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Abstract— We propose DAvinCi, a software framework that
provides the scalability and parallelism advantages of cloud
computing for service robots in large environments. We have
implemented such a system around the Hadoop cluster with
ROS (Robotic Operating system) as the messaging framework
for our robotic ecosystem. We explore the possibilities of
parallelizing some of the robotics algorithms as Map/Reduce
tasks in Hadoop. We implemented the FastSLAM algorithm in
Map/Reduce and show how significant performance gains in
execution times to build a map of a large area can be achieved
with even a very small eight-node Hadoop cluster. The global
map can later be shared with other robots introduced in the
environment via a Software as a Service (SaaS) Model. This
reduces the burden of exploration and map building for the new
robot and minimizes it’s need for additional sensors. Our pri-
mary goal is to develop a cloud computing environment which
provides a compute cluster built with commodity hardware
exposing a suite of robotic algorithms as a SaaS and share
data co-operatively across the robotic ecosystem.

I. INTRODUCTION

Service robotics is forecasted to become a US$12b indus-

try by the year 2015, [1]. There has also been an expressed

need by the governments of Japan, Korea, and the EU [2]

to develop robots for the home environment. Consequently,

the amount of research being done in this area has increased

substantially and has taken a few distinct design directions.

One design approach has been the use of a single, human-

like robot with abilities to manipulate the environment and

perform multiple tasks. The second approach involves the use

of multiple, simple task-specific robots to perform multiple

tasks in the same environment. Our design approach fuses

the two approaches to create a hybrid team of distributed,

networked and heterogenous agents with each agent having

a unique ability or sensory perception. This is proposed as

a solution for servicing large environments such as office

buildings, airports and shopping malls.

A. Robots in Large Environments

A typical robot executes several primary tasks such as ob-

stacle avoidance, vision processing, localization, path plan-

ning and environment mapping. Some of these tasks such as

vision processing and mapping are computationally intensive

but given the increasing speeds of current processors these

can be done on the onboard computers. However, these

onboard computers require dedicated power supplies, good

shock protection if a Hard disk drive is used and they

are responsible for a large amount of the robot’s power

consumption. And in a heterogenous robotic team serving
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a large environment, the presence of powerful onboard

computers on every single robot is both cost prohibitive and

unnecessary. Traditionally, in large environments, each robot

would have to explore and build its own map. Without means

to create a live, global map of the large environment, there

is duplication of exploration effort and sensor information

on the robots. Moreover, when a new robot is introduced to

the same environment, it will again duplicate all the efforts

of its predecessors in exploring the environment, making the

system very inefficient.

The major aspect of our research involves the development

of a software architecture that will enable the heterogeneous

agents to share sensor data and also upload data to pro-

cessing nodes for computationally intense algorithms. We

have evaluated various frameworks such as Player/Stage, MS

Robotics Studio and ROS and found each of them to be par-

ticularly capable in small environments. However, for large

environments, these architectures need to be augmented and

we propose the DAvinCi (Distributed Agents with Collective

Intelligence) framework to enable teams of heterogenous

robots to handle large environments.

The primary method of surpassing the challenges in large

environments is to network the robots. Networked robots

have certain challenges in the field of data sharing, co-

operative perception and collective intelligence [3] which

have been addressed by the DAvinCi framework.

The DAvinCi framework combines the distributed ROS

architecture, the open source Hadoop Distributed File System

(HDFS [4]) and the Hadoop Map/Reduce Framework. The

DAvinCi framework is still in its early stage of development

and should be largely considered as a work-in-progress. To

our knowledge, it is the first system of its kind and we

consider it ideal for large scale environments with infras-

tructure. A brief introduction to cloud computing and its

benefits are described in Section 2. The DAvinCi architecture

is described in Section 3 along with descriptions of Hadoop

and ROS in Sections 4 and 5, respectively. We then discuss

a proof-of concept implementation of Grid-based FastSLAM

as a Hadoop Map/Reduce task in Section 6. We have also

presented our preliminary results in Section 7. Finally, we

conclude with a discussion of our future work and research

direction towards completing DAvinCi.

II. CLOUD COMPUTING

Cloud computing is a paradigm shift in the way computing

resources are used and applications delivered. These re-

sources include servers, storage and the network insfrastruc-

ture along with the software applications. Cloud computing
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refers to providing these resources as a service over the

Internet to the public or an organization [5]. There are three

types of cloud services and they differ in the approach on

how the resources are made available. The first approach is to

make the hardware infrastructure available as a service and is

called Infrastructure as a Service (IaaS). Amazon’s EC3/S3

is an example of such a service [6]. The second approach

is to provide a platform (the OS along with the necessary

software) over the hardware infrastructure. This is called

Platform as a Service (PaaS). An example of this kind is

the Google Application Engine [7]. The third approach is to

provide the application as a service along with the hardware

infrastructure and is called Software as a Service (SaaS) and

examples include Google Docs, ZOHO and Salesforce.com

.
The cloud environment has the following advantages:

1) Make efficient use of available computational resources

and storage in a typical data center.

2) Exploit the parallelism inherent in using a large set of

computational nodes

Their relevance to robotics is described below. The papers

[8], [9], [10] describe algorithms, techniques and approaches

for a network of robots for coordinated exploration and

map building. Some of these approaches can be parallelized

and refined by doing parts of the map building offline

in a backend multiprocessor system which will also have

information from the other robots. The decision to explore a

particular area can also be coordinated among the robots by a

central system. In [8], the segmenting of the environment and

the corresponding combining of the maps can be offloaded

to a backend system. The fusion of visual processing of

camera images with the laser ranger described in [11] is

a computationally intensive task that can be offloaded to a

backend multiprocessor system.
Many of SLAM algorithms [e.g. FastSLAM] which use

particle filters for state estimation (feature sets in maps)

have conditional independence among the different particle

paths [12], [13], [14] and the map features. These algorithms

are candidates for parallel processing in a computational

cloud where the map for each particle can be estimated in

separate processors thus speeding up the whole procedure.

We describe such an implementation in a later section of

this paper. Other than this, most of the robotic algorithms

are inherently parallel computing tasks working on relatively

independent data sets. Our platform therefore provides an

ideal environment for executing such tasks.

The DAvinCi system is a PaaS which is designed to

perform crucial secondary tasks such as global map building

in a cloud computing environment.

III. DAVINCI ARCHITECTURE

For large environments, we propose a team structure where

the sensors are distributed amongst the members such that

some have very precise localization sensors, a few others

have LIDARs, a few have image acquisition sensors and

all have the basic proprioceptive sensors i.e. a low-cost,

single-axis gyro and wheel encoders [15]. The robots are

assumed to have at least an embedded controller with Wi-Fi

connectivity and the environment is expected to have a Wi-

Fi infrastructure with a gateway linking the cloud service

to the robots. By linking these robots and uploading their

sensor information to a central controller we can build a live

global map of the environment and later provide sections

of the map to robots on demand as a service. A similar

approach can be used for other secondary tasks such as multi-

modal map building, object recognition in the environment

and segmentation of maps.

Currently our DAvinCi environment consists of Pioneer

robots, Roombas, Rovios and SRV-1. The ROS platform was

used for sensor data collection and communication among

the robot agents and clients. We make use of the Hadoop

Distributed File System (HDFS) for data storage and Hadoop

Map/Reduce framework for doing the batch processing of

sensor data and visual information.

Figure 1 shows the high level overview of our system

and how it can be accessed over the cloud. The DAvinCi

server is the access point to external entities (Robots/Human

interface) accessing the cloud service. It also binds the

robotic ecosystem to the backend Hadoop computational

cluster. The ROS framework provides a standard form of

communication and messaging across the robots, between the

DAvinCi server and the robots. A standard set of algorithms

(SLAM, global path planning, sensor fusion) are exposed as

a cloud service which can either be accessed over the intranet

as in a private cloud or over the Internet with ROS messages

wrapped in HTTP requests/responses.

Fig. 1. High level overview of DAvinCi.

Figure 2 shows a high level architecture of our system.

At the bottom is our robotic ecosystem which as explained

before consists of Pioneer robots, SRV-1, Roomba and the

Rovio. Some of these are equipped with onboard CPUs on

which we run the ROS nodes with some of the existing
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Fig. 2. Architecture of the DAvinCi Cloud computing Platform.

drivers. Systems like the Roomba and the Rovio does not

have the provision to run as ROS nodes. For these types

of robots the DAvinCi server runs proxy ROS nodes which

collect sensor data or control the robot via interfaces like

Zigbee, Bluetooth or through normal Wi-Fi. Above the

DAvinCi server is the HDFS cluster with the Map/Reduce

framework for execution of various robotic algorithms. The

DAvinCi server acts as the central point of communication

for the robots as well as the external agents to access

the cloud services provided by the platform. The following

section describes the architecture components in detail.

A. DAvinCi Server

As shown in Figure the DAvinCi server acts as a proxy

and a service provider to the robots. It binds the robot

ecosystem to the backend computation and storage cluster

through ROS and HDFS. The DAvinCi server acts as the

master node which runs the ROS name service and maintains

the list of publishers. ROS nodes on the robots query the

server to subscribe and receive messages/data either from the

HDFS backend or from other robots. Data from the HDFS is

served using the ROS service model on the server. The server

collects data from the robot ecosystem through the Data

collectors running as ROS subscribers or ROS recorders. This

data is then pushed to the backend HDFS file system. The

server triggers some of the backend Map/Reduce tasks to

process the data either through explicit requests from the

robots or periodically for some of the tasks. For example a

robot surveying a new area can send a new batch of sensor

data and trigger the map building task to refine parts of

the already surveyed global map. The communication mode

between the server and the robots will be standard Wi-Fi. A

typical setup will have a Wi-Fi mesh network to make the

connection available throughout a given area. For external

entities the services are exposed by the DAvinCi server via

the Internet over HTTP. The ROS messages or message bags

in this case are wrapped in HTTP requests.

B. HDFS cluster

The HDFS cluster contains the computation nodes and the

storage. In our setup we have a small 8 node cluster setup.

Each node is an Intel Quad core server with 4GB of RAM.

Currently we use only the internal storage of the servers. The

HDFS file system runs on these nodes and the Map/Reduce

framework facilitates the execution of the various robotic

algorithm tasks. These tasks are run in parallel across the

cluster as Map/Reduce tasks, thereby reducing the execution

times by several orders of magnitude.

Sensor data from the robots that was pushed by the

DAvinCi server are available to the Map/Reduce tasks across

the cluster through the HDFS file system.

IV. HADOOP AND THE MAP/REDUCE FRAMEWORK

Our platform uses the Hadoop distributed file system

(HDFS) [4] for storing data from the different robots. The

data can be from the sensors like laser scanners, odometer

data or images/video streams from cameras. Hadoop is

a open source software similar to Google’s Map/Reduce

framework [16]. It also provides a reliable, scalable and

distributed computing platform. Hadoop is a Java based

framework that supports data intensive distributed applica-

tions running on large clusters of computers. One of the

main features of Hadoop is that it parallelizes data processing

across many nodes (computers) in the cluster, speeding up

large computations. Most of these processing occurs near

the data or storage so that I/O latencies over the network are

reduced. The HDFS file system of Hadoop also takes care

of splitting file data into manageable chunks or blocks and

distributes them across multiple nodes for parallel process-

ing. Figure 3 shows the components of HDFS consisting of

data nodes where the file chunks are stored. The name node

provides information to the clients about how the file data is

distributed across the data nodes to the clients.

One of the main functionality in Hadoop is the

Map/Reduce framework which is described in [17]. While

Hadoop’s HDFS filesystem is for storing data, the

Map/Reduce framework facilitates execution of tasks for

processing the data. The Map/Reduce framework provides

a mechanism for executing several computational tasks in

parallel on multiple nodes on a huge data set. This reduces

the processing or execution time of computationally intensive
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Fig. 3. Hadoop High level Architecture.

tasks by several orders of magnitude compared to running the

same task on a single server. Even though Hadoop has been

primarily used in search and indexing of large volumes of

text files, nowadays it has even been used in other areas also

like in machine learning, analytics, natural language search

and image processing. We have now found its potential

application in robotics.

Figure 4 shows an overview of how Map/Reduce tasks gets

executed in Hadoop. The map tasks processes an input list of

key/value pairs. The reduce tasks takes care of merging the

results of the map tasks. These tasks can run in parallel in a

cluster. The framework takes care of scheduling these tasks.

Normal Hadoop systems uses a single pass of Map/Reduce.

Here, it is shown that tasks can be broken down into multiple

passes of Map/Reduce jobs. Each of the map and reduce

tasks can run on individual nodes on the cluster working on

different sets of the large data set.

Fig. 4. Hadoop Map/Reduce Framework.

The Hadoop cluster in our system provides the storage and

computation resources required for executing the near real

time parallel execution of batch algorithms. The algorithms

run as a set of single pass or multiple pass Map/Reduce tasks.

V. ROS

The ROS platform [18] is used as the framework for our

robotic environment. One of the attractive features of ROS

is that it is a loosely coupled distributed platform. ROS

provides a flexible modular communication mechanism for

exchanging messages between nodes. Nodes are processes

running on a robot. There can be different nodes running on

a robot serving different purposes such as collecting sensor

data, controlling motors and running localization algorithms.

The messaging system is based on either loosely coupled

topic publish subscribe model or service based model. This is

shown in Figure 5. In publish subscribe model, nodes publish

their messages on a named topic. Nodes which want to

receive these messages subscribe to the topic. A master node

exposes the publishers to the subscribers through a name

service. An example of the ROS communication mechanism

is illustrated in Figure 6, showing a node publishing range

scans to a topic called ‘scan’ from a Hokuyo laser. The

viewer node subscribes to this topic to receive and display

the messages. The master node acts as the arbitrator of the

nodes for the publishing and subscribing for various topics.

Note that actual data does not pass through the master node.

Fig. 5. ROS messaging mechanism (From [18]).

Fig. 6. Example ROS messaging scenario (From [18]).

We make use of the ROS messaging mechanism to send

data from the robots to collectors which in turn push them

to the backend HDFS file system. The collectors run ROS

recorders to record laser scans, odometer readings and cam-

era data in ROS message bags. These are later processed by

Map/Reduce tasks in the Hadoop cluster.

VI. IMPLEMENTATION OF GRID BASED FASTSLAM IN

HADOOP

We adapted the grid based FastSLAM algorithm described

in [14] which is shown in Figure VI.1. We parallelized the

algorithm as Map/Reduce tasks for each particle trajectories

and the map estimates.
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Algorithm VI.1: FASTSLAM(From[14])
{

X̄ t = X t = Ø

for k ← 1 to N

do
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Each Hadoop map task corresponds to a particle (k) in

the algorithm. The variables x
[k]
t and m

[k]
t are the state vari-

ables corresponding to the robot path (pose) and the global

map at time t respectively for particle k. The variable w
[k]
t

corresponds to the weight of a particular estimation of the

robot path and map for particle k. This is obtained through

the measurement model which calculates the correlation

between the range scan and the global map estimated in the

previous time step. The algorithm returns the path and map

< x
[i]
t ,m

[i]
t > having the maximum probability [i] proportional

to the accumulated weight w
[k]
t . We exploit the conditional

independence of the mapping task for each of the particle

paths x
[k]
t and the map features m

[k]
t . All the particle paths

(1 to k) and global features m
[k]
t are estimated in parallel

by several of map tasks. A single reduce task for all the

particles selects the particle path and map < x
[i]
t ,m

[i]
t > having

the highest accumulated weight or the probability [i]. This is

depicted in Algorithm VI.1.

Fig. 7. Implementation of FastSLAM in Map/Reduce Framework.

VII. MAP/REDUCE IMPLEMENTATION RESULTS OF

FASTSLAM

Figure 8 shows the graph of the time taken for execution

of the algorithm for different number of particles. A dataset

published in [19] was used for the map estimation. The grid

map dimensions used in the algorithm was 300x300 with

a resolution of 10cm (900,000 cells). The algorithm was

executed by using a single node, two-node and finally a

eight-node Hadoop cluster, respectively. The execution times

were calculated for each of the cases for 1, 50 and 100

particles. It can be seen that the running time decreases by

several orders of magnitude as we go from a single node to

an eight-node system. We believe that the execution times

for mapping a large region will reduce to the order of few

seconds if the number of nodes is increased further (say 16

or more). This is acceptable for a service robot surveying

a large area and the surveying time is in the order of tens

of minutes or more. The idea here is that even the batch

mode of execution can be done in short acceptable times

for mapping a large area in orders of a few seconds when

a large number of nodes are used. In our case the Hadoop

jobs can be triggered by map update requests from the robot

itself while it is streaming the sensor data. It has been shown

in [13] that the accuracy of the pose estimation reduces as

the number of particles is increased. It is also show in [13]

that increasing the number of particles results in increased

execution time of the algorithm for a given dataset. In our

case this is handled by spreading the execution across several

machines in the compute cluster. It is also clear that whereas

it is easier to scale the cluster it is not feasible to increase

the computational capacity of the onboard system of a robot.

Fig. 8. Execution time of FastSLAM in Hadoop vs. number of
nodes.

Figure 9 shows the map obtained from the data. It also

shows that the pose noise reduces as the number of particles

is increased to 100. The results show that a typical robotic

algorithm can be implemented in a distributed system like

Hadoop using commodity hardware and achieve acceptable

execution times close to real time. Running the same on the

onboard system of the robot might be time consuming as

the single node result shows. Once we have accurate maps

of such a large region, it can be shared across several of the

other robots in the environment. Any new robot introduced

into the environment can make use of the computed map.

This is even more advantageous in some cases where the

robot itself might not have an on board processor (e.g.

a Roomba vacuum cleaner robot) and the DAvinCi server

acting as a proxy can use the map for control and planning.

Finally, as in any other cloud computing environment the

computational and storage resources are now shared across

a network of robots. Thus we make efficient use of the
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computational and storage resources by exposing these as

a cloud service to the robotic environment.

(a) 1 particle

(b) 100 particles

Fig. 9. Estimated map (black points) with the robot path (green
curves) using 1 and 100 particles (raw sensor data), respectively.

VIII. CONCLUSIONS AND FUTURE WORK

In the paper a cloud computing architecture was proposed

for service robots. The goal of this architecture is to offload

data intensive and computationally intensive workloads from

the onboard resources on the robots to a backend cluster

system. Moreover the backend system will be shared by

multiple clients (robots) for performing computationally in-

tensive tasks as well as for exchanging useful data (like

estimated maps) that is already processed. The open source

Hadoop Map/Reduce framework was adopted for providing

a platform which can perform computation in a cluster built

on commodity hardware. A proof of concept adaptation of

the grid based FastSLAM algorithm was implemented as a

Hadoop Map/Reduce task. This task was on a small eight-

node Hadoop cluster and promising results were achieved.

Even though the FastSLAM algorithm was adapted for the

Map/Reduce task, one of our primary goals is to adapt sensor

fusion algorithms such as to fuse visual data with laser

range scans, which is much more intensive with regard to

computation and data amount.
A limitation of our design could be that we do not

consider the network latencies or delays inherent in any cloud

environment. We might face difficulties in transferring ROS

messages involving large data (like maps and images) be-

tween the DAvinCi server and the robots. This also requires

that the communication channel is reliable most of the time

during such transfers. We are also working on improving

the reliability and providing fail safe mechanisms for the

communication between the DAvinCi server and the robots.

Our final goal is to expose a suite of robotic algorithms for

SLAM, path planning and sensor fusion over the cloud. With

the higher computational capacity of the backend cluster

we can handle these tasks in an acceptable time period for

service robots. Moreover exposing these resources as a cloud

service to the robots make efficient sharing of the available

computational and storage resources. As a proof of concept,

this architecture will be deployed as a private cloud test bed

in our office building for testing in near future.
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