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Abstract— This paper presents a novel line matching method
based on the intersection context of coplanar line pairs espe-
cially working in poorly textured indoor scenes. To overcome
the matching ambiguity of single line segments, intersecting line
pairs in 2D images are utilized for line matching. Coplanarity of
the intersecting line pairs and their corresponding intersection
context discriminate true intersecting line pairs from false inter-
secting ones in 3D world. Compared to previous approaches,
the proposed method can match line segments and estimate
camera geometry simultaneously not knowing camera geometry
in advance or not considering topological relations of all line
segments. Comparison studies and experimental results prove
the accuracy and speed of the proposed method in real world
situations.

I. INTRODUCTION

3D scene modeling is an active and important research
field in computer vision and graphics, with applications
including in TV/film production, augmented reality, robotics,
navigation, and surveillance systems. In scene modeling, the
detection and matching of image features is the first crucial
step because given feature correspondence among multiple
views 3D scenes are reconstructed by triangulation-based
formulations [1], [2].

Most scene modeling techniques have been developed
assuming interest points [3], e.g., corners, are detected and
matched using the photometric characteristics and invariance
such as color, shape, and textile of richly textured regions,
and they can only applied to well-structured and richly
textured scenes, which contains texture information to be
used for feature extraction and matching. However, in real
world situations, scenes are sometimes unstructured and even
contain poorly textured environments and objects, including
tables, desks, chairs, sinks, refrigerators, microwave ovens,
monotone walls, and hallways.

In those cases, interest points are hardly detected and
poorly localized because of lack of texture information
[4]. Therefore, line features are good candidates as image
features because man-made objects are mostly constructed
and modeled by 3D lines, and in poorly textured indoor
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scenes, 2D lines can be the only image feature sometimes to
be utilized for automatic 3D modeling [1], [5], [6], [2].

While lines are robustly detected and localized under
environmental change, they are difficult to match because
of lack of photometric invariance to be used for measuring
similarity. Conventionally, most of line matching methods
have been studied based on the assumption of known camera
geometry, i.e.,the geometric relationship among multiple
views. Given the known camera geometry, which is estimated
from interest point matches or is calibrated using calibration
pattern beforehand, the matching candidates are constrained
on the epipolar lines. So the matching problem converted
into the matching problem between the points on the lines.

Schmid and Zisserman [7] automatically matched line
segments by exploiting the intensity neighborhood of the line
segments, guided by the epipolar constraints between differ-
ent camera views, to provide point-to-point correspondences
along the line segments. Resolving the resulting ambiguity,
Werner and Zisserman [8] improved the previous algorithm
by a ’line sweep’, or search to register the photometric
neighborhood. Those approaches presume that accurate cam-
era geometry should be estimated beforehand. When those
methods are applied to poorly textured scenes, the detection
of interest point is not easy and camera geometry estima-
tion is inaccurate, resulting the failure of the algorithms.
Therefore, the need exists for an automatic line matching
algorithm without predetermined camera geometry, possibly
estimating camera geometry and matching line segments
simultaneously.

Recently, several reported investigations pioneered
methodologies for matching line segments without assumed
camera geometry in unstructured real world situations. Bay
et al. [9] proposed a line matching algorithm targeting
poorly textured scenes. First, an initial set of line segment
correspondences are obtained by comparing the histograms
of the neighboring color profiles in both views. Then a
topological filter is applied to find correct line matches
while removing wrong candidate matches for the initial
matches. Kim et al. [10] introduced a spectral line matching
algorithm to find the subset of correspondences with
the greatest consistency, which are learned using logistic
classifiers. Those approaches require heavy computation via
topological relation analysis or a learning stage. Besides,
the photometric information for only single line segments is
not discriminative enough to match line segments.

Another group of researchers has utilized junction features
for line matching. Vincent and Laganière [11] matched
junctions by estimating the local perspective distortion be-
tween the neighborhoods of junctions, then estimated the
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fundamental matrix based on a constrained minimization,
assuming crude camera pose estimates. Bay et al. [12]
identified polyhedral junctions resulting from the intersec-
tions of the line segments, then segmented the images into
planar polygons using an algorithm based on a binary space
partitioning tree. However, junction-based approaches are
only applied to well-structured scenes, where lines and the
junctions are robustly extracted. Such scenes are limited to
houses built by brick or tiles, well-structured indoor aisles,
and well-edged furniture.

To address the challenge of line matching in poorly
textured scenes, we used the intersection context of line
features by combining the geometrical invariance of 3D line
intersection with the photometric invariance of the projected
2D line intersection. Instead of matching single line segments
individually, we matched a pair of line segments coplanar
in 3D. The coplanarity of the intersecting line pairs and
their corresponding intersection context discriminate true
intersecting line pairs from false intersecting ones in 3D
world.

The novelties of the proposed method are three-fold. (1)
First, in feature extraction, the intersection of line pairs is
newly modeled as an image feature, which has a favorable
localization property and captures geometrically meaning-
ful structures with fair photometric invariance, for instance
corners and junctions of furniture or electronic appliances
(Sec. II). (2) Second, the feature matching stage performs
camera geometry estimation and line matching simultane-
ously without predetermined camera geometry, so that the
error of camera geometry estimation is not propagated into
the consecutive line matching step (Sec. III). In addition, in
many real world situations, the camera calibration cannot be
easily applied, so the camera geometry should be estimated.
They include the situations when only the monocular camera
is available or allowed due to hardware constraints or cost,
when the camera zooms in/out to focus on the interested
objects/scenes, and when the camera rigs themselves rotate
and translate on the mechanical platform to actively monitor
the environments. (3) Last, a practical and fast solution is
presented when camera geometry is given. Compared to the
previous approaches based on single line feature invariance
and topology, the computational speed of the line matching
method is much faster, and the chance of miss-matching is
lower (Sec. IV).

In Sections II and III, feature extraction and matching
techniques are described, respectively. Section IV introduces
a fast and simplified version for the rectified stereo images,
and Section V presents the comparison studies and experi-
mental results in real world scenes including line-based scene
modeling. Finally, Section VI concludes with a discussion of
the performance of the line matching method reported herein
and future investigation.

II. FEATURE EXTRACTION

To solve the line matching problem, coplanar line pairs
are considered as matching features instead of single line
segments. Two line segments can produce more constraints

for matching by combining the individual similarity, but the
simple combination of the similarity of two line segments
does not improve the matching result much. The geometric
relation and photometric invariance of coplanar line pairs
warrant investigation.

For line pairs or groups of lines, special 3D geometric
relations can be observed and measured in 2D image space:
parallelism, orthogonality, and coplanarity. The first two, par-
allelism and orthogonality, are strong geometric constraints.
The 2D projections of 3D parallel lines meet a vanishing
point, and the set of the parallel lines with different directions
are projected into images while constructing a vanishing line
[2]. However, accurate and automatic computation of those
features are not easy because the accuracy of the extracted
line is limited by line quantization. The latter, coplanarity, is
a rather weaker constraint, compared to the first two prop-
erties, but can be determined easily among line pairs and/or
groups. A coplanar line group can be determined based on
the inter-image homography between different views [12].
However, doing so without information about the cameras
and/or structures can be difficult because homography alone
is not only enough to discriminate coplanar lines pairs from
non-coplanar line pairs accurately, and measuring coplanarity
for all four line groups is also computationally expensive.

In this paper, aside from inter-image homography, copla-
narity of intersecting line pairs is investigated. First, when
two lines are coplanar in 3D, the projected 2D lines are
also coplanar. Moreover, when the intersection of a 3D
coplanar line pair is projected into 2D images, the projected
intersection is also the intersection of the 2D line pairs that
are projected from the 3D coplanar line pair. Therefore,
the intersection of the coplanar line pair is geometrically
invariant under perspective projection. That is, the geometric
relationship among coplanar line pairs and their intersection
are preserved among different views under perspective pro-
jection. However, determining coplanar line pairs from 2D
line pairs still remains a problem. Any line pair in a 2D
image can be either coplanar or non-coplanar. The lines of
a coplanar line pair meet in 3D, but those of a non-coplanar
pair do not. To discriminate a coplanar line pair from a non-
coplanar line pair, the intersection of the lines of the pair is
further considered in the following sections.

A. Determining Intersecting Line Pairs

The proposed algorithm begins with the extraction of line
segments from each image using a Canny edge detector with
hysteresis, followed by edge linking, with the linked edges
fitted to the line segments. The extracted line segments in
an image are represented by {l1, · · · , lk1}, where k1 denotes
the number of extracted line segments. Note that better line
detectors may improve the performance of the proposed
algorithm [13] in the cost of extra computation.

Due to noise and occlusion, the line segments intersecting
in 3D do not explicitly meet in 2D images. Thus, to find
candidates for intersecting line pairs, their end points of line
segments are extended virtually. A proximity rule is used to
prevent non-existing intersecting lines in 3D.
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Given a line segment li,, a line segment l j is considered
as an intersecting pair when at least one of the extended end
points are within a specific threshold dth. Formally, given the
index set Π(: N 7→N2) of intersecting line pairs of the image,
represented by π(k) = (i, j), such that d(li, l j) < dth, where
d(li, l j) denotes the distance between line segments li, l j, the
intersecting line pairs determined by the proximity rule are
represented by Lpair = {{lπ(k)1 , lπ(k)2},(π(k)1,π(k)2) ∈Π},
where k = 1, · · · ,# of Π.

B. Line Intersection Context Feature (LICF)

Now, a new image feature is defined based on the can-
didates of intersecting line pairs. In each line pair, the
intersection context of the line pair is utilized as an image
feature. The intersection context includes the intersecting
position and the local texture region center at the position.
The feature is called the ”Line Intersection Context Feature
(LICF)” in this paper. The newly defined feature contains
geometric information, as well as photometric information.
The former is the positional information of intersection com-
puted from a line pair, and the latter is the region information
of the local image patch centered at the intersection position.
Formally, the LICFs are represented by the intersection
positions and the corresponding region patches in an im-
age, as follows: F ≡ {xk,R(xk)}= {xk,R(xk), lπ(k)1 , lπ(k)2},
where k = 1, · · · ,# of Π. xk denotes the intersection posi-
tions of the corresponding intersecting line pairs Lpair,k(=
{lπ(k)1 , lπ(k)2}), and R(xk) denotes the region patch centered
at the intersection position xk. For convenience, a LICF (Fk)
sometimes refers to only the position (xk) instead of the set
of the position and the neighboring region patch (R(xk)).

Fig. 1: (Left) An example of LICF. The line pair, colored in
magenta and cyan, intersects in the circled position, with an
intersection context bounded by the red box. (Middle) The
zoom-in image of the intersection context. (Right) A model
of LICF.

Figure 1 illustrates the model of the LICF and an exam-
ple. The texture regions around LICFs have weaker texture
characteristics, compared to Harris corners, a typical interest
point features [3], [14]. To compare Harris corners and
LICFs, eigen-analysis of their neighborhoods is performed
[15]. While Harris corners are extracted from corners and
junctions with mainly two large eigenvalues, LICFs include
even plat areas whose intersection are covered by coplanar
line pairs with wide-ranging eigenvalues. In addition, the
interest point feature, e.g. Harris corners, and the LICFs
are complimentary in detection and matching, so that the
unification of both features can produce more informative
image features.

The characteristics of LICFs can be summarized, as
follows: (1) Good localization owing to derivation from
the line pair intersection. (The line fitting is done in sub-
pixels, so the LICFs have sub-pixel accuracies. It means
that we do not need any extra fitting process as the interest
points. In addition, the experiment results showed that its
accuracy compared to Harris corners.) (2) Fair photometric
invariance of the local patch centered at the intersection
position, including junctions, corners, lines, and flat areas.
(The features are 2D projections from 3D surface patches
with photometric information, and the LICFs can be detected
even in poorly textured regions, supported by coplanar line
pairs, and in well-textured regions as the interest points.)
(3) Fast line matching speed because of similarity measure
only in the intersection context instead of all line segment
context. (While the previous methods compare all the points
on line segments [7] or the histogram of line profiles [9],
the proposed method only compares the single intersection
points. Therefore, the proposed method need less computa-
tion compared to the previous approaches.)

III. FEATURE MATCHING

To match the line intersection context features (LICFs)
among different views, feature similarity is defined. In this
stage, the LICFs projected from true 3D points need to
be matched while prohibiting those from false 3D points,
which do not exist in 3D world. While LICFs projected
from true 3D points have a local texture region around the
features with similar photometric properties under projective
distortion among different camera views, ones projected from
false 3D points do not. In this paper, region information
about the intersection context of the LICFs is utilized for
matching. The transformation of the local texture region
among different views can be modeled as 2D projective
transformation with scale, translation, rotation, and shearing
under the assumption of local planarity.

For implementing a region descriptor of LICFs, any local
feature descriptor can be used to measure the texture simi-
larity under perspective distortion and illumination variation.
They include the sum of square difference (SSD), sum
of absolute distance (SAD), normalized cross-correlation
(NCC) [16], color histogram, and scale-invariant feature
transform (SIFT) [17], maximally stable extremal regions
(MSER) [18] etc. Assuming that the perspective distortion
is small in the local area, NCC is sufficient to describe the
local texture invariance, which is known to be fast and robust
despite moderate illumination change and small perspective
distortion. Although NCC is thought to be adequate in the
case of narrow-baseline stereo matching with small scale and
rotation changes in local texture regions, in practice, NCC
has been applied to match moderate wide-baseline stereo
pairs, as demonstrated in Sec. V, owing to the characteristics
of LICFs. In particular, NCC is a good similarity measure
for scene modeling for off-the-shelf stereo cameras or fixed
multiple cameras. However, matching in wide-baseline cam-
era views with large perspective distortion can be achieved
by using the scale and rotation invariant version of NCC [19]
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or by incorporating more advanced local feature descriptors,
such as SIFT and MSER with LICFs, which will be our
future work, especially for general visual recognition.

For matching LICFs using NCC, the same process as with
interest points is adopted [16]. After computing NCC scores
from both images, the most strongly correlated matches
with each other in both images are selected and represented
by M init

x,x′ = {xk,x′k;Lpair,k,L
′
pair,k},k = 1, ...,Kinit , where

{xk,Lpair,k} ∈F and {x′k,L ′
pair,k} ∈F ′ and Kinit denotes

the number of matching LICFs by NCC [16], [19].

A. Matching Refinement

Not surprisingly, after the matching process based on the
NCC, the results contain mismatches because of the limited
discriminative power of the similarity measure; therefore, a
refinement stage is crucial. While conventional line matching
approaches assume known camera geometry, our approach
is to estimate the line matching and camera geometry si-
multaneously by using LICFs. For 2-view, 3-view, and N-
view, the camera geometry is represented up to projective
transformation by fundamental matrix, trifocal tensor, and
camera projection matrices, respectively [20]. In this paper,
the results are shown for the 2-view case. Extension to 3-
view and N-view is also possible in the same framework.

Fig. 2: LICF matching using epipolar constraint and copla-
narity. (Left) Coplanar line pair case. (Right) Non-coplanar
line pair case. C and e (C′ and e′) are the camera projection
center and the epipole of the first (second) camera, respec-
tively.

Figure 2 presents geometric relations of a LICF between
two different views. One is the configuration of a coplanar
line pair, and the other is that of a non-coplanar line pair in
3D. Given two camera views, the relations between cameras
and 3D points/lines are constrained by epipolar geometry in
2D image space, and, based on the epipolar geometry, two
configurations can be discriminated.

Given a coplanar line pair, L1 and L2, the intersection
meets on the 3D point, X, and these lines are located on
the same plane (colored in pink). The projections, x and x′,
of the 3D intersection point into the two different views,
I and I′, are also the intersection points of the projected
line pairs, {l1, l2} and {l′1, l′2}, in 2D image space. Since the
intersection points, x and x′, computed from the projected
line pairs, come from the true 3D point X, they meet the
epipolar constraint. That is, the 2D intersection point x in
the first view is on the epipolar line FT x′, transferred from

the corresponding point x′ in the second view. x′ is also
transferred from x by the epipolar constraint Fx.

On the contrary, non-coplanar paired lines, L1 and L2, do
not intersect in 3D. Lines l1 and l2, projected into the first
view intersect at the point, x, constructing a LICF. Also, for
the second view, the projected lines, l′1 and l′2, intersect at
x′. Since neither LICFs back-projects into a real 3D point,
neither meet the epipolar constraint or exist on the same
epipolar plane. Although the LICFs are matched by NCC in
the initial matching step, the LICFs from non-coplanar line
pairs can be eliminated by testing whether they meet the
epipolar constraints or not.

In the refinement stage, based on LICF correspondences
between two different views, the fundamental matrix is
estimated, and mismatches are removed using RANdom
SAmple Consensus (RANSAC) [20]. The refinement stage
using RANSAC is the same as the conventional ones except
that the algorithm is applied to matching LICFs instead of
matching interest points. To find the fundamental matrix giv-
ing the best matches, the fundamental matrix with maximum
inliers is selected as a solution. The inlier matches LICFs for
which the fitting error is within a user-defined threshold. The
fitting error, given a fundamental matrix, is defined by the
symmetric transfer error:

Etrans(x,x′) =
1

Ntrans

Ntrans

∑
i=1

d(x′i,Fxi)2 +d(xi,FT x′i)
2(1)

where d(x,y) = (yT x)/
√

y2
1 +y2

2, the distance of the point x
from the line y, and Ntrans denotes the number of matching
LICFs identified as inliers. The refined matching LICFs
are represented by M re f ine

x,x′ = {xk,x′k;Lpair,k,L
′
pair,k},k =

1, ...,Kre f ine, where {xk,Lpair,k} ∈ F and {x′k,L ′
pair,k} ∈

F ′, and Kre f ine denotes the number of matching LICFs after
the matching refinement.

B. Line Segment Matching

Given a matching LICF ({xk,x′k;Lpair,k,L
′
pair,k}),

matching between individual line segments ({lπ(k)1 , lπ(k)2}
and {l′

π ′(k)1
, l′

π ′(k)2
}) from the coplanar line pairs

({Lpair,k,L
′
pair,k}) must be resolved. To find the match of

each line segment from the matched line pair, a sophisticated
method based on oriented projective geometry can be used
[21], [20] if the epiploar geometry and the matches of line
pair sets are known. However, in this paper, selecting a line
segment with smaller angle difference between the lines
of a matched pair is sufficient, assuming small rotation
change between views. This assumption is reasonable when
a monocular camera is attached to a mobile platform that
moves on the ground or stereo cameras are verging toward
the same direction to capture depth information of a scene.
Moreover, the method is robust even when the fundamental
matrix estimation is erroneous.

The corresponding line pairs {l1, l2; la, lb} ∈ M re f ine
x,x′

between two camera views are assumed to be given.
For a line segment l1 in the first image, the match-
ing line segments with index k ∈ {a,b} are found from
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the matching line pairs in the second image by select-
ing the line segments with small angle differences us-
ing the following Equation: k = min j{min(|θ1 − θ j|, |π −
θ1 + θ j|)}, j ∈ {a,b}. The final matching lines are repre-
sented, as follows. Ml,l′ = {lmk, lm′k},k = 1, ...,Kmatch, where
{Lpair,k;L ′

pair,k}= {lmk1, lmk2; lm′k1, lm
′
k2} ∈M re f ine

x,x′ denot-
ing Kmatch the number of matching line segments while
satisfying Equation III-B.

IV. SIMPLIFICATION BY KNOWN CAMERA GEOMETRY

Known camera geometry, a simplified and fast algorithm
is further proposed by rectifying the image pairs in advance
[20]. It is suitable for real-time practical applications, such
as robotics or video surveillance. For fixed stereo camera
configurations, such as off-the-shelf stereo cameras and fixed
multiple wide-baseline cameras, accurate camera geometry,
including factors such as epipolar constraints, can be pre-
computed by calibration or manual correspondence, allow-
ing rectified image pairs to be easily produced. When the
rectified image pairs are given, the initial matching and the
refinement matching are merged into one stage because cam-
era geometry estimation cannot be omitted. The simplified
algorithm, developed for the rectified stereo pairs by known
camera geometry, is called ”the simplified version,” compared
to the original proposed algorithm, called ”the full version,”
can be used to perform line matching and camera geometry
estimation at the same time.

The procedure is as follows: First, stereo image pairs
are rectified using known camera geometry; then LICFs are
extracted and matched from line segments. Thanks to the
rectification, a matching LICF can be found on the same scan
line in the other image among the LICFs. Among them, the
LICF match with the highest NCC is selected as a match.
The matching LICFs with high NCC scores are regarded as
non-occluded features, and those with low NCC scores as
occluded.

V. EXPERIMENTAL RESULTS

The proposed method is first compared with the con-
ventional interest-point-based matching method, involving
Harris corners, by evaluating the number of (correct) match-
ing features and the accuracy of the estimated fundamental
matrix by the symmetric transfer error, defined in Equation
1. For fundamental matrix estimation, a RANSAC method
based on the eight-point algorithm is implemented [20].

Test image pairs are from richly textured outdoor scenes
because they include line features and corner features in
the same scene, and they are collected through the Internet
websites [22], [21]. In [22] and [21], narrow-baseline stereo
image pairs and relatively wide-baseline ones are collected,
respectively, as shown in Figure 3.

Overall, the comparison studies prove that the method
proposed herein can match line features correctly, as did
the interest-point-based method, in well-textured regions.
Moreover, the proposed method works better in the poorly
textured regions. More interestingly, correct line matching
is observed even in the scenes and local regions with

large perspective distortion. Apparently, the proposed method
extracts geometrically meaningful structures in those scenes,
resulting in a higher possibility for correct matching despite
quite low NCCs for those regions.

Figure 4 shows the results from the scene ”apt”. Feature
matching results of both Harris corners and LICFs are fairly
correct and accurate while giving reasonable fundamental
matrix estimation results. The difference is that, while Harris
corners are detected and accurately matched more often for
textured regions, such as apartments and white cars, LICFs
occur at the junctions of balconies/bricks of the apartment
and the parking lot lanes. In parking lot lanes, we observe
matching performance under large perspective distortion,
resulting from the close distance between the scene and the
cameras. Looking at the details, a mismatch of LICFs occurs
at # 21 when the repetitive textured LICFs were matched
on the same epipolar lines, resulting in mismatches of the
related individual line segment #24. Note that the end points
of matching line segments are not determined here, and the
equations of line matching need to be compared. The figures
of our experimental results are best viewed in color and with
PDF magnification.

Fig. 4: A comparison study results for the scene ”apt”.
(First row) Images from the first view. (Second row) Images
from the second view. In each column, original test images,
matching line segments, matching LICFs, and matching
Harris corners are drawn in order. The estimated epipolar
constraints are overlaid with red lines.

For a small set of relatively widely separated image
pairs provided in [21], we obtained correct matching results,
although the proposed method is not designed for wide-
baseline image matching, even in the scene for which the
interest-point-based method fails. The scene ”kampa” in
Figure 5 is more challenging because image pairs have large
perspective distortion. The proposed method gives correct
matching results with correct and accurate epipolar geometry,
while the interest-point-based method fails in this regard. As
mentioned earlier, the reason is that the proposed method
detects meaningful geometric structures by eliminating the
less meaningful photometric features. However, the matching
NCC scores in the wide-baseline stereo matching are low,
compared to the narrow-baseline stereo matching; therefore,
sophisticated handing of the widely separated matching must
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Fig. 3: Test images. In each column, the stereo image pairs of the scenes apt, tcorner, valbonne, kampa, lab1, lab2, table,
and sink are shown, in that order.

be part of future work.
Lastly, the quantitative performance comparison is sum-

marized in Table I in terms of the number of matching
features and the accuracy of the estimated fundamental
matrix. To evaluate the performance, we count the number
of matching features after the RANSAC-based refinement,
compared to the conventional matching evaluation manually
counting correct matches. However, the difference is not
large, i.e., no more than 10% in our experiments. On average,
including other experiments discussed in the next section,
the number of matching Harris corners, LICFs, and line seg-
ments are 152.00, 63.13, and 57.75, respectively. Although
more correct Harris corners matches can be achieved greater
quantity, the proposed method (LICF/line, 0.32 pixels) is
slightly better than the interest-point-based method (0.63
pixels) in terms of the accuracy of the estimated fundamental
matrix evaluated using the symmetric transfer error.

A. Results on Poorly Textured Scenes

Now, the proposed method is applied to poorly textured
scenes to show line matching performance in real world
situations and to demonstrate the accuracy of the simplified
version, compared to the full version. The image pairs are
captured by off-the-shelf cameras, PointGrey’s Bumble-bee
stereo cameras (30 Hz images, 640×480 pixels), attached
to a mobile platform. To simulate the unknown camera
geometry cases, the general stereo image pairs are captured
from the same off-the-shelf stereo camera yet at a different
time frame for each pair.

The experimental results on poorly textured scenes show
that the proposed method can detect and match most impor-
tant geometric structures of poorly textured scenes, including
tables, chairs, sinks, and electronics appliances, while the
interest-point-based method fails to match and recover these

Fig. 5: Comparison study results for the scene ”kampa”.
Refer to Figure 4 for details.

geometric structures. In addition, when camera geometry is
given, the simplified version is comparable to the full version,
and runs fast enough for line matching and its 3D recovery
in robotics applications.

Figure 6 is the result of the scene ”lab1”, which contain
noticeable scale change and perspective effect due to forward
camera motion into the objects. The experimental results
show that the proposed method can detect and match most
important structures, such as the edges and patterns of the
tables, the box lines of the refrigerator, the vertical and
horizontal lines of the walls, the textures/shadows on the
table tops, and the lines of the floor. In those scenes, although
the estimation of the fundamental matrix is not accurate due
to the uneven distribution of features, most line segments
are correctly matched due to simultaneous camera geometry
estimation and line matching, with the exception of a few
mismatches. Note that the end points of the matching line
segments are determined by the estimated or known epipolar
constraints in this section, such that the line segments can be
reconstructed by recovering the end points and the degenerate
configuration, where the end points of matching lines are
inaccurate, is easily noticeable.

Fig. 6: Results in the poorly textured scene ”lab1”. Refer to
Figure 4 for details.

Figure 7 is the stereo image pair that is captured by the
off-the-shelf camera and rectified using the pre-calibrated
camera parameters. Those scenes are acquired in a kitchen
designed for the demonstration of real situation performance
of personal robots, especially a robot’s ability to serve foods
and/or drinks to the elder. The scene ”sink” includes many
objects, such as a soda fountain, a tray, electronic appliances,
and the sink. The general matching result is quite accurate
except the mismatches of the matching line pairs {#76,#79}
and {#46,#91}. The first is from the mismatch of LICF
due to similar texture areas, and the latter resulted from the
failure of individual line segment matching based on relative
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TABLE I: Quantitative comparison of fundamental matrix estimations.

apt tcorner valbonne kampa lab1 lab2 table sink Avg (Std)

Harris
Initial 299 279 147 100 296 218 404 411 269.25 (110.95)

Refined 202 179 99 29 126 106 229 246 152 (74.38)
Transfer Error 0.19 0.20 0.30 3.32 0.30 0.25 0.26 0.24 0.63 (1.09)

LICF

Initial LICF 78 90 52 65 54 94 130 178 92.63 (42.78)
Refined LICF 45 78 42 23 49 53 74 141 63.13 (36.04)

Final line 53 70 34 34 48 49 67 107 57.75 (23.86)
Transfer Error 0.22 0.15 0.31 0.81 0.32 0.24 0.25 0.26 0.32 (0.21)

line angle.

Fig. 7: Experimental results and comparison study for the
scene ”sink”. (First and third rows) Images and results from
the first view. (Second and fourth rows) Images and results
from the second view. In each column of the 1st and 2nd
rows are the original test images, matching lines when not
using known epipolar geometry, and matching lines after
rectification, in that order. In each column of the 3rd an 4th
rows are matching Harris corners, the matching LICFs when
not using known epipolar constraints, and matching LICFs
after rectification, in that order, with their estimated epipolar
constraints.

1) Experimental results of the Simplified version: Ad-
ditionally, the full version, the simplified version, and the
interest-point-based method are applied to the scenes in
Figure 7, to compare their performance. Performance is
evaluated in terms of the accuracies of the estimated camera
geometry and matching results. When the full version and the
interest-point-based method are applied, the known camera
geometry is blinded and, instead, is estimated during the
algorithms. The results show that the full version is slightly
better than the simplified version in terms of the number of
matched lines and fundamental matrix accuracy. The error in
camera calibration seems to explain the difference. In the full
version, the error does not affect the line matching results
because the camera geometry, i.e., the fundamental matrix,
is simultaneously estimated. The full version captures more
matching line segments (e.g., # 6, #19, #66, and #98 in
the scene ”sink”) than does the simplified version. For the

interest-point-based method, the estimation of camera geom-
etry is incorrect because of the poor textures in the scenes.
Harris corner matching and fundamental matrix estimation
are quite comparable in the scene ”table,” but are inferior in
the scene ”sink” (Figure 7) because Harris corners are not
detected and matched in the bottom-left part of the image
pair.

Line reconstruction: Furthermore, 3D structures are re-
covered from matching line segments using the calibrated
camera parameters. Instead of direct line reconstruction,
the end points of matching line segments are reconstructed
[8], [20], as shown in Figure 8. In the scene ”table”, the
rectangular shape of the tabletop and orthogonal structure
between the tabletop and the legs of the table and the chair
are modeled properly. In the scene ”sink”, the T-shape and
the rectangular shapes of the sink are reconstructed correctly.

Fig. 8: Reconstructed line structure of the scenes ”table” and
”sink”. The figures are the first view image as well the scenes
viewed from the first camera, from the top, and from the side,
in that order.

Speed: The simplified version of the proposed algorithm
for the rectified stereo image pairs is implemented in C/C++
for fast processing in near real-time. The processing unit
consists of a Pentium 4G Hz CPU and 2G Byte RAM. The
line feature extraction module runs for 200 ms for both
views, and the line matching module, including line pair
determination, runs for 350 ms.

For the comparison purpose, color-histogram-based
matching is implemented. The proposed method (350 ms)
is faster than the color-histogram-based method (500 ms),
conducting more numerous line matches and more accu-
rate matching results. Although the color-histogram-based
method needs more sophisticated stages to be used as a line
matcher [9], already the accuracy and speed improvements
by the proposed line matching method is significant. Note
that Bay et al. [9] report that their implementation takes 8
seconds, on average, using Pentium 4 at 1.6GHz, excluding
line detection.
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2) Sensitivity analysis under orientation and distance
variations: Finally, the matching results of LICFs and seg-
ments are presented when the orientation and distance varies
between cameras and objects in order to ensure the stability
and reliability of those changes. Figure 9 shows the matching
results with respect to orientation and distance variation.
The orientation varies from 00 to 900, with a step of 150,
and the distance varies among 1.8m,2.1m,2.4m, and 2.7m.
The results show that the matching is quite even when the
orientation and the distance vary.

Fig. 9: Sampled line matching results with respect to vary-
ing orientation and distance between objects and cameras.
In each column, the scenes with different distances and
orientations between the long edge of the table and the
stereo camera baseline: {2.7m,00},{2.4m,300},{2.1m,600},
and {1.8m,900}, in that order.

Figure 10 illustrates the numbers of matching LICFs and
matching lines with respect to orientation and distance. These
figures show that the matching performance is quite stable
to orientation and distance variation. However, there is large
variation in the standard deviation of the numbers because
the background clutter is not eliminated, and the viewing
volume for the table is not carefully handled.

(a) Orientation (b) Distance

Fig. 10: The number of matching LICFs and matching lines
with respect to orientation and distance. The values shown
are the average, and standard deviation.

VI. CONCLUDING REMARKS

In this paper, a novel line matching algorithm, based on
the line intersection context feature, was presented. Exper-
imental results showed that the performance is comparable
and complimentary to that of interest-point-based matching.
The proposed algorithm works well for poorly textured
scenes, an area in which interest-point-based matching often
fails. Simultaneous line matching and fundamental matrix
estimation achieved correct line matching independent of the
fundamental matrix estimation accuracy. The simplified ver-
sion for rectified images using the pre-computed fundamental

matrix also showed comparable results with near real-time
speed.
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