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Abstract— Although robot navigation in indoor environments
has achieved great success, robots are unable to fully navigate
these spaces without the ability to operate elevators, including
those which the robot has not seen before. In this paper, we
focus on the key challenge of autonomous interaction with an
unknown elevator button panel. A number of factors, such as
lack of useful 3D features, variety of elevator panel designs,
variation in lighting conditions, and small size of elevator
buttons, render this goal quite difficult.

To address the task of detecting, localizing, and labeling the
buttons, we use state-of-the-art vision algorithms along with
machine learning techniques to take advantage of contextual
features. To verify our approach, we collected a dataset of 150
pictures of elevator panels from more than 60 distinct elevators,
and performed extensive offline testing. On this very diverse
dataset, our algorithm succeeded in correctly localizing and
labeling 86.2% of the buttons. Using a mobile robot platform,
we then validate our algorithms in experiments where, using
only its on-board sensors, the robot autonomously interprets
the panel and presses the appropriate button in elevators never
seen before by the robot. In a total of 14 trials performed
on 3 different elevators, our robot succeeded in localizing the
requested button in all 14 trials and in pressing it correctly in
13 of the 14 trials.

I. INTRODUCTION

Robots have been able to autonomously navigate unknown

building floors for some time; however, their mobility in

these general environments is restricted if they are not

capable of autonomously operating elevators. Current robot

systems (used in environments such as hospitals and labs)

either rely on human assistance or use infrared transmitters to

interact with an elevator ([1], [2], [3], [4]). Relying on human

assistance can be inefficient and one can imagine a situation

where it might be impossible, e.g. a robot janitor cleaning a

building after working hours. Retrofitting all elevators with

infrared detectors could be costly and time-consuming and

may not be possible if robots must be able to navigate in a

large number of different buildings.

In this paper, we consider the challenge of enabling a

mobile robot to autonomously operate elevators (with no

human intervention), including those never before seen by

the robot. We focus on developing algorithms to enable a

robot to identify and accurately localize buttons and recog-

nize their labels, and execute the action of pressing the button

corresponding to the desired floor. We specifically address

interior button panels since call buttons usually consist of

only up/down buttons and represent a constrained special

case of general elevator panels.
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Fig. 1. Robot autonomously operating an elevator

Figure 2 shows some sample elevator panels. Note the

wide variability of button and label types and the challenging

lighting conditions. To identify the locations and labels of

all the buttons in a single 2D image, we use sliding-window

object detection and optical character recognition. In Figure 2

again, also note the grid layouts and the sequential (ordered

by floor) arrangement of buttons. We use machine learning

techniques to take advantage of these contextual cues to im-

prove the performance of the baseline detectors. Specifically,

we use Expectation-Maximization to fit the buttons to one

or more grids, allowing for recovery of false negatives and

reliable label extraction. A Hidden Markov Model is applied

to the results from the optical character recognition to correct

for mislabeled buttons.

We validate our algorithms in a set of experiments where

the robot is commanded to press a given button in an

elevator never seen before by the robot. An experimental

run is considered a success if the robot locates and presses

the appropriate button using only its onboard sensors. The

perception algorithm correctly localizes the desired button in

all 14 trials and the manipulator presses the desired button in

13 of the 14 trials. On a much more diverse, offline dataset,

our algorithm succeeds in correctly localizing and labeling

86.2% of the buttons.

II. RELATED WORK

Several researchers have demonstrated a robot using an

elevator with human assistance. In the 2002 AAAI Mobile

Robot Challenge, one of the subtasks for participating robots

required the robot to navigate to a different floor using an

elevator. Teams were given pictures of the elevator prior to

the challenge, but since the robots were allowed to ask a

human for assistance, none attempted to autonomously press

the buttons ([1], [2]). Miura et. al developed a framework

for interactive teaching of a robot, and used the scenario of

elevator operation to test their algorithms. After undergoing

a training phase where a human pointed out key information,

such as the location of the door and buttons in the elevator,
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Fig. 2. Sample elevator panels. Notice (1) the wide variability in the button appearance: the shape, the material (metal vs. plastic), the presence or absence
of letters and numbers; (2) the imaging conditions in elevators: dim lights, specular reflections; (3) the non-standardized grid arrangement of the buttons;
(4) the variety of label types: different fonts, difficult-to-perceive numbers (in some cases rubbed off or damaged); (5) various naming conventions (L for
lobby versus G for the ground floor vs 1). Our algorithm addresses each of these issues in building a robust automated system for elevator button detection
and manipulation.

their robot was able to successfully operate the elevator to

traverse a floor of the building [3].

Kang et al. looked at developing a navigation strategy for

a robot using a known elevator. They addressed navigation

and path planning and also proposed algorithms to recognize

the buttons, the direction the elevator is moving, and the

current floor for the elevators in a single building. However,

since their robot did not have arms, it had to wait for human

assistance to press buttons [4]. Recently, there has been

some interest in having robots autonomously operate known

elevators. In the 2008 TechX Challenge, teams competed

towards enabling a robot to autonomously navigate from

an outdoor environment to an indoor environment, including

operating an elevator to reach a specified floor. The teams

were provided with a digital image of the elevator before the

competition [5], and the robot was required to operate the

single known elevator.

Despite some of these promising results, the difficult

challenge of a robot completely autonomously operating

unknown elevators is still outstanding. A crucial, unsolved

subtask is the development of generalized vision-based al-

gorithms that help the robot localize the elevator buttons

and assign appropriate labels with high accuracy. Object

detection algorithms based solely on 2D data can suffer

from false detections when the objects and/or scenery vary

significantly from the data on which the algorithms were

trained.1

Using contextual cues has shown to improve object de-

tection in 2D images [7], [8], [9]. In the context of an

elevator panel, we recognize two main contextual cues: the

arrangement of the buttons in one or more grids, and the

arrangement of labels in order of floors.

1Recently researchers have shown that augmenting 2D images with 3D
sensing can provide significant performance boosts to object detection
algorithms [6]. However, most current 3D sensors do not have sufficient
resolution to detect the buttons at the range required. Thus, in the case
of an elevator panel, 3D data provides little information in identifying the
location of the buttons other than helping to remove detections that do not
lie in the plane of the wall.

Our goal is to enable a robot to completely autonomously

operate any elevator in any building, including those that the

robot has not seen before. In contrast to many of the recent

works on robotic elevator operation, we focus our efforts on

developing robust perception algorithms to detect, localize,

and label elevator buttons.

III. APPROACH

To successfully operate the elevator, the robot must lo-

calize the buttons, recognize the button labels, and control

the manipulator to press the button. Following the American

Disability Association (ADA) guidelines [10], we make the

following assumptions: elevator buttons must be no smaller

than 1.9 cm in diameter and button labels must lie to the

left of the corresponding button. The button detections must

have high precision since buttons may be (and often are) as

small as 1.9 cm.

Elevator panels vary widely in appearance and arrange-

ment of buttons. Further, lighting conditions vary greatly

among elevator cabs (see Figure 2). Even with a large dataset

for training, extracting enough image features which are

common across all button variations to be able to recognize

buttons in new images (unseen in the training phase) is

difficult. Further, correctly labeling the buttons relies on

both accurate localization of the label and good performance

of the optical character recognition (OCR) algorithm. A

straight-forward combination of these two steps is largely

inadequate. We develop a more complex model that uses

machine learning techniques to incorporate features such as

arrangement of the buttons in grid patterns and sequential

ordering of labels and demonstrate improvement in overall

performance.

First, we use the fact that most elevator buttons lie on a

grid to infer missed detections and remove false positives. As

shown in Figure 2, the grid stucture varies greatly between

panels and thus has to be learned from data for each elevator

individually. We apply the Expectation Maximization (EM)

algorithm described in detail in section III-B.

752



Second, we note that elevator buttons generally appear in

order of floors: floor 1 is followed by floor 2 and then by

floor 3. We can use this knowledge to automatically correct

mislabeled buttons: for example, if the optical character

recognition (OCR) algorithm labels consecutive buttons 10,

11, 11, 13, we infer that the second 11 should be changed

to a 12. Hand-coding such rules is difficult: various possible

labels exist for the ground floor (L, G, 1), unexpected labels

often appear (R, S), and special cases such as the 13th

floor being missing in some buildings have to be taken into

account. We automatically learn these rules from training

data using a Hidden Markov Model (HMM) as described in

section III-D and use it to produce more consistent labels.

Overall, our perception algorithm consists of four main

steps: (A) button detection using a standard sliding-window

object detector, (B) grid fit using the EM algorithm, (C) label

binarization and recognition using OCR techniques, and (D)

consistency enforcement using the HMM.

A. Button Detection

We use a 2D sliding window object detector to capture

common visual features among elevator buttons. This sliding

window object detector, derived from the patch-based classi-

fiers introduced by Torralba [11] and implemented by [12],

provides initial estimates for the locations of all the buttons

in an image.2

Knowledge of average elevator button size (based on

ADA guidelines) and the distance of the camera from the

panel (obtained from a laser scanner), allows us to compute

an upper and lower bound on the expected detection size

for each panel. A standard approach for post-processing

object detector results is to use a fixed confidence threshold

(throw out detections with confidence values less than a

fixed value) and then apply non-maximal suppression to

remove overlapping detections. However, in our scenario,

large variations in imaging conditions among elevators cause

the average confidence value for detections to be much lower

on some panels than others. Thus, using a fixed confidence

threshold results in very few detections on some of the

images in our test set (i.e., many false negatives). We instead

use a dynamic threshold, determined at run-time for each

individual panel, which normalizes the panels, followed by

clustering to produce more accurate estimates of button

positions (see Figure 3). More details on the button detection

post-processing are given in section IV-A.

B. Grid Fit

As shown in Figure 3(c), despite the dynamic thresholding

and clustering improvements, the button detection step still

2Briefly, the supervised training procedure produces a dictionary of
features consisting of localized templates from cropped training examples.
The relevance of each of these features in identifying whether a button is
present in an image patch is evaluated by computing the normalized cross
correlation of each template with the image patch. A binary classifier is
learned by using boosted decision trees to select the set of feature patches
which are most effective at recognizing a button in the training examples
(see [11] for more details). We then use this classifier within a sliding-
window detector framework to compute the probability of a button within
each rectangular subwindow of the elevator panel image.

(a) (b)

Fig. 3. (a) Output of the sliding window detector. (b) The use of dynamic
threshold to remove detections that are of relatively low confidence for each
individual panel, followed by clustering..

results in a number of both spurious detections and missed

detections. To help eliminate these false positives and recover

false negatives, as well as provide an ordering scheme for

enforcing label consisteny, we observe that elevator buttons

usually lie in one or more grids. This contextual cue is

incorporated into our model by fitting the candidates from

the sliding window detector to grids using Expectation

Maximization (EM) [13].

The EM implementation requires initial estimates for all

of the grid parameters. The initialization step clusters all

the sliding window detections and estimates a cell width

and height by examining clusters along similar horizontal

and vertical bands. It then iterates through each cluster and

attempts to recursively grow a grid from the current cluster

location. This results in a number of possible initial grid fits.

We assume that panels have at most five grids, and consider

five types of initializations (with one, two, three, four, and

five grids respectively), as shown in Figure 4. We compute

the log likelihood of all the initial grids (see Equation 3

below), and choose the ones with the maximum likelihood

for each of the five types of initialization to input into the

EM algorithm.3

We use an implementation of EM with a mixture of

Gaussians model to learn the best grid parameters. The

algorithm is presented in detail in Table I. Briefly, our

observations consist of the button detections from the sliding

window classifier {x(1), . . . x(m)}. Each button detection x(i)

is associated with a hidden variable z(i) assigning it to one

of the grid cells. Specifically, if the number of rows and

columns in the grid are nr and nc respectively, then

z(i) ∈ {(1, 1), (1, 2), . . . , (nr, nc),outlier} (1)

We want to model the data by specifying a joint distribution

p(x(i), z(i)) = p(x(i)|z(i)) × p(z(i)) (2)

Table I defines p(x(i)|z(i)) formally, but the intuition is

as follows: If z(i) corresponds to one of the grid cells

then p(x(i)|z(i)) follows a normal distribution around the

center of the grid cell z(i). Otherwise, z(i) = outlier and

3Since fitting the data to more grids will always produce an increase in the
total likelihood, we compare the five grid layouts using a way that penalizes
for the increase in the number of model parameters. Specifically, we use
the Bayesian Information Criterion (BIC) to choose the best fit: BIC =
−2 ln(L)+k ln(n) where L is the value for the likelihood function, n is the
number of button detections, and k is the total number of grid parameters.
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Fig. 4. Best viewed in color. Five initializations of grid fit for a single elevator panel, with one, two and three, four, and five grids respectively. These
serve as input to the EM algorithm. The colored clusters represent the estimated button centers based on the button detections that fall within each cell.

p(x(i)|z(i)) follows a uniform distribution over all positions

in the image. We assume a uniform prior for p(z(i)).
The grid parameters θ specify the position of the grid

and the width and height of the cells. We use maximum

likelihood estimation to find the best set of parameters for

each grid using the log likelihood function:

ℓ(θ) =

M∑

i=1

log p(x(i); θ) =

M∑

i=1

∑

z(i)

log p(x(i), z(i); θ) (3)

Since the number of grid rows and columns cannot be

updated by maximizing a differentiable function, we learn

these additional parameters by adding a row and/or column

to the grid and comparing the likelihood values.

Finally, note that the algorithm in Table I learns the grid

parameters such that the grid cell centers correspond to

button detections centers. However, since we are interested in

cropping out the button and the corresponding label, which

is always located to the left of the button by the ADA

guidelines, we shift the learned grid to the left such that

the button detection cluster occupies the right half of the

grid cell instead of its center, with the assumption that the

label must then occupy the left half.

The overall algorithm thus allows us to learn a grid pattern

with up to five grids with the appropriate number of rows

and columns to correctly match each individual panel.

C. Optical Character Recognition

The first two steps of the pipeline, button detection and

grid fit, produce estimates of the location of buttons and la-

bels. Given these estimates, our next goal is to appropriately

classify each button, e.g. 2nd floor, ground floor,

alarm, and so on. Consider the distribution of labels in

Figure 6. Even though it is easy for a human to correctly

identify most, if not all, of the labels, it becomes surprisingly

difficult for a robot to do so autonomously using standard

OCR algorithms.

For this part of the pipeline we use the open-source

LeNet-5 convolutional neural network of Lecun et al. ([14]).

However, this network was initially designed for and trained

on handwritten digits, which were written in black ink

on white background. Since this is quite dissimilar to our

scenario, as evidenced by Figure 6, we had to (1) binarize

(a) (b)

Fig. 5. EM grid fit step. (a) Button detection clusters. (b) Learned grid
location using EM. Note the missing buttons in the grid 2 and 5 which
are recovered but also note the false positive introduced in the bottom right
corner of the grid.

Fig. 6. Elevator button labels from our training and test images. Designing
a character recognition system for these labels is a challenging task which
we address in section III-C.

our data, i.e., process the images of elevator labels to obtain

black images against white background to aid the OCR, and

(2) retrain the neural network using sample binarized elevator

labels instead of handwritten digits.

1) Image binarization: We want to extract from the label

a binarized image of the segment, which corresponds to the

alphanumeric character assigned to the button, to input into

the OCR algorithm. A binarization of a given segment is

an image where the pixel value is 1 if it belongs to the

segment and 0 otherwise. Various binarization techniques

have been proposed in the literature ([15], [16], [17]), many

specifically tailored for OCR ([18], [19]). However, in our
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TABLE I

THE EM ALGORITHM FOR FITTING A GRID TO A SET OF ELEVATOR

BUTTON DETECTIONS

Parameters: θ = {ox, oy , ∆x, ∆y} where

ox = x-coordinate of grid

oy = y-coordinate of grid

(center of top-left cell)

∆x = width of grid cell

∆y = height of grid cell

Given: (1) button detections {x(1), . . . x(m)} where

x(i) ∈ R4 specifies the center, width

and height of the detection

(2) nr, nc number of rows, columns in grid

Hidden: assignments {z(1), . . . z(m)} of each detection

to one of the grid cells

z(i) ∈ {1, 2, . . . ncnr, outlier}

.....................................................................

Repeat until convergence {
For each grid cell j:

let µj be the coordinates of its center

based on the grid parameters θ
E-step:

For each detection i:

Qi(z
(i)) = p(z(i)|x(i); θ)

∝

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

N (µ
z(i) |x(i), Σ) × (1−ǫ)

nrnc

if z(i) ∈ {1, 2, . . . nrnc}

ǫ
wimagehimage

if z(i) = outlier

M-step:

θ := argmax

„

Pm
i=1

P

z(i) Qi(z
(i)) × log

p(x(i),z(i);θ)

Qi(z
(i))

«

}

case we are considering a task where only 1-2 characters

appear per image which means that no algorithms can be

applied to learn the font of the text or the geometric position

of the characters relative to each other.

From Figure 6 it becomes clear that simple thresholding

algorithms will not work for binarizing these labels. Further,

edge detection and similar techniques do not yield adequate

results in practice, since reliably post-processing their output

to obtain coherent components corresponding to individual

characters is extremely challenging.

Instead, we use an unsupervised superpixel segmentation

algorithm due to Felzenszwalb et al. [20] with four different

parameter settings (c = 50, 100, 200, 500) to obtain four

different segmentations of the image. We then input all of

the segments obtained from each of the four segmentations

into the OCR algorithm. The segmentation parameters were

determined from the training set, and in Figure 7 we illustrate

our approach and show the benefit of using the output from

all four segmentations, instead of just choosing a single

segmentation parameter.

After some basic post-processing to get rid of segments

that are too large, too small, or circular (usually correspond-

ing to button boundaries), we turn each segment into a binary

image of the same size as the detection window.

2) Training the neural network: We trained our network

to recognize the common labels found on elevator panels (1,

2, 3, 4, 5, 6, 7, 8, 9, G, B, L, open, close, alarm).4

The training data is comprised of binary images of segments

taken from the training set. Because some labels such as

9s, 8s, and 7s did not appear enough in the training set,

synthesized segments were generated by performing minor

transformations on the available segments, such as eroding

and dilating random parts of each segment. The network

was also trained to recognize segments that were not a label

(NAL), since many of the segments from the binarization will

not correspond to actual alphanumeric labels.

For each segment classified, the network outputs a con-

fidence value associated with the label. Because multiple

proposed binarized images are created for each input button,

OCR produces multiple character predictions per button. We

then filter the output by throwing away segments that have

low confidence values or that get classified as NAL, and use

the relative locations of the remaining segments to decide on

the most likely label. For example, if we detect multiple 1s

and 2s in the image we want to use their relative locations

and confidence values to distinguish between labels of 1, 2,

11, 12, 21 or 22.

D. Consistency Enforcement

From the OCR algorithm, we have a series of imperfect

observations for the button label states. For example, it’s

not uncommon to see 15, 16, 11, 18 for four consecutive

floor buttons. A person who needs to get to the 17th floor

immediately predicts that the corresponding button would be

between 16 and 18 even if the label is missing entirely. We

incorporated this insight into our algorithm using a Hidden

Markov Model (HMM) [13].

From the button detection, grid fit and OCR steps, for each

panel we obtain one or more disjoint grids corresponding to

proposed button positions, and a label for each cell within

these grids. We run an HMM to probabilistically enforce

consistency between the observed labels.

The states in our HMM correspond to floors. The grid

fit step attempts to fit rectangular grids around the buttons,

but the buttons are not usually arranged in fully populated

rectangular arrays (for example, there is often one or more

cells in the upper right or bottom right of the grid that do not

contain actual buttons). Thus we need to explicitly introduce

an extra blank state that signifies the absence of a button

in a grid cell, instead of forcing each grid cell to necessarily

be assigned to a floor.

The observations in our HMM are the character strings re-

turned by OCR. The emission probability distribution defines

the probability that a label c is emitted from state s, or, in

other words, the probability that, given an image of a button

that leads to floor s (e.g. floor 15), OCR returns the label c

4In our training set, we do not include 0 (since it is too easily mistaken
with the circular outline around many of the labels), the stop label (since
it is often associated with a knob or keyhole and not a button), or phone
label (since it does not appear often and is much like a 1 in appearance).
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Fig. 7. Binarization step (best viewed in color). The first image is the original label. The other four non-binary images represent the output of the
segmentation algorithm with four different parameter settings, with different colors corresponding to different segments. Each of these four segmentations
is followed by binary images extracted from it using simple post-processing (discarding of segments that are deemed too large, too small, or circular). In
this case only the second parameter setting produced a near-perfect segmentation of the character 5; however, all settings are needed for robust performance
on varied elevator panels. Each of the obtained binarized images is then passed through OCR to extract a label.

Fig. 8. An example of the grid fit and the HMM model (best viewed in
color). Note that the observation from the OCR for the 2 will be NAL since
the label, to the left of the button, is missing. The HMM will choose the
most likely sequence to be one in which the NAL is changed to a 2.

(e.g.”13”). The transition probability distribution defines the

probability that a button for floor si is followed in the grid

by a button for floor si+1 (e.g. given a button for floor 15,

the probability that the next button we encounter in the grid

is for floor 21). These emission and transition conditional

probability distributions are empirically estimated from the

training data with Laplace smoothing. Figure 8 shows an

graphical example of the HMM given the output from the

grid fit and OCR for a given panel.

This learning procedure automatically captures interesting

interdependencies between buttons such as a missing 13th

floor, since the training data has many instances where the

button for floor 14 often follows one for floor 12. It also

learns that labels G, L or 1 all likely correspond to the same

floor since they are often observed on the first floor button.

Further, during training this model observes the common

errors made by other stages of the pipeline (e.g. that OCR

tends to sometimes mistake 8s for 9s or that spurious labels

of 1s are common due to the typical shape of segments from

the binarization step) and learns to implicitly compensate for

these mistakes. For instance, the model learns that 1s are

often observed incorrectly and thus do not provide strong evi-

dence for any particular floor; however, observing something

more reliable, such as a two-digit number, is significantly

more informative. Thus the HMM model provides additional

robustness to the overall system.

Finally, given a test panel containing a grid of buttons,

along with the output of OCR for each button, we use the

Viterbi algorithm to find the most likely sequence of un-

derlying states (floors) corresponding to those observations.

We refer the reader to [13] for a detailed explanation of this

standard algorithm.

IV. PERCEPTION RESULTS

To train and test our algorithm, we use a diverse set

of 150 images of 61 distinct elevator panels taken with a

high resolution (7 Megapixel) digital camera. To evaluate

the performance of our approach, we randomly split the data

into 100 images for training and 50 for testing, making sure

that pictures from the same elevator do not appear in both

the training and the test set. We hand label all the buttons

with their location in the image, their character label, and

their grid assignment. We then separately evaluate each step

in our pipeline.

A. Sliding window button detection and clustering

To train the button detector, we use 998 positive examples

(cropped buttons) and 20,000 negative examples cropped

from the training set images. Since the button model often

identifies keyholes and labels as buttons, we include images

of keyholes and labels in the negative training set. We train

an initial classifier, augment the set of negative examples

with false positive detections obtained by running the sliding

window detector on the training elevator panels, and retrain

the button classifier.

The positive examples consist of three main types of

buttons: circular plastic buttons, square plastic buttons, and

circular metalic buttons. These types are visually very dis-

tinct from each other, and this variety allows the trained

classifier to detect buttons on a variety of elevator panels.

Figure 10(a) shows the PR curve for this model on the test

panels. As is standard in computer vision [21], a detection

is considered correct if its intersection with a groundtruth

button divided by the union of their areas is greater than

50%, and at most a single detection per groundtruth button

is considered correct.

Given the raw detections we first use adaptive thresh-

olding to remove all low-probability detections. Intuitively,

if a panel classification results in a large number of very

high-probability detections we want to keep only the most

confident of those; however, if a panel is such that the buttons

are very difficult to detect, we want to make sure we do

not discard all the detections, as we would with a fixed

global probability thresholding method. Thus we determine

the threshold by considering, for each panel, all detections

of probability of at least 0.25, computing their standard

deviation of the detection probability, and removing all

detections with probability less than 3.0 standard deviations

below the maximum probability.

For the clustering step, we use a confidence pixel map

of the image created by summing the probabilities of all
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detections that lie over a pixel. We then compute the standard

deviations of all values within this map and remove detec-

tions centered on pixels that have a probability less than

one standard deviation from 0. As shown in Figure 10(a),

the dynamic thresholding and clustering greatly improves

the performance of the detector when compared to standard

non-maximal suppresion followed by a fixed thresholding

approach.

B. Grid fit

Next, we want to take advantage of the fact that buttons are

typically arranged in a grid-like fashion to help recover any

missed detections. As described in section III-B, we initialize

grids based on the button detection clusters and then run the

EM algorithm to more accurately fit these grids to our button

detection data. We extract the proposed button locations from

grids by choosing, for each cell, either the average center of

all button detections present within it or simply the right half

of the cell if no detections are present.5

The performance of each of these steps is reported in

Figure 10. Observe the drop in precision and increase in

recall with the grid initialization and the EM steps. A drop

in precision is expected because the EM grid fit algorithm

assumes that buttons are arranged in fully populated rect-

angular grids, but often a row or column on the panel is

not completely filled. Thus the overall number of proposed

buttons increases. Despite introducing some false positives,

the grid fit also recovers missed buttons in the grid (or false

negatives) which were not found by the object detector, lead-

ing to an increased number of true positives and thus higher

recall. It is more important to recover false negatives in the

grid fit step, because false positives which are introduced will

be eliminated if the OCR step does not classify the label as

a valid alphanumeric character (Figure 5).

C. OCR and HMM

For each button we run the all the binarized segments from

the label image through OCR and then automatically choose

which character(s) to output for the button based on the

returned OCR confidence values. Our dictionary includes 1-

9, G, L, B, open, close, and alarm. Our OCR dictionary

includes only the alphabetic characters G, L, and B because

there are not enough instances of other characters to build

them into the model. Thus our algorithm will assign a NAL

to the occasional instances of P, DH, etc.

To evaluate the performance of the image binarization and

OCR, we use the ground truth labels for each panel. We use

the resulting OCR classifications and the ground truth grid

assignments to extract sequences of labels, to input into the

HMM. Figure 10(b) gives the recall for the OCR only and

the OCR followed by HMM. It is clear that the HMM is able

to correct some of the mislabeled buttons from the OCR step,

resulting in improved performance.

5Recall that by construction each cell corresponds to a button and an
adjacent label, and labels are assumed to be to the left of the buttons
following ADA guidelines.

(a) (b)

Fig. 9. (a) Learned grid location using EM. (a) OCR label. (c) HMM label
correction. Note that OCR misclassifies over 20/35 of the floor buttons and
HMM is able to correct for all but one.

Although the grid fit step introduces false positives due

to elevator buttons not lying in fully populated grids, the

adverse effect of these false positives is reduced by not

including cells in the HMM input for which (1) OCR

classified as NAL and (2) the button detector did not find

a detection. Figure 9 shows an example of the OCR and

HMM output for a given EM grid fit.

Figure 10(c) shows the results for all the steps along the

pipeline. To evaluate the button detection and EM steps,

we consider a classification as correct based on the button

ground truth for the given panel. For the OCR and HMM

steps, both the button and label classification must match

that in the ground truth. The OCR performance is obviously

lower than that shown in Figure 10(b), since the grid fit

step does not produce perfectly cropped out labels like the

ground truth, but HMM corrects some of mislabeled buttons.

Overall, the entire pipeline, from the sliding window detector

to the HMM, was able to perfectly detect, localize, and label

86.2% of the buttons in the images.6

V. EXPERIMENTAL RESULTS

We demonstrate our perception algorithms on the STAIR

(STanford AI Robot) mobile robot platform in a number of

experiments where the robot was commanded to go to a

given floor. The robot was required to autonomously locate

the appropriate button and successfully press it in order for

the trial to be considered a success.

A. Hardware

Our robotic platform consists of a Neuronics Katana450 5-

DOF robotic arm, with angle gripper, mounted on a Segway

base. The vision system consists of a Canon SX100-IS digital

camera and a high resolution 3D sensor consisting of a

Point Grey Research Flea2 camera and a rotating laser line

scanner (for a detailed description of this sensor, see [6]).

The depth data was used to provide only the 3D location

of a button for manipulation but not recognition. The Canon

camera was used to provide higher resolution images for the

optical character recognition. The 3D sensor (Flea2 camera

+ laser) was calibrated with the Canon camera using a

6In computing the statistics listed for OCR and HMM, we consider
buttons which are part of our OCR dictionary, as well as 10, 20, etc (even
though we our dictionary does not include 0). We do not include labels for
buttons which were labeled as NAL in the ground truth.
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Method Accuracy

OCR only 0.836

OCR + HMM 0.884

Method Recall Precision F-score

Post-processed detections 0.955 0.932 0.944

EM 0.963 0.841 0.898

OCR 0.742 0.709 0.725

HMM 0.862 0.881 0.871

(a) (b) (c)

Fig. 10. Results on the offline dataset of 50 test images. (a) The blue curve is the precision-recall curve for button detections from the sliding windows
algorithm after running non-maximal suppression, which is standard in the literature. The performance using our adaptive thresholding method with
clustering is 0.955 recall and 0.932 precision, and is shown in red. (b) Results of the OCR and HMM algorithm on labeling the ground truth detections
(686 labels total). (c) Results for each step along the pipeline, starting with unlabeled images of elevator panels.

standard camera calibration procedure which estimates the

transformation between the two sensors given a number of

correspondences between scene and image points [22]. The

vision-manipulator system was calibrated using a procedure

describe in [23], resulting in an average error of 0.7 mm.

B. Perception

We tested our algorithms on the robotic platform in 14

trial runs in 3 elevators in 2 buildings which the robot had

not seen before. The robot was placed in front of the panel

at a distance within which the manipulator could reach the

panel, and was commanded to press a randomly chosen floor

button.

The path planning for the manipulator was simplified by

assuming that the space between the robot and the wall was

free of obstacles. Thus simple inverse kinematics could be

used to convert the desired 3D positions for the end-effector

to joint angle configurations. In computing the desired loca-

tion for the end-effector, we applied the constraint that the

end-effector should move in a linear fashion when pressing

the button to ensure that the elevator is successfully activated.

C. Results

The perception algorithm correctly identified the location

of the appropriate button in all 14 trials, and the robot

succeeded in pressing the button in all but one of the trials.

See http://www.stanford.edu/∼ellenrk7/Elevators for a video

showing clips from these experiments.

VI. CONCLUSION

In this paper, we considered the challenge of enabling

a mobile robot to autonomously operate unkown elevators.

We focus on perception, which is the key component in

tackling this problem: detecting, localizing, and correctly

labeling the buttons on an interior button panel of previously

unseen elevators. We validate our algorithm both on a large

dataset of diverse elevator panel images as well as on a

robot platform that was able to correctly analyze a previously

unseen elevator panel in all of our trial runs, and correctly

manipulate the desired button in all but one run.
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