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Abstract— This paper describes an approach to interactive
object categorization that couples exploratory behaviors and
their resulting acoustic signatures to form object categories.
The framework was tested with an upper-torso humanoid robot
on a container/non-container categorization task. The robot
used six exploratory behaviors (drop block, grasp, move, shake,
flip, and drop object) and applied them to twenty objects. The
results from this large-scale experimental study show that the
robot was able to learn meaningful object categories using only
acoustic information. The results also show that the quality of
the categorization depends on the exploratory behavior used
to derive it as some behaviors elicit more salient acoustic
signatures than others.

I. INTRODUCTION

The ability to form meaningful object categories is one of

the hallmarks of human infant development [1]. Infants as

young as 6-months-old can learn an abstract representation

of a simple object category [2]. Furthermore, theories in

psychology and cognitive science have proposed that active

interaction with objects is necessary to form categories that

capture the functional properties of an object [3]. Tradition-

ally, however, most methods for object recognition and object

categorization have been vision-based (see [4] for a literature

review). Because these methods rely on passive observation

(as opposed to active exploration) they often fail to capture

the functional properties of objects. For example, two objects

that look the same are indistinguishable with vision but they

may produce different sounds when shaken. Similarly, it is

very hard to specify what a container looks like, but it may

be very easy to detect a container by dropping an object over

it and listening for the specific sound pattern of the object

bouncing inside the container.

In contrast to disembodied vision-based systems, humans

and many animals use active behavioral exploration to learn

about and to classify novel objects [5]. Furthermore, humans

ground object knowledge using multiple modalities (e.g.,

touch and hearing) in addition to vision. Similar behavior-

grounded approaches have proven quite useful in robotics

as well [6] [7]. The advantage of using behaviors to ground

object information is that the robot can autonomously test,

verify, and correct its own knowledge representation without

human intervention [8] [9].

A growing body of empirical studies in embodied acoustic

object recognition supports this view [10] [11] [12] [13] [14].

These studies have shown that probing an object and other

Fig. 1. The upper-torso humanoid robot used in the experiments. The robot
is shaking one of the container objects used in the experiments.

forms of simple contact are sufficient for a robot to identify

the material type from which the object is made of. A robot

can become better at object recognition as it performs more

exploratory behaviors on an object [13]. Further work is

necessary, however, to determine if a robot can use similar

acoustic models to form object categories.

This paper tests the assumption that a robot can form

meaningful categories of objects using only acoustic infor-

mation. The robot’s task was to categorize 10 container

and 10 non-container objects using six different exploratory

behaviors (drop block, grasp, move, shake, flip, and drop

object). The robot automatically formed acoustic outcome

classes by clustering the sounds it observed for a given

behavior. Object categories were determined using the fre-

quency with which different acoustic outcomes occurred with

different objects. The results show that the robot was indeed

able to form meaningful object categories. The results also

show that the number of interactions and the choice of

exploratory behavior affect the quality of the categorization

as some behaviors are better suited for this task than others.

II. RELATED WORK

Relatively few studies have investigated how a robot can

ground the representation of object categories in its sensori-

motor experience. Perhaps the first work toward interactive

object categorization was done by Pfeifer and Scheier [15], in

which a mobile robot traversed its environment with the task

of cleaning it. The robot could lift small objects and push
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medium-sized objects. The robot learned to collect small and

medium-sized objects and to ignore large objects.

Several studies have shown how a robot can learn sim-

ilarities among different types of objects. The robot in the

work described by Sinapov and Stoytchev [16] interacted

with 6 different stick-shaped tools and learned a hierarchi-

cal taxonomy of outcomes for each one. It computed the

functional similarity between two tools by comparing their

outcome taxonomies. In another study, Montesano et al.

[17] created a framework with which a robot learned the

similarity between differently sized spheres and cubes by

learning relationships between the robot’s interactions, the

object’s features, and the observed effects. In the work of

Ugur et al. [18], a simulated robot traversed an environment

with random dispersions of spheres, cubes, and cylinders.

It learned which objects afforded traversability (spheres and

cylinders in lying orientations) from those that did not (cubes

and cylinders in upright orientations). None of the robots in

[16], [17], or [18] performed explicit object categorization.

Metta and Fitzpatrick [19] [6] showed that a robot could

simplify the task of object segmentation and recognition by

probing its environment. When the robot’s arm made contact

with an object it detected a unified area of movement that it

used to delineate the object from the background. This helped

the robot learn an object model for recognition. The robot

also observed the different movement outcomes for each

object (e.g., rollable and non-rollable), which it associated

with the object model.

In the work of Nakamura et al. [20] a robot captured

multimodal object data, which was used to infer the object

properties in one modality using data from another. The

robot squeezed objects to capture hardness, shook objects

to capture sound, and viewed objects from different angles

to capture visual features. They showed that the robot could

infer the hardness of an object from visual information much

better than it could infer whether the object would make

noise using visual information.

In the work of Sinapov and Stoytchev [13], a robot rec-

ognized objects using only acoustic data. The robot acquired

an interaction history of 1800 behaviors by performing 5

interactions (grasp, shake, drop, push, and tap) 10 times on

36 objects. The robot was able to recognize objects from

novel acoustic outcomes with 73% accuracy. The recognition

accuracy increased to 99% when the robot was allowed to

perform all 5 behaviors on the object before determining its

identity. In a follow-up study [14], the robot was also able

to classify objects based on their material type.

Sahai et al. [21] used a robot to categorize 12 different

objects and 12 different surfaces. The categories captured

differences in the usefulness of objects and surfaces for robot

writing tasks. The robot detected marks as it performed 10

trace-making behaviors with each object-surface pair. The

robot categorized objects using the frequency with which

each object left a mark on each surface. It categorized sur-

faces using the frequency with which each surface captured

the traces left by each object.

In our previous work [22], a robot categorized 5 containers

and 5 non-containers using visual information. The robot

dropped a block over an object and observed co-movement

patterns between the block and the object as it pushed

the object. It formed outcome classes by clustering its

observations of co-movement. It formed object categories

by clustering the objects based on the frequency with which

different co-movement outcomes occurred with each object.

The separation of containers and non-containers allowed the

robot to learn a visual representation of each category from

3D depth images, which it used to quickly identify the

category of novel objects.

This paper builds on our previous work [22] by adding

more exploratory behaviors (now 6 instead of 1), increasing

the number of the behavioral interactions with the objects

(now 12000 instead of 1000), and capturing acoustic data

instead of visual movement data. In [22] the robot learned

the object categories using visual co-movement features

specified by a human. In this paper the robot automatically

extracted acoustic features, after exploring 20 objects, and

learned from these features in an unsupervised way. It should

be noted that in this paper, the identity of each object is

assumed to be known. In other words, the acoustic data

corresponding to actions on a specific object is labeled with

the object ID. What is unlabeled is the category (container

versus non-container).

III. EXPERIMENTAL SETUP

A. Robot

All experiments were performed with the upper-torso

humanoid robot shown in Fig. 1. The robot was built with

two 7-DOF Whole Arm Manipulators (WAMs) by Barrett

Technology, each equipped with the Barrett Hand as its end

effector. The WAMs are mounted in a configuration similar

to that of human arms. They are controlled in real time from

a Linux PC at 500 Hz over a CAN bus interface.

The audio data for the experiments was collected with

an Audio-Technica U853AW UniPoint Cardioid Condenser

Hanging Microphone mounted in the robot’s head. The

microphone’s output was routed through an ART Tube MP

Studio Microphone pre-amplifier and a Lexicon Alpha bus-

powered interface, which transmits sound to the PC via USB.

Audio was recorded at 44.1 KHz over a 16-bit channel using

the Java Sound API.

B. Objects

The robot interacted with a small plastic block and 10

different objects (shown in Fig. 2). Each of the 10 objects

was a container in one orientation and a non-container when

flipped over. Flipping the containers was an easy way for

the robot to learn about non-containers while preserving the

dimensions of the objects in the two categories.

The objects were selected to have a variety of shapes,

sizes, and materials. Objects were tall, short, rectangular

and round. They were made of plastic, metal, wicker, and

foam. A few objects that were initially selected could not be
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Fig. 2. The objects used in the experiments. (Containers) The first two
rows show the 10 container objects: wicker basket, metal trash can, potpourri
basket, flower pot, bed riser, purple bucket, styrofoam bucket, car trash can,
green bucket, and red bucket. (Non-containers) The second two rows show
the same 10 objects as before but flipped upside down, which makes them
non-containers for this particular robot with this particular set of behaviors.

used because they were too large to be grasped. Also, the

aluminum fingers of the Barrett Hand did not create a firm

grip with many objects, which was important for a large-

scale experimental study like this one. Therefore, rubber

fingers were stretched over each of the robot’s three fingers

to achieve more reliable grasps.

C. Robot Behaviors

Six behaviors were performed during each trial: 1) drop

the block, 2) grasp the object, 3) move the object, 4) shake

the object, 5) flip the object, and 6) drop the object. A person

placed the block and the object at specific locations before

the start of each experiment. The robot grasped the block

and positioned its hand in the area above the object before

executing the six behaviors listed above. Figure 3 shows the

sequence of interactions for two separate trials.

The drop positions for the drop block behavior were

randomly selected from a 2D Gaussian distribution centered

above the object. The standard deviation was empirically set

to be equal to the width (in pixels) of each object. Thus,

the small block fell inside a container during approximately

70% of all trials with containers. During the other 30% of the

trials with containers (and during trials with non-containers)

the block fell on the table. In some cases the block rolled

off the table (approximately 5% of all trials). In these cases,

the block was left off the table for the duration of the trial.

The other behaviors are self-explanatory (see Fig. 3).
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Fig. 3. Snapshots from two separate trials with a container and a non-
container object. Before each trial a human experimenter reset the setup by
placing the block and the object at marked locations. After grasping the
block and positioning its arm at a random location above the object the
robot performed the six exploratory behaviors one after another.
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Fig. 4. The feature extraction process: 1) The raw sound wave produced by each behavior is transformed to a spectrogram. Each spectrogram has 33
bins (represented as column vectors), which capture the intensity of the audio signal for different frequencies at a given time slice. Red color indicates
high intensity while blue color indicates low intensity. 2) An SOM is trained using randomly selected column vectors from the spectrograms for a given
behavior. 3) The column vectors of each spectrogram are mapped to a discrete state sequence using the states of the SOM. Each column vector is mapped
to the most highly activated SOM node when the column vector is used as an input to the SOM. See the text for more details.

IV. METHODOLOGY

A. Data Collection

The robot collected multiple audio sequences while per-

forming each of the six exploratory behaviors, B = [drop

block, grasp, move, shake, flip, drop object]. The six behav-

iors were organized into trials and always performed one

after another (see Fig. 3). For each of the 20 objects (10

containers and 10 non-containers) the robot performed 100

trials, for a total of 20×100 = 2000 trials. With 6 behaviors

per trial, the robot performed 6 × 2000 = 12000 behavioral

interactions.

Another way to describe this dataset is to say that each

behavior (e.g., shake) was performed 100 times on each of

the 20 objects. Thus, each of the six behaviors was performed

2000 times. During every interaction the tuple (B,O,A)

was recorded, where B ∈ B was one of the six behaviors

performed on object O ∈ O, and A was the recorded audio

sequence.

To minimize the effect of changing background noise

while collecting a dataset of this magnitude, the robot

performed one trial with each of the twenty objects shown

in Fig. 2 before moving on to the second trial with the

first object, and so on. This order was chosen to keep

slow changes in background noise (e.g., air-conditioning and

computer fans) decorrelated from other variables such as

object identity or test behavior.

B. Feature Extraction

Auditory features were extracted automatically by repre-

senting the sounds produced by each behavioral interaction

as a sequence of nodes in a Self-Organizing Map (SOM). The

feature extraction process is the same as in our previous work

[13]. The three stage process includes: 1) a Discrete Fourier

Transform which takes a 44.1 KHz audio sample, Ai, and

converts it to a 33 bin spectrogram, Pi = [pi
1, . . . , p

i
l], where

pi
j ∈ R

33; 2) a 2D SOM that is trained with the spectrograms

corresponding to one of the robot’s six exploratory behaviors;

and 3) a mapping, M(pi
j) → si

j , of each spectrogram column

vector, pi
j , to the most highly activated state, si

j , in the SOM

when pi
j is presented as an input to the SOM (see Fig. 4). The

mapping process results in a state sequence Si = si
1s

i
2 . . . si

l ,

where each si
j stands for one of the SOM nodes.

The robot performed this procedure six times, once for

every behavior. It acquired a set of state sequences, {Sj}
2000
j=1 ,

for each of its six behaviors. This feature extraction method

was chosen because it does not require a human to select

the acoustic features that the robot will have to use. The al-

gorithm identifies and computes features in an unsupervised

way. See [13] for further details.

C. Learning Auditory Outcome Classes

The acoustic outcome patterns produced by a given behav-

ior can be clustered automatically to obtain auditory outcome

classes. As the number of interactions increases, the learned

outcome classes gradually become more stable and more ro-

bust to outliers (see section V.C). In our case, the robot’s task

was to learn 6 separate sets of acoustic outcome classes—

one for each behavior. More formally, the robot learned k

outcome classes C = {c1, ..., ck} from the set of SOM state

sequences, {Sj}
2000
j=1 , observed during the execution of one

of the 6 behaviors. An unsupervised hierarchical clustering

procedure based on the spectral clustering algorithm was

used for this task (spectral clustering is a similarity-based

clustering algorithm [23]). The procedure was performed 6

different times to obtain 6 different sets of acoustic outcome

classes. Figure 5 illustrates the process for only one of them.

The spectral clustering algorithm requires a similarity ma-

trix as its input. The similarity between acoustic outcomes,
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Sa and Sb, represented as sequences of SOM states pro-

duced by two different executions of the same behavior was

determined using the Needleman-Wunsch global alignment

algorithm [24] [25]. The algorithm can estimate the similarity

between any two sequences if the data is represented as a

sequence over a finite alphabet. The general applicability of

the algorithm has made it popular for other applications such

as comparing biological sequences, text sequences, and more

[25]. Computing the similarity of two sequences requires a

substitution cost (i.e., a difference function) to be defined for

any two tokens in the finite alphabet. Here the substitution

cost is defined as the Euclidean distance between any two

nodes in the SOM (each node in the 2D SOM has an x and

a y coordinate).

The resulting similarity matrix, W, was used as input

to the unsupervised hierarchical clustering procedure, which

partitions the input data points (i.e., audio sequences) into

disjoint clusters. The spectral clustering algorithm exploits

the eigenstructure of the matrix to partition the data points.

Finding the optimal graph partition is an NP-complete

problem. Therefore, the Shi and Malik [26] approximation

algorithm was used, which minimizes the normalized cut

objective function. The following steps give a summary of

the algorithm:

1) Let Wn×n be the symmetric matrix containing the simi-

larity score for each pair of acoustic outcome sequences.

2) Let Dn×n be the degree matrix of W, i.e., a diagonal

matrix such that Dii =
∑

j Wij .

3) Solve the eigenvalue system (D − W)x = λDx for

the eigenvector corresponding to the second smallest

eigenvalue.

4) Search for a threshold of the resulting eigenvector to

create a bi-partition of the set of acoustic outcomes that

minimizes the normalized cut objective function. Accept

this bi-partition if the resulting value of the objective

function is smaller than a threshold α.

5) Recursively bi-partition subgraphs obtained in step 4

that have at least β acoustic sequences.

The output of this procedure is k classes of acoustic

outcomes C = {c1, ..., ck}, which are represented as the leaf

nodes in a tree structure (see Fig. 5). In our previous work

[14], the value for α used in step 4 was set to 0.995. The

same value was used here as well. The value for β used in

step 5 was empirically set to 40% of the size of the dataset

that was initially passed to the spectral clustering algorithm.

D. Object Representation and Categorization

The frequency with which some acoustic outcomes occur

with different objects can be used to cluster the objects into

categories. For example, when the robot drops a block over a

container, it will hear the sound of the block bouncing inside

the container more often than when it drops the block over

a non-container, in which case it falls on the table.

Given a set of acoustic outcome classes C ={c1, . . . , ck}
extracted from multiple behavioral interactions with objects

Set of 2000 Spectrograms
for a Given Behavior

.
.
.

- SOM -

Set of 2000 Sequences
(one for Each Spectrogram)

.
.
.

?

Spectral
Clustering

�

Learned Outcome Classes

c1 c2

ck

Fig. 5. Illustration of the process used to learn acoustic outcome classes.
Each spectrogram is transformed into a state sequence using the trained
SOM, which results in 2000 sequences, {Sj}

2000

j=1
, for each behavior. The

acoustic outcome classes are learned by recursively applying the spectral
clustering algorithm on this set of sequences. Acoustic outcomes, C =

{c1, ..., ck}, are the leaf nodes of the tree created by the recursive algorithm.

O = {O1, . . . , O20}, the robot computed an outcome oc-

currence vector Hv = [hv
1, . . . , h

v
k] for each object Ov . The

value of each hv
j represents the number of times the acoustic

outcome cj occurred with object Ov , divided by the total

number of interactions (100 interactions in this case). In

other words, each outcome occurrence vector Hv encodes

a probability distribution over the set of outcome classes,

such that hv
j estimates the probability of observing outcome

class cj with object Ov over the entire history of interactions.

The robot formed object classes by clustering the feature

vectors H1, . . . ,H20 (one for each of the 20 objects shown

in Fig. 2). The X-means unsupervised clustering algorithm

was used for the procedure. X-means extends the standard K-

means algorithm to automatically estimate the correct num-

ber of clusters in the dataset [27]. The robot used this strategy

to categorize the objects. Six different categorizations were

constructed, one for each of the six exploratory behaviors.

The results are described in the next section.

V. RESULTS

A. Object Categorization

Four of the six behaviors produced acoustic signals that

could be used for object categorization: drop block, shake,

flip, and drop object. The (mostly silent) grasp and move

behaviors produced acoustic signals that were very similar

for all objects and the algorithm clustered all 20 objects into

the same object class. Therefore, the results for these two

behaviors are not discussed any further. Figure 6 visualizes

the categorizations produced by the other four behaviors.
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The drop block behavior produced three clusters that were

almost homogeneous. One cluster had containers and the

tall metal non-container (the only misclassified object); one

cluster had the rest of the non-containers; and one cluster

had the three soft material container baskets. The difference

between the softness and hardness of the objects’ materials

was distinctive enough to create two container categories

(cluster 1 and cluster 3 in Fig. 6). The two wicker baskets

and the styrofoam bucket are made of soft materials which

muffled the block’s sound. When the block fell into a hard

container it bounced around longer and produced a louder

sound.

The shake behavior produced results similar to the drop

block behavior. In this case, however, there were only two

clusters and the three soft material container baskets were

incorrectly classified as non-containers. These three objects

produced very little sound when shaken, even if the block

was inside them. Hence, they sounded similar to the non-

containers, which seldom made noise during this interaction.

The tall metal non-container was again misclassified.

The flip behavior was the most reliable way to discriminate

between containers and non-containers in our experiments.

It produced a perfect classification. Flipping the object over

produced a distinct sound in the case of containers as the

small block fell onto the table. In the case of non-containers,

no sound was generated as the block was already on the table.

The drop object behavior resulted in clusters that were

completely heterogeneous. The behavior did not produce dif-

ferent acoustic outcomes for containers and non-containers.

B. Evaluating the Categorization using Information Gain

The category information gain was computed in order

to check whether the robot was able to extract meaningful

object clusters. The information gain captures how well the

object categories formed by the robot resemble the categories

specified by a human. The information gain is high when

the category labels assigned to the objects match human-

provided category labels. It is low otherwise. In other words,

if the information gain is high, then the robot has categorized

the objects in a meaningful way (even though the robot does

not know the human words corresponding to the categories).

Let λ(f) =[O1 . . .OMf ] define an object categorization

for behavior Bf , where Oi is the set of objects in the ith

cluster. Let pi
c and pi

nc be the estimated probability that an

object drawn from the subset Oi will be a container or a

non-container, respectively. Given a cluster of objects Oi,

the Shannon entropy of the cluster is defined as:

H(Oi) = −pi
clog2(p

i
c) − pi

nclog2(p
i
nc)

In other words, an object cluster containing mostly con-

tainers or mostly non-containers will have low entropy,

while a cluster containing an equal number of containers

and non-containers will have the maximum entropy. Hence,

the information gain for the entire object categorization

λ(f) =[O1 . . .OMf ], learned using behavior Bf , is given

by the following formula:
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Fig. 6. Visualization of the object categories formed by the robot for
four of the six exploratory behaviors. The quality of the classification
depends on the behavior that was performed. The flip behavior produced a
perfect classification. The grasp and move behaviors both produced only one
cluster with all twenty objects in it so their results are not visualized. The
other behaviors produced clusters that were not always so pure. Incorrect
classifications (determined from ground truth category labels provided by a
human and the majority class of the cluster) are framed in red.

IG(λ(f)) = H(O) −

Mf∑

i=1

|Oi|

|O|
H(Oi)

To get a baseline information gain value for comparison,

the information gain was computed for a random labeling.

That is, the values for pi
c and pi

nc were estimated after

randomly shuffling the labels of the objects in the clusters Oi

(for i = 1 to Mf ) while preserving the number of objects

in each cluster. The procedure was repeated 100 times to

estimate the mean and the standard deviation. Figure 7 shows

the information gain for each categorization and compares it

to the corresponding baseline average random information

gain.

1857



 

 

0.0

0.2

0.4

0.6

0.8

1.0

In
fo

rm
at

io
n

G
ai

n
Information Gain of a Categorization
Average Random Information Gain

D
ro

p
B
lo

ck

G
ra

sp
*

M
ov

e*

Sha
ke

Flip

D
ro

p
O

bj
ec

t*

Fig. 7. Information gain for the categorizations formed by each of the 6
behaviors after the robot has performed 100 interactions with each of the 20
objects. For comparison, the figure also shows the average information gain
for a random categorization, which was computed by shuffling the category
labels of the objects in each cluster 100 times and estimating the mean and
the standard deviation of the information gain. Human-provided labels were
used for this evaluation procedure (these labels were not used in any part
of the robot’s learning process). Three behaviors had an information gain
of zero, which is denoted by the * character.

The figure shows that the flip and the drop block behaviors

have the highest information gain with respect to the average

random labeling. The information gain for shake shows that

it performed significantly better than chance, albeit not as

well as we expected. The remaining three behaviors had

zero information gain, illustrating that they did not produce

meaningful categorizations. These results show that some

behaviors can be used to form meaningful object categories.

The next section shows how the number of interactions with

each object affects the quality of a categorization.

C. Categorization Performance vs. Number of Interactions

The number of behavioral interactions used by the cate-

gorization procedure was varied to determine if the quality

of a categorization improves when more interactions are

performed. Presumably, for behaviors that have information

gain greater than zero the quality of the categorization with

respect to human labels would improve as the number of

interactions increases. This section tests this hypothesis.

The evaluation was performed by randomly sampling

smaller datasets from the larger dataset described above.

More specifically, N interactions were sampled at random

from the 100 interactions performed with each of the 20 ob-

jects. A new categorization was formed from this new dataset

by: 1) re-training the SOM; 2) converting the spectrograms to

state sequences; 3) forming outcome classes from the set of

state sequences using spectral clustering; and 4) categorizing

objects by their acoustic outcome frequencies. The quality of

the categorization was determined using the information gain

formula described in the previous section. The process was

repeated 10 times for each value of N in order to estimate

the mean and standard deviation of the information gain.

Figure 8 shows the results.
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Fig. 8. Information gain for the categorizations formed by the drop block,
shake, and flip behaviors as the number of interactions with each object is
increased. This graph was computed by randomly sampling N interactions
from the 100 interactions with each object and re-running the learning
algorithms on the smaller dataset. This process was repeated 10 times for
each value of N to estimate the mean and standard deviation. Human-
provided category labels were used to compute the information gain.

This experiment was performed only for the three behav-

iors that produced categorizations with non-zero information

gain (drop block, shake, or flip) using the entire dataset (see

Fig. 7). Figure 8 shows that the information gain of the

resulting categorizations first increases and then converges

after only 40 interactions. The drop block behavior requires

60 interactions. The figure also shows that the variance of the

information gain with respect to human labeling converges

to zero as the number of interactions increases. This is true

for all three behaviors.

VI. CONCLUSIONS AND FUTURE WORK

This paper described a framework that allowed a robot

to interactively categorize objects based on the acoustic

outcomes that they produce when the robot applies different

exploratory behaviors on the objects. The framework is based

on the idea that knowledge about objects should be grounded

in the behavioral and perceptual repertoire of the robot [8]

[9]. A large-scale experimental study with an upper-torso

humanoid robot was conducted to evaluate this framework.

A container/non-container categorization task with 20 objects

was chosen for this evaluation. The fact that meaningful

categories were produced with so many objects lends further

credence to the hypothesis that a robot can interactively

categorize objects using the frequency with which different

perceptual outcomes occur with each object.

The results demonstrate that the categorization accuracy

is highly dependent on the behavior that the robot used to

produce the categorization. Some behaviors simply capture

the ‘container’ property better than others. Interestingly, the

behaviors that best discriminated between containers and

non-containers caused the block to become contained (which

occurred during the drop block behavior) and to become

uncontained (which occurred during the flip behavior). The

drop object behavior did not produce outcomes specific to

the container object category. This suggests that the inter-

1858



active behaviors that can best discriminate between object

categories are behaviors that capture some category-specific

property. Indeed, the results show that the robot performed

well when category-specific interactions were used.

It was also shown that the robot can split the objects

into meaningful categories even though it does not know the

mapping between these categories and the human words for

them. What the robot does know, however, is that the objects

in a given category produce similar distributions of acoustic

outcomes. The robot also knows that the differences between

categories can be explained in terms of the frequencies of the

detected acoustic events.

The are several possible directions for future work. For

example, the framework described here performed well with

data from a single behavior and a single sensory modality

(audio). It would be desirable to investigate how a robot can

combine its observations from executions of different behav-

iors to come up with a single, unified object categorization,

instead of one separate categorization for each behavior.

Future work should also examine how a robot can learn

object categories without using explicit object IDs. Another

direction for future work is to investigate how to combine

observations from multiple modalities (e.g., vision and au-

dio). Combining information from multiple modalities is

useful because one modality may capture discriminative

information that another modality may miss. For example,

while vision can discriminate between containers and non-

containers using the move behavior [22], audio cannot.
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