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Abstract— Many humanoids have been developed, but more
complicated and flexible humanoids must be developed, in order
to realize more natural and various motions like humans.
However, it is difficult to measure directly joint posture in
the multi-dofs joint of such robots (e.g. a hip spherical joint)
because of its complicated structure. This paper describes
an estimation method for tendon-driven joint postures of
these complicated multi-dofs joints, only based on information
of muscles’ length relative displacement data during joints
movement. We regard this posture estimation problem as a
pattern matching problem in the mapping space from joint
posture to muscle lengths and solve this problem by using very
simple searching algorithms. Furthermore, this paper describes
a strategy for deciding muscles motor command to acquire its
joint proprioception by the proposed joint posture estimation
method only based on information of muscles’ length relative
displacement data. Finally, we confirmed the feasibility of the
proposed estimation method by applying this algorithm to the
real tendon-driven musculoskeletal humanoid Kojiro.

I. INTRODUCTION

Many humanoids have been developed, but more compli-

cated and flexible humanoids must be developed, in order

to realize more natural and various motions like humans.

Based on these standpoints, more anthropomimetic muscu-

loskeletal humanoids, which have flexible spine structure and

redundant muscles, are studied in these years[1], [2]. These

humanlike humanoids have not only simple rotational joints

and also complicated joint structures, such as spherical joints

like hip joints, oval spherical joints like wrist joints and

shoulder compound joints, which consist of a collar bone and

a scapulaFig.1. These complicated joints have advantages

that they can build up the joint which has more than 2

degree of freedoms by one simple and compact structure,

and that they are so strong thanks to its large contact surface.

But these joints are difficult to measure their joint posture

directly. This disadvantage can be a big problem in robots’

motion control which needs self joints’ posture. In the case of

a rotational joint, its accurate joint posture(i.e. its joint angle)

can be easily acquired by calibrating base joint angle(i.e.

zero position) when setting the joint to the mechanical joint

limitation and measuring its relative joint angle through an

accurate rotary encoder. In the case of a spherical joint,

its joint relative posture can be estimated by processing

spherical joint’s surface images from a small cellular phone
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Fig. 1. Spherical joint structures of musculoskeletal humanoid Kojiro

camera embedded in the spherical joint’s socket[3]. In the

case of more complicated joints, such as an oval spherical

joint(a human wrist joint), however, it is difficult to embed

devices which measure joint posture into joint’s structure.

It is possible to estimate a joint posture by measuring bone

frame posture both sides of the joint, using gyroscopes and

accelerometers or Hall effect sensors embedded in the bone

frames[4]. These methods are not realistic ways, because

these measurement sensor devices are quite big and they

can often drift. Another problem of these joints posture

measurement is that it is difficult to calibrate base joint

position due to no explicit joint limitation as in the case

of rotational joints.

By the way, we human beings have no sensors to measure

self joints posture directly, but we can acquire self joint

posture sense by integrating body motion information, such

as muscle tension and muscle displacement, from organ of

proprioception that is goldi tendon organ and neurotendinous

spindle. In this paper, this type of joint posture sensation is

named ”joint proprioception”. If musculoskeletal humanoids

can acquire joint proprioception from their muscles’ motion

information like human beings, they need no joint sensor

devices and also no base joint pose calibration. it is very

useful in developing humanoids which have more humanlike

complicated joint structure.

In this paper, we propose how to acquire joint propriocep-
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tion in humanlike musculoskeletal humanoids’ complicated

joints. II describes a basic idea of a joint proprioception,

which is a joint posture estimation method using muscle

relative displacement information during robot’s joint mo-

tion, based on non-linear relationship between joint and

muscle space. III describes an algorithm for joint posture

estimation. In IV, we propose a strategy of muscle motion

commands generation to acquire joint proprioception using

the proposed joint posture estimation method. Finally in V,

we confirmed that joint proprioception could be acquired

using the proposed method, by some experiments of a

musculoskeletal humanoid robot Kojiro we developed.

II. MUSCULOSKELETAL JOINT PROPRIOCEPTION

A. Tendon-driven joint structure dealt in this paper

In this paper, we deal tendon-driven joints which have

more than 2 DOFs, such as spherical joints and shoulder

compound joints, and are driven by redundant muscles

whose relative displacement can be measured. For example,

tendon-driven robots often adopt a wire-pulley driven by

a motor actuator as muscle-tendon mechanism. In these

robots, each muscle(tendon) length displacement can be

indirectly calculated by pulley radius and pulley revolution

measured by motor’s rotary encoder. It is important to need

no absolute muscle length information, which is very

difficult to measure, for joint posture estimation proposed

in this paper.

And also it is desirable to measure each muscle tension

information in order to prevent each muscle from coming

loose during joint motion. It is because that accuracy of

joint proprioception depends on accuracy of muscles relative

length measurement.

B. Joint pose estimation by muscles relative displacements

We assume how to estimate posture of the multi-DOFs

joint which is driven by m muscles. It is an objective to

estimate current joint posture θ(tnow) using muscles relative

displacements data Lr = {lri(t)|i = 1..m, t = t0, ..tnow}
obtained during this joint motion. lri(t) is i muscle relative

displacement at time t. Joint posture estimation can be

regarded as the problem to estimate position of the trajectory

of muscle relative displacement sample data Lr in the

topological map between joint posture θ space and muscle

absolute length La space, as shown in Fig.2.

Therefore, this joint posture estimation is one of localiza-

tion problems. As localization application, global position

estimation for mobile robots has been studied[5]. Basic

localization approach is following:

1) Generation of map
2) Getting inner sensor information of a mobile robot

(Wheel rotary encoder, laser range finder for measuring

distance to walls and obstacles)
3) Identification of global position of a mobile robot

based on sensor information and map knowledge

In localization step 3, it is important using landmarks on

the map(i.e. a corner of a hall, a post, a hedge and so on)

Fig. 2. Image of a joint poseture estimation problem

in order to reduce integration error based on wheel rotary

encoders[6], [7].

These localization approach can be applied to joint pose

estimation problem in musculoskeletal humanoids as follows:

1) Generation of joints-muscle lengths topological map
2) Getting inner sensor information

(muscles relative lengths)
3) Identification of joint pose of a musculoskeletal hu-

manoid

This joint-muscles topological map f : θ → La can be easily

generated by a geometric musculoskeletal robot model which

describes position of joints, size of bones and position of all

muscles attachment points. And also the map can be obtained

by sensor information of real robot body during actual joint

movement. In this case, we have to put joint posture sensor

devices, such as gyroscopes and accelerometers, to the robot

body temporarily.

C. Joint estimation condition: non-linearity of joint-muscles

In order to estimate joint posture based on only relative

muscle displacement information, it is necessary that Jaco-

bian J l between joint posture and muscle lengths is not

constant. In case of the rotational joint mechanism driven

by two tendons whose paths are constrained by the pulley,

Joint-muscles Jacobian J l is constant. In this case, we

cannot identified where the trajectory of relative muscles

displacement sample data Lr is in the map f : θ → La.

On the other hand, in the case of complicated tendon-

driven joint which have complicated tendon paths as shown

in Fig.1, Joint-muscles Jacobian J l is not constant obviously,

that is, the joint-muscles relationship has non-linearity. In

these joints, we can identify position of the trajectory of Lr

in the map. This non-linearity in joint-muscles topological

map is corresponding to landmarks of the map in case

of global position estimation problems for mobile robots.

III. ALGORITHM OF JOINT POSTURE ESTIMATOIN

BASED ON MUSCLES RELATIVE LENGTHS DATA

This section describes the algorithm of joint posture esti-

mation based on muscle relative displacements data during

joint movement. This algorithm consists of two parts: 1)Joint

posture estimation based on current muscle absolute lengths,
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Fig. 3. Joint pose estimation by muscle absolute lengths

2)Base joint posture estimation based on muscle relative

displacements time-series data.

A. Joint pose estimation by muscles absolute lengths

Fig.3 shows joint pose estimation flowchart based on

muscle absolute lengths. The absolute muscles lengths vector

la = (la1
..lam

) at one joint posture vector θ = (θ1...θq)
can be easily calculated by using the geometric muscu-

loskeletal robot model which describes positions of joints

and muscle point of origin and end, where q denotes joint’s

DOFs and m denotes the number of muscles. The table

T [i] = (list θi lai
), i = 1..n between the joint posture

vector and the muscle absolute length vector can be obtained

by quantization of joint posture space and calculation of

the each muscle absolute length vector lai
correspond to

each quantized joint posture vector θi, where n denotes the

number of table elements, that is the number of quantization.

The muscle absolute data vector at time t is defined as

la(t). If we can find the muscle absolute vector laj
, which

has the least vector distance with la(t), among generated

joint-muscle length table T [i] elements, the joint posture

vector θj correspond to laj
can be regarded as the joint

posture θt at time t.

Therefore, joint posture estimation based on muscles abso-

lute lengths can be dealt as a nearest neighbor search problem

as follows:

Error(i) = |lai
− la(t)| (1)

argmin{Error(i)}, i = 1..n (2)

Here, the more joint DOFs is, the more number of quan-

tized table data are generated and the higher computation

cost is needed. In Kojiro’s shoulder 3 DOFs spherical joint,

if the joint posture space is quantized every 1[degree], about

800000 table elements are generated, where dimension of

muscle length vector is 5. In this case, it takes about 3[msec]

to search nearest neighbor vector among all elements on

the Intel Core2Duo 3G[Hz] PC. In this search problem

for joint posture estimation, however, vector dataset of the

table is fixed as long as muscle attachment position does

not be changed. The search time can be drastically reduced

by rebuilding the dataset structure which can be effectively

searched, such as kdtree structure. Actually it takes 4[µsec]

on the same PC condition to do approximate nearest neighbor

search(within 200 steps) from kdtree dataset.

B. Base joint posture estimation by muscle relative length

time-series data

In the real musculoskeletal humanoids, it is difficult to

measure absolute muscle length. In case of Kojiro, whose

muscle actuator system adopts wire-pulley mechanism using

motor, muscle length is calculated based on pulley radius

and pulley revolution by motor’s rotary encoder. Therefore,

we can obtain only relative muscle displacement lr(t) at

time t. In this time, we do not know absolute muscle

length information and we cannot directly use the joint

posture estimation method proposed in III-A. However, joint

posture can be estimated based on the muscle relative length

time-series data Lr = {lr(t)|t = tnow, ..t0} during joint

movement.

If we assume that the joint posture vector at time t = tnow
is θk(i.e. the k th posture vector of the joint-muscles table

T [i]), we can convert all relative muscle displacement time-

series data Lr into absolute muscle length time-series data

Lak
as follows:

Lak
= {la(t) = lr(t)− lr(tnow) + lak

|t = tnow, ..t0} (3)

In Eq. (3), la(t) denotes absolute muscle length vector

at time t and lak
denotes absolute muscle length vector

corresponding to the joint posture θk in joint-muscle table

T [i] in Fig.3.

Here, we can calculate the summation E(k) of estimation

result error Error(i) obtained by joint posture estima-

tion(Eq. (1), Eq. (2)) based on each absolute muscle length

vector dataset Lak
, as follows:

E(k) =

tnow∑

i=t0

Error(i) (4)

If the assumption that the joint posture vector at time t =
tnow is θk(i.e. the k th posture vector of the joint-muscles

table T [i]) is correct, ideally E(k) will be zero. On the

other hand, if the assumption is wrong, E(k) will be greater

value. Therefore, P (i) = 1/E(i) can be a likelihood of

joint posture estimation. The joint posture at t = tnow is

the joint posture whose P (i) = 1/E(i) becomes maximum

in the joint-muscle topological table T [i], i = 1..n. Here,

we should take notice that non-linearity relationship between

joint-muscles is necessary to estimate joint posture based on

relative muscle displacement time-series data as mentioned

in II-C.

IV. MUSCLE MOTION STRATEGY

FOR SELF ACQUISITION OF JOINT PROPRIOCEPTION

In this section, we propose how musculoskeletal robot to

generate self muscle motion commands in order to acquire

its joint proprioception by itself using the joint posture

estimation algorithm proposed in III-B. In order to obtain
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Fig. 4. Relationship between muscle length and joint posture of Kojiro’s
shoulder

muscle relative displacements data during joint movement, its

joints have to be moved under no joint proprioception where

the robot cannot detect its own joint posture. In this case, it

only has to give all muscles controlled by tension arbitrary

tension target commands. For example, the most simple way

is to send a big tension command to only one muscle and

small tension commands to the other muscles. By this way,

some joint torque can be generated and then the joint should

start moving. If the muscle of a big tension command is

changed one by one, enough muscle relative length data can

be obtained, and joint proprioception can be acquired by

applying the joint pose estimation algorithm to these muscle

motion information. However, we should notice that accuracy

of joint proprioception depends on the joint moving area to

obtain these muscle relative length information.

IV-A describes that accuracy of joint proprioception is

involved to the nonlinearity distribution of joint-muscle topo-

logical map and propose a better muscle motion strategy for

self joint proprioception based on it.

A. Relationship between non-linearity distribution in joint-

muscle map and accuracy of joint prpprioception

In II-C, we mentioned that complicated joints can have

non-linear relationship between joint posture and muscle

lengths. Fig.4 shows result plotting one muscle’s length

correspond to joint posture in Kojiro’s 3d-spherical shoulder

joint. In this graph, xy plane indicates shoulder joint posture

space(roll and pitch), and z axis indicates muscle length.

Here, yaw axis of joint posture is 0[degree] and yaw axis is

cut for viewability. Gradient of this graph indicates Jacobian

between joint and muscle length J = ∂l/∂θ. In this graph,

you will notice that the area A is more flat than the area

B. Around the area B even if the joint movement is small,

the muscle length displacement becomes greater than around

the area A. If joint posture is estimated based on the muscle

relative displacement data during joint movement around

the area A, estimation result will be less robust against

measurement noise and less accurate than around the area

B. It is very important to select proper joint posture area

where muscle length data are collected in order to acquire

more accurate and robust joint proprioception.

As the criterion for selection of proper joint posture area,

we propose the summation b(θ) of square sum of each

Fig. 5. Map of joint pose estimation barometer in Kojiro shoulder

element of partial differentiation of joint-muscle Jacobian J

as follows:

Vij = ∂2lj/∂
2θi

b(θ) =

m∑

i=1

q∑

j=1

(Vij × Vij) (5)

where m denotes the number of muscles, q denotes DOFs

of the joint, lj means j th muscle’s length and θi means

i th joint posture angle. If muscle relative length data are

collected around the area where b(θ) is great, joint posture

estimation result will be more robust and accurate.

In order to collect the muscle motion time-series data

during joint movement, however, joint moves within some

range, such as 10[degree] of each joint posture space. Here,

b(θ) is too local criterion around infinite small neighborhood

of the joint posture θ. We redefine new criterion B(θ) as

following:

B(θ) =
∑

i

b(θi) (6)

B(θ) is the summation of b(θi) obtained by quantization

of θ’s neighborhood for joint movement to collect muscle

length data. This B(θ) is corresponding to amount of feature

quantity in the joints-muscles topological map. It means

that more accurate joint posture estimation can be done

around θ which has bigger B(θ). Therefore, we call B(θ)
the joint area criterion for joint proprioception acquisition.

B. Verification of the joint area criterion for joint proprio-

ception acquisition using musculoskeletal geometric model

Fig.5 is the graph plotting B(θ) in each joint posture θ by

applying Eq. (6) to geometric simulation model of Kojiro’s

shoulder spherical joint, where xy plane indicates shoulder

joint posture space(roll and pitch) and z axis indicates B(θ))
value. In this case, we set quantization granularity 3[degree]

and the range of joint movement 10[degree] to calculate

B(θ). Around the area C in Fig.5 joint proprioception result

will be less robust and accurate, on the other hand, around

the area D it will be more robust and accurate.

We prepared two set of muscle relative length time-series

data, which are generated when musculoskeletal geometric
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Fig. 6. Bad result of joint pose estimation:around C(Fig.5)

Fig. 7. Better result of joint pose estimation:around D(Fig.5)

simulation model’s joint is moved around the area C where

shoulder joint posture is roll -20[deg], pitch 20[deg] and

yaw 0[deg] and around the area D where shoulder joint

posture is roll 20[deg], pitch -40[deg] and yaw 0[deg]. And

also white noise(Standard deviation is 1[mm])is added to

both of muscle dataset. Next step, we obtained two kind

of joint proprioception(typeC and typeD) by applying base

joint posture estimation algorithm(III-B) to each dataset of

muscle lengths.

Finally, we did joint posture estimation. Fig.6 shows the

result of joint posture estimation using joint proprioception

type C, and Fig.7 shows the result of joint posture estimation

using joint proprioception type D. Both joint proprioception

were given the same muscle relative length dataset, which

were generated during the same joint motion(Signature wave

centered roll 0[deg], pitch 0[deg], yaw 0[deg]). In this time,

the white noise is added to both datasets. In these graphs,

short dashed lines indicate original joint posture trajectories

and solid lines indicate estimated joint posture trajectories.

Here, we can confirm that the result of joint posture esti-

mation of the joint proprioception(type D) is more accurate

than type C one especially in the case of pitch(blue lines)

and yaw(green lines). This result shows validity of the joint

area criterion(Eq. (6)) for joint proprioception acquisition.

Fig. 8. Joint proprioception acquisition strategy of muscle motion

C. Muscle motion commands strategy based on the joint area

criterion for joint proprioception acquisition

As mentioned in previous subsections, it is very important

the joint area where muscle relative length dataset should be

collected in order to acquire joint proprioception. And we can

use degree of the non-linearity distribution of joint-muscle

topological maps, as the criterion for selection of joint

area. According to this findings, we propose the strategy of

muscle motion commands generation for joint proprioception

acquisition as follows:

1) Reset of muscle relative displacement time-series

dataset ldata
2) Moving joint under tension control toward θestimation

according to the joint area criterion B(θ)
3) Collecting muscle relative displacement time-series

dataset ldata
4) Acquisition of joint proprioception based on ldata
5) Comparison between estimated joint result of the

newest joint proprioception θ(Lnew) and the result of

the former one θ(Lold)
If θ(Lnew) = θ(Lold) then go to end, else go to 1).

In this strategy, self joint movement and acquisition joint

proprioception is repeated alternately until the joint moves

around the goal joint posture θestimation. Therefore constant

joint proprioception will be acquired without depending on

initial joint posture.

V. EXPERIMENT OF JOINT PROPRIOCEPTION

ACQUISITION IN KOJIRO OF THE REAL WORLD

Actually Kojiro’s shoulder spherical joint proprioception

was acquired by using the proposed strategy of muscle

motion command generation. Kojiro’s shoulder joint is the

3 DOFs spherical joint which is driven by redundant 5

muscles. Each muscle is a pulley-wire mechanism driven by

a motor and only muscle relative length displacement can be

calculated from its motor’s rotary encoder and pulley radius.

At first, we generated the joint-muscle topological map

f from geometric musculoskeletal humanoid model in this

experiment. The map’s joint posture space range is roll(from

-30[deg] to 80[deg]), pitch(from -80[deg] to 50[deg]) and

yaw(from -25[deg] to 25[deg]). and the map’s quantization
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Fig. 9. Comparison of joint postures between the real robot and the
estimated result in the case of Kojiro left shoulder sherical joint

Fig. 10. Comparison of joint postures between the real robot and the
estimated result in the case of Kojiro left shoulder sherical joint

granularity is 1[deg]. Next step, according to the joint

proprioception acquisition strategy of muscle motion, joint

proprioception was acquired. At this time, θestimation in

Fig.8 is set to 20[deg], pitch -40[deg] and yaw 0[deg], where

is the area D in Fig.5.

Fig.9 shows demonstration of joint posture estimation

using joint proprioception acquired. We confirmed that the

result of joint posture estimation was quite good. At this

demonstration, we compared the result of the joint posture

trajectory based on the joint proprioception acquired and the

trajectory measured by 3-dimentional position and posture

sensor device1 put on the scapula and the upperarm bone.

The result is Fig.10. In this graph, we confirmed that the

estimation error was within 1[degree] in most joint posture

area. It can be said that joint proprioception is acquired

1which is based on magnetic tracking system(POLHEMUS, 3SPACE
FASTRAK)

enough in real robot body. Around the center of Fig.10,

however, the estimation error becomes quite big. It is because

that the error between geometric robot model and real robot

body occurs around this area, where tendon paths and bone

frames collide against each other. This problem will be

solved by generating the joint-muscle topological map from

the real robot body’s sensors with external joint posture

measurement devices temporarily.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed how to acquire joint propriocep-

tion in humanlike musculoskeletal humanoids’ complicated

joints, which are difficult to embed devices to measure joint

posture directly. A basic idea of a joint proprioception is

a joint posture estimation method using muscle relative dis-

placement information during robot’s joint motion. The point

of this estimation method is to focus non-linear relationship

between joint and muscle space and muscle redundancy,

which are also negative complicated characteristics of mus-

culoskeletal humanoids and also can be rich information

to estimate the joint posture based on the muscle length

displacements.

Furthermore, we proposed a strategy of muscle motion

commands generation to acquire joint proprioception using

the proposed joint posture estimation method and we imple-

mented the proposed method into the real musculoskeletal

humanoid’s system and we confirmed the feasibility and

usefulness of the proposed method in some experiments

around the Kojiro’s shoulder. This self acquisition of joint

proprioception algorithm is innovative to musculoskeletal

humanoids which have very humanlike complicated multi-

DOFs joints. Thanks to this algorithm, it becomes unneces-

sary to do troublesome joint muscle calibration or to put joint

posture sensors which are expensive, big and often drift.

REFERENCES

[1] Owen Holland and Rob Knight. The Anthropomimetic Principle.
In Proceedings of the AISB06 Symposium on Biologically Inspired

Robotics, 2006.
[2] Ikuo Mizuuchi, Yuto Nakanishi, Yoshinao Sodeyama, Yuta Namiki,

Tamaki Nishino, Naoya Muramatsu, Junichi Urata, Kazuo Hongo,
Tomoaki Yoshikai, and Masayuki Inaba. An Advanced Musculoskeletal
Humanoid Kojiro. In Proceedings of International Conference on

Humanoid Robots(Humanoids’07), 12 2007.
[3] Junichi Urata, Yuto Nakanishi, Akihiko Miyadera, Ikuo Mizuuchi,

Tomoaki Yoshikai, and Masayuki Inaba. A three-dimensional angle
sensor for a spherical joint using a micro camera. In Proceedings of

The 2006 IEEE International Conference on Robotics and Automation,
May 2006.

[4] Andreas Haberli. 2D magnetic microsensor with on-chip signal process-
ing for contactless angle measurement. IEEE International Solid-State

Conference Digest of Technical Papers, Vol. 39, pp. 332–333, 1999.
[5] W. BURGARD. Integrating global estimation and position tracking

for mobile robots : The dynamic markov localization approach. pp.
730–735, 1998.

[6] S. KOTANI. Mobile robot navigation based on vision and dgps
information. International Conference on Robotics and Automation,
pp. 2524–2529, 1998.

[7] K. T. SUTHERLAND. Localizing in unstructured environments :
Dealing with the errors. IEEE Trans. on Robotics and Automation,
Vol. 10, No. 6, pp. 740–745, 1994.

1732


