly
repositioning the peg and moving towards the object until there
is contact. To compute the likelihood of each measurement, we
use as a map a mesh model of the object that is based on the
CAD model but also explicitly models the uncertainty in the
map. The mesh uncertainty model makes our system robust to
cases in which the actual measurement is different from the
expected one. We demonstrate the advantages of our approach
over previous methods using simulations as well as physical
experiments with a robotic arm and a metal peg and object.

I. INTRODUCTION

This paper presents a probing-based method for probabilis-

tic localization in automated robotic assembly. We consider

peg-in-hole problems in which the peg is needle-like (has

a single point of contact when probing) and in which the

initial estimate of the pose of the peg with respect to the

object may be quite inaccurate. Pose uncertainty of the peg

with respect to the object may greatly exceed the assembly

clearance (the desired accuracy) in all 6 degrees of freedom

(6-DOF), comprising 3-DOF uncertainty in the peg’s position

and 3-DOF uncertainty in the angle of the peg with respect

to the object. We use as measurements contact positions

obtained by repositioning a robot arm that holds the peg and

then moving the peg in the general direction of the object

until there is contact. We assume that other than contact

detection and robot arm encoders, there are no other sensors

(such as cameras), though of course another sensor could

be used to bring the peg into the vicinity of the part before

implementing our algorithm. The goal of our algorithm is to

deal with levels of uncertainty for which spiral search and

other neighborhood search strategies [1], [2] would fail due

to large initial uncertainty, too many degrees of freedom,

and the existence of numerous local minima. We therefore

address the localization problem (determining the 6-DOF

relative pose of the peg and object) rather than the dynamics

of peg insertion.

A. Relation to Previous Work

Here we describe previous work on particle-based Monte-

Carlo localization for assembly using probing. Chhatpar

and Branicky presented a localization method using probing

and particle filtering for lock-key assembly [3] (which is

quite similar to the needle-like peg-in-hole problem that we

address) and round/square peg-in-hole problems [4]. They

first exhaustively probe every x, y location of the object with

the peg to generate a contact configuration-space map, which

describes all possible transformations in which the peg has

a contact with the object. After this preprocessing step of

dense probing, they perform particle filtering by sequentially

probing the object and using the contact positions as the

observations.

Thomas et al. [5] similarly describe an exhaustive prepro-

cessing step, densely probing an object with a force/torque

sensor to generate a force/torque map that consists of contact

force and torque at every possible contact pose. They also

estimated a force-torque map directly from a CAD model,

but this estimated force-torque map was not as accurate as

the map acquired by probing, so they did not use the CAD-

model-based map for localization. Thomas et al. [5] also used

particle filtering to match each force/torque observation to

the map and to incorporate observations from a camera.

Since the number of particles required for standard particle

filtering increases roughly exponentially with the number of

dimensions in the search space, the aforementioned previous

methods, which use particle filtering for all dimensions,

are not well-suited for full 6-DOF localization. Although

the formulations of these previous methods are described

for 6-DOF uncertainty, in practice they were only used for

localization in lower-dimensional search spaces (2- or 3-

DOF), such as the 2-DOF case in which uncertainty only

exists in x, y translation.

In this paper, we solve the full 6-DOF localization problem

using a Rao-Blackwellized particle filter (RBPF) [6], in

which the probability distribution over position (3-DOF) is

represented using particles, and the distribution over angle

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 2610

(3-DOF) is approximated by a Gaussian distribution condi-

tioned on the position of each particle. This factorization

greatly improves the efficiency of the algorithm, resulting

in an orders-of-magnitude reduction in the number of par-

ticles and computational resources required as compared

to standard particle filtering. We use particles to represent

the position of the peg with respect to the object, because

given weak prior information and only a small amount of

evidence, the posterior distribution over peg position tends

to be multimodal. Given the position of the peg (at the

current and previous time steps), however, the posterior

distribution over angle is more well-behaved, and thus a

Gaussian approximation is suitable. In our RBPF approach,

at each time step we first use particle filtering to update

the probability distribution over the position of the peg. We

then use extended Kalman filtering (EKF) for each particle

to update the particle’s weight and probability distribution

over angle, conditioned on the particle’s position.

We use as the map a mesh model of the object that

is being probed, which we generate before probing the

object using a CAD model as well as any prior knowledge

about the uncertainty of the CAD model. The mesh model

explicitly models uncertainty about the position of its faces,

edges, and vertices. This probabilistic map of the object’s

surface enables our algorithm to succeed in situations in

which measurements are not consistent with the CAD model.

Such differences can arise from measurement errors due to

numerous factors such as slipping and sensor imprecision,

as well as from differences between the CAD model and

the object that can arise from causes such as manufactur-

ing limitations, undocumented design changes, and reverse-

engineered (approximate) CAD models.

Prior to the actual pose estimation, previous approaches

include an exhaustive preprocessing step in which the object

is probed with the peg at every possible contact location

or pose, and the contact position or force/torque values

are measured. The resulting detailed map is later used to

accurately evaluate the measurement probability for pose

estimation. Our new mesh representation, which explicitly

accounts for varying levels of uncertainty in the map, is

designed to allow robust localization with only an approxi-

mate map, thus obviating the need both for a time-consuming

map measurement preprocessing step and for storing a large

amount of detailed (dense) map data.

We describe our system model and RBPF inference algo-

rithm in Section II. Then in Section III, we demonstrate our

algorithm’s marked improvement in efficiency over previous

methods using physical experiments (with a robot arm and a

metal peg and object) and simulations (using a virtual model

of the metal object as well as a more complex simulated

object). We conclude with a brief discussion in Section IV.

II. LOCALIZATION METHOD

Our problem is to find the pose of a needle-like peg with

respect to an object, by probing the object with the peg. The

6-DOF uncertainty between the peg and the object is repre-

sented as (s,θ), where s = (x, y, z)T and θ = (α, β, γ)T are

st-1 st st+1

zt-1 zt zt+1

ut-1 ut ut+1Control

Position

Measurement

Angle

Fig. 1. Graphical model showing the probabilistic dependencies of our
localization method. The angle variables θ can be considered as analogous
to the map variables in typical methods for SLAM in mobile robotics. The
shaded nodes represent variables that are measured, while the white nodes
represent variables that are inferred.

relative positions and angles, respectively, between the peg

and the object. The angles (α, β, γ) are defined as angles of

rotation around each of the (x, y, z) axes, respectively.

The key to our approach is to factorize the probability

distribution over pose separately into two parts: 3D position s

and 3D rotation θ. The probability distribution over position

is represented by particles, which enables our system to rep-

resent multimodal distributions for position. The probability

distribution over rotation angles is represented as a Gaussian

distribution for each particle, conditioned on the current and

previous positions of the particle.

The graphical model in Fig. 1 shows the probabilistic

dependencies of our system. Given the sequence of motion

commands from time 1 to t, denoted u1:t, and the sequence

of observations, z0:t, our goal is to infer the posterior

distribution over the position and angle, p(s0:t,θ|z0:t,u1:t).
We factorize this posterior probability as follows:

p(s0:t,θ|z0:t,u1:t) = p(s0:t|z0:t,u1:t)p(θ|s0:t, z0:t). (1)

This factorization enables us to separately estimate the

posterior distribution over position and angle using a Rao-

Blackwellized particle filter [6], as follows. We first update

the position of each particle using the motion model and

compute the particle’s weight using the measurement model

and the particle’s previous Gaussian distribution over angles.

We then update the particle’s Gaussian estimate of angles by

using extended Kalman filtering (EKF).

In our framework, therefore, each particle maintains a 3D

position estimate st and a 3D Gaussian distribution over

angle, which is represented using the sufficient statistics,

mean µt and covariance Σt. Note that the observation

variable is binary, zt ∈ {1, 0}, where zt = 1 if at time t the

peg has a contact with the object at position st, and zt = 0
otherwise. However, since we update the state only at the

time instant when the robot senses a contact, zt = 1 at every

time step t. We therefore simplify the notation p(zt = 1)
using the shorthand p(zt) throughout this paper.

The factorization (1) is well-studied for simultaneous lo-

calization and mapping (SLAM) problems in mobile robotics

[7], in which the pose of a mobile robot is estimated using

particle filtering, and each particle’s map is independently

updated using EKF. Our approach to localization in robotic

assembly can be viewed as analogous to SLAM in mobile

2611

robotics, as follows: Our position vector s is analogous to the

pose of a mobile robot, and our angle vector θ is analogous

to the mobile robot’s map of the environment. When RBPF is

applied to the SLAM problem [7], each particle maintains its

own estimate of the map that depends on that particle’s pose

history. Analogously, in our system each particle maintains

its own estimate of (distribution over) angle that depends on

that particle’s position history.

A. Coordinate Transformations

The position of the peg at time t, denoted st, is represented

in a frame of reference that we call the base coordinate

system. The transformation between the robot coordinate

system (the frame of reference of the robot arm) and the

base coordinate system can be selected arbitrarily; here we

assume it is represented by a translation, without rotation.

(Because our base and robot coordinate systems differ by

a pure translation, any motion of the peg is represented by

the same translation in the base coordinate system as in the

robot coordinate system.) There is also an object coordinate

system, which is fixed with respect to the object that contains

the hole. Whereas st represents the peg’s position at time t
in the base coordinate system, we denote the peg’s position

in the object coordinate system at time t as so
t .

The base coordinate system and the object coordinate

system are related by a 3D rotation of θ about the initial

position of the peg, s0, as illustrated in Figure 2. Thus, the

initial position of the peg is the same in both the base and

object coordinate systems: s0 = so
0. In our setup, θ is the

unknown relative rotation between the robot and the object.

B. Motion Model

At each time step, the robot arm moves the peg from one

contact position (one point of contact between the peg and

the object) to another. The position of the peg in the robot

coordinate system is obtained from the robot arm’s internal

encoders. As we described above, the translation of the peg

from time t−1 to time t, which we denote ut, is identical in

the robot coordinate system and the base coordinate system.

The motion of the peg in the base coordinate system, from

st−1 to st, is therefore given by

st = st−1 + ut + ǫt, ǫt ∼ N
(

0,

(
σ2

x 0 0
0 σ2

y 0
0 0 σ2

z

)
)

, (2)

where N (µ,Σ) represents the multivariate normal distribu-

tion with mean µ and covariance matrix Σ.

In our experiments, we used σx = σy = σz = 0.1 mm.

Since our robot arm has accurate control, the motion error is

in reality much smaller even than this small amount of noise

that we assume. We nonetheless include this small noise

term in our motion model to reduce the particle deprivation

(particle impoverishment) problem. That is, none of the

particles will have an exactly correct (perfect) estimate of the

initial contact position s0, and including a small noise term

in the motion model enables the particle filter to compensate

for this inaccuracy over time.

To determine so
t , the position of the peg at time t in the

object coordinate system, we compute a rotation matrix R

Motion

Object coordinate system Base coordinate system

Estimated pose
of mesh model
at t = 0 (= 0)

Estimated pose
of mesh model
at t = 1

s
0

s
1

x

xo

0o

zo

0

z

u
1

Fig. 2. Visualization of the base and object coordinate systems and
of updates to position and angle estimates. The surface of the object is
represented by gray dashed lines (in the base coordinates system) or by red
lines (in the object coordinate system). The position of the peg at time t,
denoted st, is defined in the base coordinate system. The object coordinate
system (red axes) is rotated with respect to the base coordinate system
(black axes) by the angle θ about the initial position of the peg, s0. The
mesh model representation (and the measurement probability computation)
resides in the object coordinate system. At time t = 0, each particle’s
estimate of the relative angle θ between robot and object coordinates is a
Gaussian distribution with mean 0 (this value θ = 0 corresponds to the
object and base coordinate systems being identical). At time t = 1, the
particle’s estimate of θ is updated, causing a corresponding rotation of the
its estimate of the pose of the mesh model (i.e., a rotation of the particle’s
estimate of the object coordinate frame).

using the angle θ = (α, β, γ)T, as follows:

R(θ) =

cγcβ cγsβsα − sγcα cγsβcα + sγsα

sγcβ sγsβsα + cγcα sγsβcα − cγsα

−sβ cβsα cβcα

 , (3)

where sα and cα are shorthand for sin α and cos α, respec-

tively. According to the definition of our coordinate systems,

the peg’s position in object coordinates is given by

so
t = R(θ)(st − s0) + s0. (4)

Since the contact position in the robot coordinate system

does not depend on the angle of the peg, our motion

model (2) only includes 3D translation. Hence, in our experi-

ments we held the angle of the peg fixed (to the −z direction)

in the robot coordinate system. Our inference algorithm

nonetheless performs full 6-DOF localization, because the

peg’s position in the object coordinate system depends not

only on the 3D translation (motion control signal) but also

on the 3D rotation angle θ.

C. Map Representation and Measurement Model

We use as the map of the object a mesh model consisting

of vertices, edges, and triangular faces, all of which we define

as features in the model. The mesh model can be generated

from a CAD model of the object. To deal with measurement

errors as well as differences between the CAD model and

the actual object, we model measurement uncertainty using

a Gaussian probability density function (pdf) of the distance

between the contact position and the features of the mesh

model. For each feature (face, edge, or vertex) fk, where

k = {1, . . . ,K}, the standard deviation of that feature’s

measurement uncertainty is denoted σk, as shown in Fig. 3.

The motivation behind this representation of map uncer-

tainty is that different features can exhibit different types

2612

s
 o
a

f1

f1 , f3 , f5: vertex or edge

f2 , f4: edge or face

σ1 f2

σ2
f3

σ3

f4

σ4

f5

σ5

Contact position s
 o
bContact position

Mesh
model

Equiprobability
contour

Fig. 3. Our map representation. We define every face, edge, and vertex
in the mesh model as a feature fk , which has uncertainty σk . For a given
contact position in object coordinates, so, the contact feature is defined as
the feature fk whose distance to the contact position, normalized by σk , is
smallest. (For example, f2 and f3 are the contact features for peg positions
so

a and so
b , respectively). Measurement probability is defined as a Gaussian

function (with standard deviation σk) of the distance from the contact point
to the contact feature fk .

of measurement errors. As evidenced in the video that

accompanies this paper, in our experiments the peg is more

likely to slip or bend when it contacts faces that are steeply

slanted (faces that form a small angle with the probing

direction of the peg). For this reason, when generating the

map from a CAD model, we evaluate the normals of each

face and assign a larger uncertainty (a larger value of σk)

to faces fk for which the probing direction forms a small

angle with the plane of the face (according to the mean of

the initial distribution over angle, which in our experiments

was θ = 0). Another typical source of error is differences

between the CAD model and the actual object. For instance,

when the CAD model dictates that adjacent faces meet at a

sharp angle, these corners where the faces meet may in fact

be rounded due to limits of the manufacturing process. For

this reason, we assign larger uncertainty to edges and vertices

at the intersection of planes whose normals form large angles

with each other. (More precisely, we compute the maximum

angle between the normals of all possible pairs of the faces

that border each edge/vertex, and assign larger uncertainty

to those edges/vertices that have larger angles.)

Note that our mesh model does not require the use of

the particular heuristics described above. It only requires

that some uncertainty value be assigned to every feature.

This enables users to incorporate knowledge of their partic-

ular industrial settings or manufacturing processes into the

uncertainty maps. In fact, there is no requirement that the

uncertainty model be Gaussian. It could be defined by any

of a wide range of probability fields or energy functions.

In our implementation, the measurement probability is

computed based on the distance between the mesh model

and the peg’s position in object coordinates, so, as well

as the measurement uncertainty of the contact feature. The

distance from the peg’s position to each feature fk is denoted

d(so, fk), where the function d computes the Euclidean dis-

tance between the position so and feature fk. (Note that the

distance to a face or edge is only defined if the perpendicular

projection of the point to the corresponding plane or line

lies within that face or edge.) We compute the distance to

the peg’s contact location from all features and select as the

contact feature the one whose distance, normalized by the

corresponding standard deviation, is smallest. The index of

the contact feature, kc, is therefore given by

kc = arg min
k

d(so, fk)

σk
. (5)

Since the peg’s position in object coordinates, so, is

computed from s (the peg’s position in base coordinates)

and θ (the angle between base coordinates and object coor-

dinates) using (4), the distance measure h can be expressed

equivalently in either object coordinates (as a function of so)

or in base coordinates (as a function of s and θ):

hkc
(s,θ) = d(so, fkc

). (6)

Our measurement probability at time t is computed using this

distance measure and the uncertainty of the mesh model:

p(zt|st,θ) = N (hkc
(st,θ); 0, σ2

kc
). (7)

D. Inference Algorithm

As described at the beginning of Section II, our inference

algorithm capitalizes on factorization (1) of the posterior

probability by using an RBPF [6] to infer the relative pose of

the peg and the object. We estimate the 3D position of the peg

at time t in base coordinates, st, using particles, where each

particle represents a single discrete position estimate. Each

particle also maintains a Gaussian probability distribution

over the 3D rotation, θ, from base coordinates to object

coordinates (the relative rotation between the peg and object).

Each time the peg is moved to a new contact position, our

inference algorithm incorporates the new observation by first

updating each particle’s estimate of the peg position using

the motion model. We then update each particle’s distribution

over angle, given that particle’s position, using an EKF.

At time t, each particle j maintains a 3D point estimate,

s
[j]
t , of the position of the peg at time t, as well as a normal

distribution over angle, p(θ) = N
(
θ;µ

[j]
t ,Σ

[j]
t

)
.

1) Initialization: We initially sample J particles from a

uniform distribution over the position (x, y) in base coor-

dinates, bounded by the maximum initial (x, y) uncertainty

(which in our experiments is 30 mm square, as illustrated

in Fig. 5(a)). The initial value of z for each particle j is

determined from that particle’s (x, y) values such that the

particle position s
[j]
0 = (x, y, z) is set on the surface of the

map (of the mesh model). Note that the initial position s
[j]
0

is also used as the center of rotation for particle j, which

is constant across all time steps. Every particle’s Gaussian

distribution over the 3D angle θ is initialized with mean

µ
[j]
0 = 0 and a diagonal covariance matrix Σ

[j]
0 representing

the initial angular uncertainty (in our experiments, we as-

sumed an initial Gaussian uncertainty with standard deviation

10◦ about each rotation axis).

2) Particle Update at Each Time Step: When the robot

arm moves the peg from one contact position to the next,

we update the state of each particle j = {1, . . . , J} based on

the motion ut in base coordinates (obtained from the robot

arm encoders) and the observation zt that the robot detects a

contact at that position. For the RBPF update, we use similar

2613

techniques to those used in FastSLAM [7], [8]. Algorithm 1

gives a pseudocode summary of the update algorithm at

each time step, which is detailed below. In Algorithm 1, Xt

represents the collection of particles at time t.
Figure 2 illustrates the particle update from t = 0 to

t = 1. Every particle’s probability distribution over angle

is initialized with mean µ
[j]
0 = 0. At this mean value of

θ = 0, the base coordinate system and the object coordinate

system would be identical, which corresponds to the estimate

of the mesh model at t = 0 shown in Fig. 2. After a new

observation at time t = 1, the particle’s estimate of position

is updated from s
[j]
0 to s

[j]
1 , according to the control signal

u1 and the motion model, as described below in (8). Based

on the particle’s new position, the particle’s estimate of θ is

updated to a new distribution. The particle’s representation

of the object coordinate system (and hence the mesh model)

at t = 1 will be rotated about the point s
[j]
0 by the angle

θ with respect to the base coordinate system, as indicated

in Fig. 2. For illustration purposes, the figure shows a single

value of the angle θ at each time step, but in fact each particle

maintains (and updates) an entire Gaussian distribution over

the angle θ, as described below.

a) Position Update: The position s
[j]
t of particle j at

time t is sampled from the proposal distribution given by the

motion model (2), the particle’s previous position s
[j]
t−1, and

the control ut:

s
[j]
t ∼ p

(
st

∣
∣s

[j]
t−1,ut

)
. (8)

b) Angle Update: Based on each particle’s updated

position (in base coordinates), s
[j]
t , and the observation zt

that there was a contact between the peg and the object, we

compute the particle’s posterior distribution over the angle θ

using an EKF update. To do so, we express the measurement

probability as a function of θ and linearize that measurement

probability about θ = µ
[j]
t−1, the mean of the particle’s

previous estimate of the angular distribution.

We first use the value θ = µ
[j]
t−1 in (4) to compute the

predicted particle position in the object coordinate system,

ŝ
o[j]
t :

ŝ
o[j]
t = R

(
µ

[j]
t−1

)(
s
[j]
t − s

[j]
0

)
+ s

[j]
0 . (9)

We then use (5) to determine the index of the contact feature,

kc, based on this predicted particle position.

We use the measurement probability (7) defined with

respect to the contact feature, fkc
, to update the posterior

probability over angle, which is the second factor of (1).

This posterior further factorizes as

p(θ|s0:t, z0:t) ∝ p(zt|θ, s0:t, z0:t−1) p(θ|s0:t, z0:t−1)

= p(zt|st,θ)
︸ ︷︷ ︸

N

(
hkc (s

[j]
t ,θ);0,σ2

kc

)

p(θ|s0:t−1, z0:t−1)
︸ ︷︷ ︸

N

(
θ;µ

[j]
t−1,Σ

[j]
t−1

)

. (10)

The second factor in (10), the previous posterior

p(θ|s0:t−1, z0:t−1), is represented by a Gaussian with

mean µ
[j]
t−1 and covariance Σ

[j]
t−1, but the first factor

in (10) is not a Gaussian distribution over θ since the

distance measure (6) is not linear in θ. Nonetheless, we

can use (10) to approximate the posterior probability of

the angle estimate as a Gaussian distribution. This update

is performed using EKF by linearizing the measurement

function about θ = µ
[j]
t−1:

hkc

(
s
[j]
t ,θ

)
≈ hkc

(
s
[j]
t ,µ

[j]
t−1

)
+

∂hkc

∂θ

(
s
[j]
t ,µ

[j]
t−1

)(
θ − µ

[j]
t−1

)

= ĥ
[j]
kc,t + H

[j]
t

(
θ − µ

[j]
t−1

)
, (11)

where ĥ
[j]
kc,t = d

(
ŝ

o[j]
t , fkc

)
is the distance measure com-

puted at the predicted position ŝ
o[j]
t , and H

[j]
t is Jacobian

of the distance measure with respect to θ computed at the

predicted position and angle:

H
[j]
t =

(
∂hkc

∂α
,
∂hkc

∂β
,
∂hkc

∂γ

)∣
∣
∣
∣(

s,θ
)
=
(
s
[j]
t , µ

[j]
t−1

) . (12)

The particle’s posterior distribution over angle is then com-

puted using the standard EKF measurement update rule:

K
[j]
t = Σ

[j]
t−1H

[j]
t

T(
H

[j]
t Σ

[j]
t−1H

[j]
t

T
+ σ2

kc

)−1
(13)

µ
[j]
t = µ

[j]
t−1 − K

[j]
t ĥ

[j]
kc,t (14)

Σ
[j]
t =

(
I − K

[j]
t H

[j]
t

)
Σ

[j]
t−1 (15)

c) Importance Weight Update and Resampling: Since

we use the motion model (8) as the proposal distribution,

the importance weight for each particle, w
[j]
t , is computed by

marginalizing the measurement probability over the particle’s

previous angle estimate:

w
[j]
t ∝ w

[j]
t−1 · p

(
zt

∣
∣s

[j]
t

)

= w
[j]
t−1

∫

p
(
zt

∣
∣s

[j]
t ,θ

)
p
(
θ
∣
∣s

[j]
t

)
dθ

= w
[j]
t−1

∫

p
(
zt

∣
∣s

[j]
t ,θ

)

︸ ︷︷ ︸

N

(
hkc (s

[j]
t ,θ);0,σ2

kc

)

p
(
θ
∣
∣s

[j]
0:t−1, z0:t−1

)

︸ ︷︷ ︸

N

(
θ;µ

[j]
t−1,Σ

[j]
t−1

)

dθ. (16)

The final integration in (16) is computed in closed form by

using the same linear approximation that we used for the

angle update, as follows [7]:

w
[j]
t ∝ w

[j]
t−1 ·

(
2πq

[j]
t

)−1/2
exp
(

−
(
ĥ

[j]
kc,t

)2/
2q

[j]
t

)

, (17)

q
[j]
t = H

[j]
t Σ

[j]
t−1H

[j]
t

T
+ σ2

kc
. (18)

To maintain good particle diversity, at each time step we

estimate the effective number of particles [9]:

Jeff =
1

∑J
j=1

(
w

[j]
t

)2 . (19)

If Jeff < J/2, we perform resampling. Particles are resam-

pled with probability proportional to their weights w
[j]
t ; after

resampling, all particle weights are reset to w
[j]
t = 1/J .

Otherwise (Jeff ≥ J/2), we do not resample, and all particles

keep the current weights that were computed using (17).

Since our inference starts at t = 0 with global uncertainty,

we initially use a relatively large number of particles. After

several measurements, however, the number of particles

required for localization decreases. We therefore reduce the

total number of particles at each resampling step (whenever

Jeff < J/2), until the number of particles reaches a prede-

fined number, Jmin. Specifically, if the number of particles

2614

Algorithm 1 Particle update algorithm

Particle Update (Xt−1, ut, zt)
Xt = ∅ (the empty set)
for j = 1 to J do

retrieve
˙

s
[j]
0 , s

[j]
t−1, µ

[j]
t−1,Σ

[j]
t−1, w

[j]
t−1

¸

from Xt−1

// Update position

s
[j]
t ∼ p

`

st

˛

˛s
[j]
t−1, ut

´

// Find contact feature with maximum likelihood

ŝ
o[j]
t = R

`

µ
[j]
t−1

´`

s
[j]
t − s

[j]
0

´

+ s
[j]
0

for k = 1 to K do
ĥ

[j]
k,t = d

`

ŝ
o[j]
t , fk

´

end for
kc = arg mink ĥ

[j]
k,t

‹

σk

// Update angle and importance weight

H
[j]
t =

∂hkc

∂θ

`

s
[j]
t , µ

[j]
t−1

´

q
[j]
t = H

[j]
t Σ

[j]
t−1H

[j]
t

T
+ σ2

kc

K
[j]
t = Σ

[j]
t−1H

[j]
t

T‹

q
[j]
t

µ
[j]
t = µ

[j]
t−1 − K

[j]
t ĥ

[j]
kc,t

Σ
[j]
t =

`

I − K
[j]
t H

[j]
t

´

Σ
[j]
t−1

w
[j]
t = w

[j]
t−1 ·

`

2πq
[j]
t

´

−1/2
exp

`

−
`

ĥ
[j]
kc,t

´2‹

2q
[j]
t

´

add
˙

s
[j]
0,t, µ

[j]
t ,Σ

[j]
t , w

[j]
t

¸

to Xt

end for
normalize w

[j]
t such that

P

j w
[j]
t = 1

// Resampling

Jeff = 1
‹

P

j

`

w
[j]
t

´2

if Jeff < J/2 then
if J > Jmin then J = J/2 end if

Xt = resample J particles from Xt with probabilities w
[j]
t

reset importance weights to w
[j]
t = 1/J

end if

J is greater than Jmin at a resampling step, then we set

J = J/2 (i.e., only the half number of particles is resampled

from the current particle set). In future work, we may instead

use more efficient strategies, such as KLD-sampling [10], to

reduce the number of particles over time.

3) Convergence Check: For checking convergence, we

compute the weighted average and weighted covariance of

the particle positions in the object coordinate system:

s̄o
t =

∑J
j=1 w

[j]
t s

o[j]
t (20)

Ψ
o
t =

∑J
j=1 w

[j]
t (s

o[j]
t − s̄o

t)(s
o[j]
t − s̄o

t)
T

1 −
∑J

j=1

(
w

[j]
t

)2 , (21)

where s
o[j]
t is computed using (4) with the mean of each

particle’s posterior distribution over angle at time t:

s
o[j]
t = R

(
µ

[j]
t

)(
s
[j]
t − s

[j]
0

)
+ s

[j]
0 . (22)

We continue to probe the object with the peg (continue to

collect observations for additional time steps) until the trace

of the covariance matrix Ψ
o
t is less than some predetermined

threshold (indicating that uncertainty among particle posi-

tions is small). Once this convergence condition is achieved,

the peg is moved to the estimated position and angle of the

hole. The estimated position of the hole is computed based

on the weighted average of all particle positions, s̄o
t . The

(a) (b)

Fig. 4. Mesh models of: (a) the object with the hole pictured in Fig. 7(a),
and (b) a randomly generated map. Model (a) spans 75 mm in each
horizontal direction, with a 5 mm height difference between the uppermost
and lowermost points on the surface. The random model (b) was generated
by selecting z values uniformly from [0, 5] mm on a regular (x, y) grid,
with interval 5 mm and total horizontal dimensions of 70 mm square.

estimated angle of the hole is computed based on a weighted

average of particle angles, µ̄t, which we compute using a

subset of particles (those with the largest weights, since we

found that in practice, the particles with small weights can

have very different angle estimates).

III. EXPERIMENTS

In this section, we first show simulation results to compare

our RBPF approach to standard particle filtering, which is

the basis for previous methods [3], [4], [5]. The results

demonstrate that for the 6-DOF localization problem, our

system is orders of magnitude more efficient than previous

approaches. We then describe physical experiments using a

robot arm to insert a needle-like peg into a small hole in a

metal object. The video that accompanies this paper shows

an example sequence of localization and peg insertion using

the robot arm.

A. Simulations

We used two different mesh models, shown in Fig. 4, to

test our localization algorithm in simulations. The first mesh

model, shown in Fig. 4(a), was generated from the CAD

model of the actual physical object that we used for the

robot experiments. The second, much more complex mesh

model was the random surface shown in Fig. 4(b). In our

simulations with the first mesh model, the goal of localization

was to determine the pose (position and orientation) of the

central hole. With the second model (random surface), the

goal was to find the position and orientation of the center of

the surface (the origin of the object coordinate system).

In each simulation trial, the (ground truth) initial position

of the peg was randomly chosen from a uniform distribution

30 mm square (from [−15, 15] mm in the x and y directions,

with z coordinate given by the surface of the object), and the

(ground truth) rotation angle between peg and object was

randomly chosen from a uniform distribution from [−10, 10]
degrees about each axis. As described in Section II-D.1, par-

ticles were initialized with positions sampled from, and angle

distributions covering, these same uncertainty regions. Each

contact measurement was obtained by randomly moving the

peg to a new horizontal position within a [−15, 15] mm range

of the peg’s initial position, then moving the peg in the −z
direction (in base coordinates) until contacting the surface.

Figure 5 shows the distribution of particles at different time

steps of one simulation trial.

2615

(a) t = 0 (c) t = 4 (d) t = 7 (converged) (e) Final insertion(b) t = 2

Fig. 5. Distribution of particles at each time step of one simulation trial. Each particle is represented by a red line, indicating the particle’s estimate
of the peg position and the mean of the particle’s distribution over the peg angle, both represented in the object coordinate system. At each time step,
the white arrow indicates the ground-truth position of the peg. For the initialization (step 0), shown in (a), particle positions are sampled from the initial
(30 mm × 30 mm) uncertainty region of (x, y), and particle angle distributions all have zero mean. The distribution of particles after update steps 2, 4,
and 7 are shown in (b), (c), and (d), respectively. Once the algorithm determines convergence (d), it moves the peg to the inferred pose (position and angle)
of the hole (e) based on a weighted mean across particles of the estimated pose.

Number of particles

RBPF

PF

P
o
si

ti
o
n
 e

st
im

at
io

n
 e

rr
o
r

[m
m

]

102

8

6

4

2

0

103 104 105

RBPF PF

A
n
g
le

 e
st

im
at

io
n
 e

rr
o
r

[d
eg

re
es

]

6

4

2

0

Number of particles

102 103 104 105

(a) Results obtained using the object with the hole (b) Results obtained using the random surface

RBPF PF

Number of particles

P
o
si

ti
o
n
 e

st
im

at
io

n
 e

rr
o
r

[m
m

]

102

8

6

4

2

0

103 104 105

RBPF
PF

A
n
g
le

 e
st

im
at

io
n
 e

rr
o
r

[d
eg

re
es

]

6

4

2

0

Number of particles

102 103 104 105

Fig. 6. Comparison of our Rao-Blackwellized particle filter (RBPF) with a standard particle filter (PF), using as the map (a) the object pictured in
Figs. 4(a) and 5, and (b) the random surface pictured in Fig. 4(b). In each part (a) and (b), the position error is shown in the graph on the left as Euclidean
distance (in mm), while the angle error is shown on the right as the absolute angle (in degrees) between the correct peg insertion direction and the estimated
peg insertion direction. The number of particles is shown in a logarithmic scale on the x-axis of each graph. The number of particles required by our
RBPF approach is greatly reduced from the number required by previous PF approaches to this problem, with only a slight increase in the time required
to update each particle.

Figure 6 compares our RBPF approach to a standard

particle filter, which represents all 6-DOF of uncertainty

using particles (corresponding to a 6-DOF version of pre-

vious approaches [3], [4]). For these simulations, we set the

uncertainty in the mesh model (map) to σk = 0.2 mm for all

features k. The performance is indicated in Fig. 6 by the final

estimation error in position and angle. The position error is

the Euclidean distance from the correct position, while the

angle error is the magnitude of the angle between the ground

truth z direction and the estimated z direction (between the

correct and estimated peg insertion angle). Each data point

in the figure represents the average of 100 trials.

Here the standard particle filter (PF) was implemented in

all 6-DOF by estimating both the position and the angle

of a particle using the method we described for position

estimation alone in Section II, so that each particle maintains

a point estimate for angle rather than a Gaussian distribution

over angle. For the standard PF, we included angular noise in

the motion model (2), which corresponds to perturbing each

particle’s angle estimate at every time step of the inference

algorithm, with standard deviation of 0.5◦ about each axis.

As shown in Fig. 6, the standard PF requires a much larger

number of particles (by orders of magnitude) than our RBPF

approach to achieve the same accuracy. This is because our

approach reduces the state space that must be sampled by

particles from 6 down to just 3 dimensions. Furthermore,

the time required per particle for our RBPF approach is only

slightly slower than that required per particle for the standard

PF: The average computation time to update 6400 particles

(with resampling) was 0.95 sec for our RBPF algorithm

versus 0.91 sec for the standard PF, on a 2.66 GHz PC

with unoptimized code. This shows that our method greatly

reduces computational time as compared to the standard PF.

B. Experiments with a Robot Arm

We performed physical experiments using a Mitsubishi

MELFA RV-6SL 6-axis robot arm (see the accompanying

video). As shown in Fig. 7(a), a needle-like peg was attached

to the robot’s end effector along the z-direction in the

robot coordinate system, and the object was placed on an

approximately horizontal table. The diameter of the peg is

2.5 mm, and the hole tapers from 5 mm diameter down to

3mm diameter (over a vertical distance of 3 mm). Insertion

will succeed if the estimation error of the position is within

the clearance range and the angular error is small.

At the start of the experiments, we first measured the

ground truth position of the hole by moving the robot arm

manually. We then started trials by randomly selecting the

initial position of the peg from the [-15, 15] mm range in

(x, y) direction around the hole (just as in simulation). For

each trial, the particle positions are initially sampled from

that same distribution. In our current implementation, the

2616

(a) (b)

A
n
g
le

 e
st

im
at

io
n
 e

rr
o
r

[d
eg

re
es

]

Position estimation error [mm]

0

0

0.5

0.5

1

1

1.5

1.5

2

2

2.5

2.5

3

(c)

(d)

y
es

ti
m

at
io

n
 e

rr
o
r

[m
m

]

x estimation error [mm]

0 1-1-2

0

-0.4

-0.8

-1.2

-1.6

z
es

ti
m

at
io

n
 e

rr
o
r

[m
m

]

x estimation error [mm]

0 1-1-2

0

-0.4

-0.8

-1.2

Fig. 7. (a) Experimental setup. (b) Error plot of the estimated positions and angles for 50 trials. The measures of position and angle errors are the same
as in Fig. 6. To plot these results, we assume that the correct ground truth direction of insertion is parallel to the z-axis. In (c) and (d), estimation errors
plotted in the (x, y) and (x, z) spaces show that the estimation is biased (especially in z direction) mainly because of a slight bending of the peg.

robot arm lifts the peg in the positive z-direction from its

previous contact position, moves the peg to randomly chosen

(x, y) coordinates (as in the simulation), then lowers the

peg in the negative z direction until contact is detected. We

used the robot arm’s built-in impact detection function to

detect contact, obtaining the contact position from the robot

arm encoders. For these physical experiments, we assigned

different measurement uncertainties to each feature of the

mesh model, using the heuristics described in Section II-C.

We used 6400 particles in our RBPF algorithm.

Figure 7(b) plots the error of the final estimated positions

and angles in each of 50 trials, measured with respect to the

ground truth pose of the hole in robot coordinates. All 50

trials resulted in a correct insertion (as can be seen in the

figure, all the estimated positions were within the clearance

range). Figures 7(c) and (d) detail the 3D position errors,

illustrating a bias due to the fact that the peg we used had

a tendency to bend in a particular direction. The number of

contact measurements needed for convergence ranged from

6 to 15, with an average of 9.8.

IV. CONCLUSION

We have presented a factorization approach for localiza-

tion in robotic assembly. Using Rao-Blackwellized particle

filtering, we separate pose estimation into a particle-based es-

timator (which can easily represent multimodal distributions)

for position, and a (unimodal) Gaussian estimator for angle

conditioned on the particle position. This representation

makes 6-DOF localization in peg-in-hole problems tractable

by greatly reducing the number of particles required, result-

ing in a similar reduction in computational time.

We have also described a novel map representation to

explicitly model the uncertainty of each feature in the

mesh, without the need for a dense memory-intensive map

representation. The explicit incorporation of uncertainty into

our mesh model enables us to perform localization using a

map that was directly obtained from a CAD model, without

the need for a time-consuming preprocessing step (such as

probing at every possible location).

As evidenced by both simulated and physical experimental

results, our algorithm benefits from its sequential estimation

approach, which makes it possible to efficiently solve the

localization problem using a small number of measurements.

In addition, the computational complexity of each sequential

update is constant, independent of the total number of

measurements. One limitation of our current approach is

that we randomly select each probing position. In future

work, we will modify the system to choose the next probing

position based on the system’s current estimate of the pos-

terior distribution over pose, which will make the sequential

estimation approach even more powerful. In addition, we

plan to generalize our approach to peg-in-hole problems with

more complex geometries.

REFERENCES

[1] W. S. Newman, M. S. Branicky, H. A. Podgurski, S. Chhatpar,
L. Huang, J. Swaminathan, and H. Zhang, “Force-responsive robotic
assembly of transmission components,” in Proc. IEEE Int. Conf.

Robotics Automation (ICRA), vol. 3, May 1999, pp. 2096–2102.
[2] S. R. Chhatpar and M. S. Branicky, “Search strategies for peg-in-hole

assemblies with position uncertainty,” in Proc. IEEE/RSJ Int. Conf.

Intelligent Robots Systems (IROS), vol. 3, Oct. 2001, pp. 1465–1470.
[3] ——, “Localization for robotic assemblies using probing and particle

filtering,” in Proc. IEEE/ASME Int. Conf. Advanced Intelligent Mecha-

tronics (AIM), July 2005, pp. 1379–1384.
[4] ——, “Particle filtering for localization in robotic assemblies with

position uncertainty,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots

Systems (IROS), Aug. 2005, pp. 3610–3617.
[5] U. Thomas, S. Molkenstruck, R. Iser, and F. M. Wahl, “Multi sensor

fusion in robot assembly using particle filters,” in Proc. IEEE Int.

Conf. Robotics Automation (ICRA), Apr. 2007, pp. 3837–3843.
[6] A. Doucet, N. de Freitas, K. P. Murphy, and S. J. Russell, “Rao-

Blackwellised particle filtering for dynamic Bayesian networks,” in
Proc. 16th Conf. Uncertainty in Artificial Intelligence, June 2000, pp.
176–183.

[7] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
Press, 2006, ch. 13.

[8] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM:
A factored solution to the simultaneous localization and mapping
problem,” in Proc. AAAI National Conf. Artificial Intelligence, 2002.

[9] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo
sampling methods for Bayesian filtering,” Statistics and Computing,
vol. 10, no. 3, pp. 197–208, July 2000.

[10] D. Fox, “Adapting the sample size in particle filters through KLD-
sampling,” Int. J. Robotics Research, vol. 22, no. 12, pp. 985–1003,
Dec. 2003.

2617

