2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

Extraction of Quadrics From Noisy Point-Clouds Using a Sensor Noise Model

Narunas Vaskevicius, Kaustubh Pathak, Razvan Pascanu, and Andreas Birk
{n.vaskevicius, k.pathak, r.pascanu, a.birk} @jacobs-university.de

Abstract—Fitting optimum quadrics on segmented noisy range-
image is a challenging task. The algebraic least-squares fit usually
considered in the literature is biased, although it is fast to compute. We
extend our previous work in planar patch extraction using a detailed
sensor noise model to the extraction of quadrics. First, the fast least-
squares method is modified to detect degeneracy automatically and it
is used to aid segmentation. The final segmented quadric patch is then
refined using a numerical maximum likelihood approach which employs
the sensor range error model. Experimental results for artificial data
and two different 3D sensors are provided to show the feasibility of
our approach.

I. INTRODUCTION

Extracting surfaces from “point clouds,” typically of size 10%-
105, sampled from currently available 3D sensors leads to a
dramatic saving of storage. If these surfaces are utilized for scene
registration instead of using traditional points-based methods, it
leads to run-time savings as well— as shown for planar surfaces in
a recent work of the authors [1], [2]. To compute the uncertainty
of the registration, i.e. the covariance matrix of the relative pose
computed using surface matching, the uncertainties associated with
the extracted surfaces needs to be known. In [3], a detailed analysis
of uncertainty associated with extraction of planar surface patches
was presented assuming an error model depending on the range
and the incidence angle. It is natural to go one step further and
try to analyze the uncertainty associated with the extraction of the
simplest non-planar surfaces, namely quadrics.

Quadric-fitting has been studied by many researchers in the last
two decades. Biquadratic Monge patches of form z = f(z,y),
where f(x,y) is a quartic polynomial, were fitted to range-data
in [4]. Note that Monge patches, even when f(z,y) is quadratic,
form a different family of surfaces from quadrics. We choose to
investigate quadrics because, firstly, cylinders, cones, ellipsoids, etc.
are more familiar in human created environments. Secondly, certain
coordinate-frame invariant properties can be readily computed for
quadrics for further use in subsequent matching of surfaces for
scene registration. The basics of least-squares quadric-fitting based
on algebraic error were discussed in [5], whose results were also
used in [6]. Several least-squares methodologies were compared in
[7]. An Akaike Information Criterion (AIC) like metric was used
in [8] to distinguish three classes: plane, cylinder, and a general
quadric. A nearest point geometric least-squares approach was taken
by [9], based on the results of [10]. They used certain shape
parameters to distinguish cylinders, cones, and ellipsoids. A more
recent work [11] presents a comparative study on model selection
criteria and discusses their application to the surface selection
problem in range modeling.

In all of the above works, the uncertainty of the extracted
quadric in terms of the uncertainty present in the range-image was
neither modeled nor estimated. An exception is [12], wherein a
Kalman filter based incremental estimation followed by the method
of instrumental variables were used. No sensor noise model was
explicitly employed.
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Another important aspect of the extraction of surfaces from the
range image is its segmentation, whereby possible patch boundaries
are identified based on proximity and curvature discontinuities. At
the same time, good seed points for region-growing may also be
found. Segmentation for planar patches was discussed in [13]. A
good discussion on segmentation specific to quadrics can be found
in recent literature [14], [15].

There are two main contributions of this paper:

1) Design of a three step least-squares algorithm to aid region-
growing. The advantage of this method is that it can dis-
tinguish planes, which are degenerate quadrics, from real
quadrics in the second step. This allows it to not fit a full
quadric to a planar surface: doing so would have led to a
non-unique quadric. Thus, our approach refines the method
used in [5], [6], where planes and quadrics had to be handled
separately. Note that distinguishing that the underlying sur-
face was a plane after fitting a quadric to noisy planar data
using the rank condition of some coefficient matrix is difficult
because the optimum fit uses the extra freedom of quadratic
terms to fit to the noise.

2) After extraction of the surface with region-growing aided by
least-squares, we present a method to refine the surface model
by maximum likelihood estimation, employing a sensor error-
model which we have previously employed for planes [3].
This leads to a considerable improvement in the quality
of the solution while additionally providing an estimate of
the uncertainty associated with the quadric parameters. To
the best of our knowledge, such an uncertainty analysis for
quadrics based on a sensor error model has not been addressed
in the literature till now.

The rest of the paper is organized as follows: Sec. II introduces
the basic quadric model; Sec. III gives the fast three-step least-
squares (LS) method for extracting quadrics to aid region-growing
segmentation; Sec. IV gives the details of the segmentation itself;
Sec. V derives the maximum-likelihood (ML) estimation for model
refinement. Experimental results are presented in Sec. VI for two
different 3D sensors, and the paper is concluded in Sec. VII.

II. QUADRIC MODEL

A general quadric can be denoted by a triplet (A €
R3**3 and symmetric,b € R® ¢ € R), which defines the surface
by the implicit equation

r' Ar + b'r= c, 1

where, r = [z y z]T.
Due to the Spectral Theorem, A has real eigenvalues and

orthonormal eigenspace. Therefore, A = RTDR, where D is
diagonal and R is a rotation matrix. We define the transform
p = Rr+t, @)

which, on substitution in (1) gives

p'Dp + (Rb — 2Dt) p — (c +b' Rt — tTDt) -0 (3
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The simplest form of the quadric, termed its canonical (principal)
form, is achieved if we select

t= % DT (Rb), “

D™ being the Moore-Penrose generalized inverse. For a diagonal
matrix, this inverse consists of all the non-zero diagonal elements
being reciprocated, and the zero elements being left untouched.

III. LEAST SQUARES (LS) QUADRIC FITTING

The quadric equation (1) is only unique upto a scaling factor.
Therefore the ten coefficients of the quadric need to be sup-
plemented by a constraint. In [5], this constraint was taken as
trace(AAT) = 1, based on the argument that it is invariant with
respect to rigid transformations. However, it should be noted that
this constraint effectively loses the ability of the quadric to represent
planes. As shown in Sec. II, it is easy to compute the canonical
form of a quadric which is invariant to rigid transformations as
well. Therefore, we do not commit ourselves to this constraint but
proceed in a general manner.

We first define the following

nt [;c2 y? 22 2xy 2xz 2yz]T, (5a)
at [A1,1 Aso Azsz A1z Ais A2,3]T- (5b)
Eq. (1) can be reformulated as follows
a-n+b-r=c (5¢)
The cost function for the algebraic least-squares fit is
N
C2) (am,+b-r;—c). (6)

i=1

We now proceed in three steps to fit the least-squares quadric, which
includes the degenerate case of the plane.

1) Setting 9¢/0c = 0, one gets the optimum ¢ as

N
1
c*:NZ(a-m—&-b-ri) 2a-p+b-t ()

i=1
2) Substituting (7) in (6) gives
N

G=Y @ @m-m+b- (-1  ®

i=1
Next, we define the following matrices for later reference, the
first two of which are positive semi-definite.

SE> (ri—1)(ri— 1), (9a)

N
QLD (m,—mm,—n), (9b)
¢:1N
P2 (n,—m) -1 90)
i=1
Setting 9¢1/0a = 0 gives
Qa,=Pb (9d)
Similarly, setting 9¢1/0b = 0 gives
Sb,=P'a (%)

In theory, we can use either of (9d) or (9e) to proceed.
However, we note that if the scatter matrix S has a high

condition number, then 9e cannot be used to solve for b,.
This case is exactly the one when the surface is being fit to
an underlying plane [3]. In this case, the eigenvector of S
corresponding to its minimum eigenvalue is the plane’s unit
normal by, we set a = 0, compute the distance of the plane
from the origin using (7), and stop. Thus, in the second step,
we are able to detect if the quadric has degenerated to a plane.

3) If the condition number of S is above a minimum threshold,
we fit a non-degenerate quadric. We use (9e) to solve for b,
and substitute it in (8) to get

[I>

2 i [(@ =)+ e =0s7PT)a| " a0)

T
a Qa, where,

= (11)
Q2Q-Ps P’

(12)

To get a unique solution, we can now enforce the constraint
that ||a,|| = 1. In this case, the a, which minimizes (2 is
simply the eigenvector of €2 corresponding to its minimum
eigenvalue. The optimal vector of linear coefficients b, can
now be obtained from (9¢) and c, from (7).

We have thus obtained a systematic procedure to fit a quadric
which automatically detects degeneracy and fits a plane instead of
a full quadric, if required. The method is quick and incremental and
thus can be used to aid region-growing as described in Sec. IV. It is
however a biased estimate of the quadric due to the quadratic term
[16], and therefore needs to be refined using a maximum likelihood
estimation, as discussed later in Sec. V.

IV. PREPROCESSING AND REGION-GROWING

The underlying idea of the segmentation algorithm based on
region-growing is similar to the previous own work [13] presented
for plane detection. In the case of quadrics, a preprocessing step is
extremely important.

A. Preprocessing

The preprocessing step ensures finding of good starting points,
i.e. seeds, for the newly grown segments. As a rule of thumb, we
look for a fast way of finding at least several seeds per region
that are as far away as possible from the boundary of the surface
patch. This is done in three steps. The first two steps discard noisy
measurements and divide the set of points in possible regions by
detecting edge points, while the third step sorts all points according
to the distance from the boundaries of the regions. Note that the
heuristics used to divide the set of points in regions do not find
the final segments — they only detect clear boundaries between
regions and in general tend to under-segment the range image. In
order to have a dimensionless measure of the thresholds used, the
data are scaled by the maximum range of the sensor such that all
ranges would fall between O and 1.

1) Range discontinuity: The first step in detecting noisy mea-
surements and possible boundaries between segments is to look
for sudden changes in ranges of measurements. This is an intuitive
step, and is controlled by a threshold. If the ranges of neigboring
measurements have a sudden change by more than the given
threshold, then either we are dealing with far away objects, or a
noisy measurement.

2) Surface orientation discontinuity: The second heuristic used
to find edges is to look for sudden changes in surface orientation.
For this, we consider a sliding window of a relatively small size
(in this case 5 x 5) sliding through the range image. Locally, a
surface can be approximated by a plane, thus, fitting a plane to
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the measurements of a small window gives an approximate surface
orientation at the center point of the window. We find all points,
where the orientation of the surface normal changes more than a
predefined threshold. The change is measured by computing the
dot-product between consecutive normals.

3) Selecting seed points: Once the noisy measurements and
possible edges are detected, a wave propagation algorithm is run
from these points giving distances to the potential seeds. The seeds
are sorted according to this distance from the largest to the smallest
and are passed to the region-growing algorithm as a preference list
of starting points for grown segments.

B. Region-Growing

We use a region-growing algorithm for range image segmenta-
tion. Many of its details are quite similar to the segmentation for
extracting planar patches as described in [13]. The main features
are summarized below.

1) Only one region/patch is grown at a time. The region-grower
starts growing regions from certain seed points which have
been found by the preprocessing step to be suitable starting
points. Seeds are taken from a preference list created by the
preprocessor. The growing is done at any point in the range-
image by testing its neighbors using an 8-pixel neighborhood.

2) Equations (9) are implemented in an efficient incremental
manner.

3) When a potential point is tested for its suitability for addition
to the current region, two criteria are used: 1) The least-
squares (LS) mean square error (MSE) of the region should
not exceed a certain threshold, and 2) the distance of the
sample point’s projection on the fitted surface from itself is
not beyond another threshold.

4) The region is allowed to grow till at least 10 points (number
of degrees of freedom of quadric +1) without any tests. If
the region is classified as a plane and the number of points
belonging to it has exceeded a threshold, its type is fixed and
cannot be changed to a real quadric. Otherwise, the region is
allowed to change its type from plane to a full-quadric and
continue growing.

V. MODEL REFINEMENT USING MAXIMUM LIKELIHOOD

After region-growing is finished, we have a set of regions with
the corresponding surface fitted by least-squares. Since least-squares
is biased and since no sensor error model was considered during
its computation, these surfaces need to be refined. We formulate a
maximum-likelihood refinement algorithm in this section.

Assume that the sensor returned a point-cloud r; = p;m;, j =
1...N, where, 1; are the measurement directions for the sensor,
usually accurately known, and p; are the respective ranges which
are noisy. Note that in a range image, m; would form a 2D grid
on the image plane. As in [3], we assume this noise to be of the
form p; ~ N {pi,o*{pi,h; - i} }, where {-} encloses function
arguments, p; is the true range of i-th measurement, and n; is the
local normal of the surface at ¥; £ p;rh; . This implies a covariance
matrix of r; of the form

Cr; = 07{p; ;- 1, } xiayainj, (13)
where the range standard-deviation o{p;, ii; - 1, } is explicitly a
(usually quadratic) function of p; and has been found to be inversely
proportional to n; - m;, i.e. the cosine of the incidence-angle [17].
Two differences to the planar case are immediately obvious:

1) The normal n; is now a function of the sampling direction
m; as well as the quadric (A, b,c). Using the gradient of
the implicit equation, it can be found as

A 2Ar; +b
n=————
[2Ar; + b]]

2) The true-range p; along a given m,; is also a function of the

quadric. It can be found as one of the roots of the quadratic

(14a)

equation
aip; + Bipi —c=0, o 2 An,, (14b)
B; £ b, A; 2 57 4+ daye. (14c)

Clearly, if A; < 0, the ray along m; does not intersect the
surface. If A; > 0, then there are two intersections. If one of
them is negative, then the positive one is selected; if both are
positive, then the one closer to the measured sample point is
selected.

We now define the quadric as a unit-vector in R*C.

v b o] = 1. (15a)

Given a set of N points r; = p;m; hypothesized to lie on a quadric,
The maximum likelihood (ML) problem can then be formulated as
a nonlinear minimization of the negative log-likelihood.

¢ 1o~ (pi = pi)?
min £2 log(oy) += Y (15b)
ioli=1 ; B+ ; o
subject to A; >0, ¢=1...N. (15¢)

It should be appreciated that this is a highly nonlinear cost because
o; is a function of p; and n;, which in turn are functions of & and
m; as shown in Egs. (14). In [3], the range standard deviation was
taken as

Kp;

Oi = 7= =~
B - x|

(16)
based on experimental data from the references cited therein. We
have added the inequality constraints (15c) because quadrics which
do not lead to intersections along measurement directions should
not be considered by the optimizer. We solve the problem (15)
using a numerical method from the MATLAB optimization toolbox,
using the solution of the least-squares (Sec. III) as the initial guess.
Due to the high nonlinearity of the cost function and due to the
presence of inequality constraints, the maximum-likelihood fitting is
computationally quite expensive. After convergence, the optimizer
also provides a numerically computed constrained Hessian, which
can be used to estimate the covariance of the resulting solution.
Unlike the planar case in [3], analytical expressions for the Hessian
cannot be obtained for the quadric case.

VI. RESULTS
A. Experiments with artificial data

To evaluate the improvement of the model refinement using
maximum-likelihood, we have simulated the Swiss-Ranger (SR)
[18] sensor. The sensor noise was modeled as described in the
previous section based on Eq. (16). Different noise levels and
quadric types were investigated.

A typical case showing the advantages of the maximum-
likelihood fitting is presented in Fig. 1. The surfaces were plotted
using a MATLAB plotter for implicit 3D functions — ezimplot3
[19]. Here, a hyperbolic-paraboloid was used as the ground-truth
surface Fig. 1(a). The least-squares solution at the noise level of the
Swiss-Ranger sensor x = 0.0018 [17] is plotted in Fig. 1(b) and
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y [m] 5 0 x[m] y [m]

(a) Ground-truth

Fig. 1.
sensor origin.

the refined solution in Fig. 1(c). This demonstrates a commonly
encountered scenario in which the optimal surface fitted by the
least-squares is of the incorrect type (in this case hyperboloid of
one sheet) and in which the least-squares surface is subsequently
refined by the maximum-likelihood fitting such that it corresponds
to the ground-truth surface type. Moreover, around 10% of the
points could not be back-projected on the least-squares solution
since corresponding measurement directions did not intersect the
optimal surface.

The dependency of the fitting error per point on the noise level
is shown in Fig. 2. The noise level is controlled by changing the
parameter « in Eq. 16. The blue curve represents the average devia-
tion of the noisy measurements from the ground-truth ranges— i.e.
the fitting error explained by the noise. The red and green curves
represent the fitting error for the maximum-likelihood and least-
squares solutions. As can be seen, the least-squares fitting starts to
introduce a structural error when the noise level increases. At the
noise level of the Swiss-Ranger sensor (v« = 0.0018, the vertical
dashed line in the figure), the deviation of the points from the least-
squares solution was 3 times larger than the deviation from the
maximum-likelihood optimal surface.

In the experiment, we made many trials at each noise level
and considered only those cases where the non-linear optimization
was successful, i.e. the optimization method satisfied one of the
convergence criteria before the maximum number of iterations was
reached. The convergence rate dependency on the noise level is
given in Fig. 2. It can be immediately observed that the rate drops
down in the presence of the higher noise. This is usually caused
by a bad initial guess created by the least-squares fitting. The
performance can probably be increased by considering alternative
optimization methods.

B. Experiments with real-world data

Color-coding: In all the images that follow, the patches are color-
coded based on the determined surface patch type: yellowish khaki
for plane, blue for ellipsoid, green for cone, dark magenta for
hyperboloid of two sheets, and red for points which could not be
projected on the surface, as A; < 0 for them.

1) Least Squares Fit: We provide examples from two sensors.
The first one is the Swiss-Ranger which delivers a quite noisy
range image of size 176 x 144 = 25,344 from a field of view
(FOV) of 47° x 39°. A sample range image and point-cloud for an
umbrella on the floor is shown in Fig. 3 and its least-squares based
segmentation is shown in Fig. 4.

The second sample shown in Fig. 5 is from an actuated laser
range finder (ALRF) with much less noise. The ALRF has a
horizontal field of view of 270° of 541 beams. The sensor is rotated
(pitched) by a servo from —90° to +90° at a spacing of 0.5°. This

40 x [m] y [m]

(b) LS solution

4 0

(c) ML solution

Ground-truth surface and sampled points in blue with least-squares (LS) and maximum-likelihood (ML) solutions. The red cross denotes the

o
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Fig. 2. The average error per point (top) and the convergence rate of the
maximum-likelihood optimization (bottom) dependency on the noise level.

gives a 3D point-cloud of a total size of 541 x 361 = 195301 per
sample. The maximum range of the sensor is about 20 meters.

2) Refinement using Maximum-Likelihood: After the maximum-
likelihood was computed to refine the patches found by least-
squares for the Swiss-Ranger example of Fig. 3, the results im-
proved significantly. We used the same sensor noise error model
which was used in [3]. Refer to Figs. 6, 7, 8 to see the improvement.
As seen, the maximum-likelihood algorithm changed the planar
patch on top of the umbrella to a thin ellipsoid, and the main
umbrella ellipsoid to a part of a sheet of hyperboloid of two sheets.
Especially from Fig. 7, which shows the original points in black
overlaid on the colored points projected on the found surfaces, it is
clear that the agreement has improved significantly.

VII. CONCLUSIONS

We analyzed quadric extraction from noisy range images. The
region-growing algorithm was aided by a biased but closed-form
least-squares solution which could detect the case when the quadric
degenerates to a plane. This was followed by a nonlinear optimiza-
tion to solve the maximum-likelihood problem using the sensor
range error model. Experimental results on artificial and real-world
data from two different sensors were provided. We show that
the maximum-likelihood fitting improved the solution considerably.
However, this improvement comes at the cost of an increase in
computational complexity.
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(a) A garden with undulating (b) A point-cloud collected from
grassy terrain and rocks. an actuated LRF. Perspective
view.

(a) The color-coded range image (b) Slanted front view of the point
cloud.

R

(c) Side view of the point cloud showing the noise. The top of
the umbrella is seen to be quite flat.

(c) The segmented range image with the patch types color coded. Note
that the due to the large field of view the range image has spherical
distortion when viewed as a rectangle. The black points represent the
inter-patch boundary and are not used in LS fitting.

Fig. 3. The SR range image of an umbrella.

(d) The point-cloud after the points were projected to the respective
patches.

Fig. 5. A bigger sample of a landscaped Zen garden. The main surface-
(a) The result of segmentation. The black points types found were planes, (large) cones, and ellipsoids.

represent the inter-patch boundary and are not

used in LS fitting.

(b) Front view. (c) Side view.

Fig. 4. Segmentation results for the sample shown in Fig. 3. Figures 4(b)

and 4(c) show the point-cloud after the points were projected to the

respective LS patches. Fig. 6. The segmentation image after the ML refinement step. Note that
the plane on top of the umbrella in LS has been replaced by a thin ellipsoid
in ML. Compare this to the LS result in Fig. 4.
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(1]

0 [2]
-0.1
-0.2
o 3]
(a) LS fitted an ellipsoid to the (b) LS ellipsoid side view.
umbrella.
06 " [4]
[s]
02+
N 04
[6]
0.2
0.4
[7]
05
y x 4 termmr
(c) ML fitted a better one (d) ML Hyperboloid of 8]
sheet of the Hyperboloid of two two sheets side view
sheets to the umbrella.
Fig. 7. Comparing the ML solution to that given by LS. The extracted [9]
patch is overlaid with an extension of the actual quadric found. ML fits the
data much better. See also Fig. 8.
[10]
[11]
[12]
[13]

(a) The points projected on the LS surface-patches, side view. The overlap [14]
with the original points is bad in places as seen on the upper left edge of the
umbrella.

[15]
[16]

[17]

[18]

[19]

(b) The points projected on the ML surface-patches, side view. There is a
considerable improvement in the overlap with the original points compared
to the LS.

Fig. 8. Comparing the ML solution to that given by LS. The original points

in black are superimposed on the points projected on the surface. ML fits
the data much better.
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