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Abstract—This paper examines the system dynamics of a
networked multi-agent system, operating with a consensus-type
algorithm, that can be influenced by external agents. We refer
to this class of networks as semi-autonomous. We introduce a
control scheme for such semi-autonomous networks, involving
excitation of the network by the external agents, with the
objective of manipulating or steering the network. In this
context, we consider the situation where the external agents
deliver a constant mean control signal. We proceed to examine
the resultant mean and covariance of the network output and
relate these quantities to circuit-theoretic notions of the network,
quantifying the network’s amenability to external signals. Four
protocols for tree graphs, to promote and deter convergence and
to increase and reduce average variance within the network are
then presented. These protocols involve decentralized local edge
swaps that can be performed in parallel and asynchronously.

Index Terms—Semi-autonomous networks; Consensus proto-
col; Graph theory; Coordinated control over networks

I. INTRODUCTION

Consensus-type algorithms provide effective means for

distributed information-sharing and control for networked,

multi-agent systems in settings such as multi-vehicle control,

formation control, swarming, and distributed estimation; see

for example, [1], [2], [3], [4]. An appeal of consensus

algorithms is their ability to operate autonomously over

simple trusting agents. This has the added benefit that

external (control) agents, perceived as simple agents, can

seamlessly attach to the network. These additional agents,

ignoring consensus rules, will influence the system dynamics

compared to the unforced networked system resulting in

scenarios such as leader-follower [2] and drift correction [5].

The detriment is that this same approach can be adopted

by malicious infiltrating agents. We refer to this class of

systems as semi-autonomous networks. In such a setting,

we examine the effectiveness of a constant mean control,

in which external (control) agents deliver a signal with a

constant mean to neighboring native agents in the network.

An electrical network analogy is used to measure the average

convergence cost of the constant mean control and, via the

controllability gramian, its impact on the output variance and

output energy. Four decentralized protocols for tree graphs

are introduced to perform local edge swaps with the objective

of varying the convergence cost and variance of the forced

system.
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These approaches provide insight into the manageabil-

ity (friendly control agents) of the underlying coordination

network and algorithm. The current work is also part of a

more general effort that aims to identify fundamental bounds

on the security (unfriendly control agents) of coordination

algorithms for dynamic systems when controlled or infiltrated

by an adversary. As such, our work is related to other research

works such as those in computer network security [6], spread

of epidemics [7], and predator/prey swarming [8]. The paper

complements work on infiltration-adaption and infiltration-

detection such as [9], [10].

II. BACKGROUND AND MODEL

We provide background on constructs and models that will

be used in this paper, including abbreviated descriptions on

graphs and the consensus protocol, in its unforced and forced

versions.

An undirected graph G = (V,E) is defined by a node

set V with cardinality n and an edge set E comprised of

a pairs of nodes, where nodes vi and vj are adjacent if

{vi, vj} ∈ E ⊆ [V ]
2
.1 We denote the set of nodes adjacent

to vi as N (vi) and the minimum path length, induced by the

graph, between nodes vi and vj as d (vi, vj). The degree δi
of node vi is the number of its adjacent nodes. The degree

matrix ∆(G) is a diagonal matrix with δi at position (i, i).
The adjacency matrix is a symmetric matrix with [A(G)]ij =
1 when {vi, vj} ∈ E and [A(G)]ij = 0 otherwise. The

combinatorial Laplacian is defined as L(G) = ∆(G)−A(G)
which is a (symmetric) positive semi-definite matrix. The

analysis of this paper will be concerned with the spectrum of

the graph Laplacian. That spectrum is assumed to be ordered

as 0 = λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G), where, for brevity,

we have used λi(G) instead of λi (L (G)).
Consider now xi to be node (or for our case agent) vi’s

state. The continuous-time consensus protocol is defined as
ẋi(t) =

∑

{i,j}∈E (xj(t)− xi(t)) where agent pairs {i, j} ∈
E are able to communicate. In a compact form with x(t) ∈
R

n, the collective dynamics is represented as

ẋ(t) = −L(G)x(t), (1)

with L(G) being the Laplacian of the underlying interaction

topology. From the definition of the graph Laplacian all rows

of L(G) sum to zero and λ1(G) = 0 with the corresponding

eigenvector as v1 = 1
T = [1, . . . , 1]

T
. Subsequently, when G

is connected, it can be deduced that x = α1 is a unique global

1The notation [V ]2 refers to the set of two-element subsets of V .
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to R are shorted together. The effective resistance between
two connection points in an electrical network is defined as
the potential drop between the two points, when a current
source with intensity equal to 1 Ampere is connected across
the two points. The i-th diagonal element of −A(G,R)−1

is the effective resistance Eeff (vi) between the common
shorted control agents R and vi. An example of the equivalent
electrical network is displayed in Figure 2. The implication
is that

nJavg (G,R) = tr
(

−A(G,R)−1) =

n
∑

i=1

Eeff (vi) . (3)

B. Average Convergence Protocols for Trees

Further generalizations can be made for the family of

tree graphs T . Tree graphs are often adopted for agent-

to-agent communication topologies as they minimize edge

(communication) costs while maintaining connectivity. First

let us define some properties of Javg (G,R) individual to

trees.

Let us define the special set of agents that lie on any of

the shortest paths between agents in R as main path agents

defined by set M. This is a unique set for a given pair (G,R).
For all vi /∈ M there exists an unique vj ∈ M that has a

shorter minimum path to vi than any other agent in M, we

define this agent as Γ (vi), i.e., Γ (vi) is the closest agent to

vi that is also a member of the main path. Therefore for tree

graphs we can state that:

Lemma 1 (Average convergence): For the

n-agent connected tree T , the average conver-

gence is Javg(T ,R) = (
∑

vi∈M Eeff (vi) +
∑

vi /∈M

[

Eeff (Γ (vi)) + d (vi,Γ (vi))
]

)/n.
Proof: If vi /∈ M then the equivalent electrical network

involving vi can be simplified into a resistor representing

Eeff (Γ (vi)) ohms in series with d (vi,Γ (vi))×1 ohm resis-

tors. The result then follows from (3).

There is an intuitive link between the centrality of an agent in

a network and its influence on the network’s dynamics. This

correlation becomes apparent for tree graphs in the following:

Corollary 1 (Single-control average convergence): For

the n-agent connected tree T the average convergence

of a control agent attached to any agent vi is

Javg(T ,Ri) =
(

∑n
j=1

d (vi, vj) + n
)

/n.

Proof: Follows from Lemma (1) with vi = M and

Eeff (vi) = 1.

Corollary 2 (Single-control average convergence bounds):

For the n-agent connected tree T the average convergence

of a control agent attached to any agent vi is bounded as

2− 1/n ≤ Javg(T ,Ri) ≤ (n+ 1) /2.
Proof: Over all trees, the central node of the star graph

has the smallest accumulative distance of n − 1 to all other

nodes and an end node of the path graph has the largest

accumulative distance of
∑n−1

i=1
i to all other nodes.

We now can propose a pair of protocols over a tree graph T to

locally trade edges (communication links) between adjacent

agents with the objective to deter or encourage the influence

of control agents attached to the network and feeding in a

constant mean signal. We consider a scenario where agents

connected to R broadcast acknowledgment signals informing

Protocol 1 Convergence decrease edge swap

foreach Agent vi do

if ∃vj , vk ∈ N (vi), vj 6= vk and vj , vk /∈ I(vi) then
E → E − {vi, vj}+ {vj , vk}

end

end

Protocol 2 Convergence increase edge swap

foreach Agent vi do

if vk = I(vi), ∃vj ∈ N (vi) and vj 6= vk then
E → E − {vi, vj}+ {vj , vk}

end

end

the network that they are being favorably or unfavorably

influenced and so all agents within the graph are aware of the

local directions of the control agents and more specifically

their neighboring agents that are closest to agents in R.

We denote these agents in the set I(vi) for agent vi. We

clarify that R is solely composed of friendly or unfriendly

agents and agents are able to distinguish between the control

agents intent. The following lemma can be executed concur-

rently and/or in a random agent order, and guarantees that

Javg (T ,R) increases, and a connected tree is maintained at

each iteration. We denote edge removal and addition by the

set notation “−/+.”

Lemma 2 (Edge Swap for Convergence): Consider a tree

graph T1 = (V,E1), if a new graph T2 = (V,E2) is formed

where E2 = E1−{vi, vj}+{vj , vk}, vi, vj , vk ∈ V , vj , vk ∈
N (vi), vj 6= vk and vj , vk 6/∈ I (vi); then Javg(T1,R) <
Javg(T2,R).

Proof: If vm ∈ M then for all vl ∈ N (vm) we have

vm ∈ I (vl). Therefore in regard to the lemma vj , vk /∈ M.
Then from Lemma 1 we have Eeff (vj) = Eeff (vk) =
Eeff (vi) + 1 after the edge flip Eeff (vj) = Eeff (vi) + 2
and all agents downstream of vj effective resistance increases

by 1 as well. Therefore for all agents in T2, the respective

effective resistance increases, e.g. vj , or stays the same and

so Javg (T2,R) > Javg (T1,R).

The decentralized unfriendly Protocol 1 that endeavors to

increase Javg (T ,R) follows from Lemma 2. For all single-

agent controlled trees the graph will eventually reach the

greatest Javg
(

T ,R1
)

= (n+ 1) /2 corresponding to a path

graph with the control agent at an end. All other graphs will

acquire a path-like appearance with the main path unaffected

by the protocol’s edge swaps.

The protocol was applied to a random tree graph on 40

agents with a single control agent connected to v1. The

path graph with the control agent attached to the end was

achieved after 100 edge flips. A sample of the intermediate

graphs and the bound of convergence over all iterations

are displayed in Figures 3 and 4, respectively. The cost

Javg
(

T ,R1
)

increased for each edge flip and no more edges

flips were possible when the tree became a path graph with

Javg
(

T ,R1
)

= 20.5.
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a) the average variance is 1/n
∑n

i=1
E
(

x̃2

i (t)
)

=
(1/n) tr

(

E
[

x̃(t)x̃T (t)
])

= (1/n) tr(P ) as t → ∞ over n
outputs due to a unit intensity white noise input.

b) the energy of the states at the output from an unit

impulse input is
∫∞

0
xT (t)x(t)dt = tr(P ).

We note that P will be dependent on G and R and so
henceforth is denoted by P (G,R). We have,

tr(P (G,R)) = tr

(
∫

∞

0

eA(G,R)τBBT eA(G,R)T τdτ

)

= tr

(

BBT

∫

∞

0

e2A(G,R)τdτ

)

= − (1/2) tr
(

BBTA(G,R)−1
)

.

Lemma 3 (General: tr(P )): For connected graphs and the

influence model (2) tr(P (G,R)) = 1

2

∑

{vi,rj}∈ER
Eeff (vi) .

Proof: We note that BBT is a purely diagonal matrix

with
[

BBT
]

ii
= 1 if {vi, rj} ∈ ER and

[

BBT
]

ii
= 0,

otherwise. Therefore
[

BBTA(G,R)−1
]

ii
=

[

A(G,R)−1
]

ii
if {vi, rj} ∈ ER and

[

BBTA(G,R)−1
]

ii
= 0, otherwise.

The statement of the lemma now follows.

Corollary 3 (Single-control: tr(P )): For connected

graphs and the influence model (2) with one control agent,

tr(P (G,R)) = 1/2.

Proof: The effective resistance of {vi, r1} = ER is

Eeff(vi) = 1 as there is only one resistor link between vi
and r1. The corollary follows.

The implication of Corollary 3 is that on the average, a

single-agent controlled n-agent connected graph has the

same reduction in average variance to white noise and energy

dissipation from an impulse input regardless of the structure

of the network and where the control agent is connected.

D. Noisy and Impulse Control Protocols for Trees

We propose another protocol for tree graphs T now with

the objective of reducing the state variance due to control

agents attached to the network and feeding in unit intensity

white noise. Again the protocol involve local edge trade

executed concurrently and/or in a random agent order which

guarantees that tr(P (T ,R)) decreases and a connected tree

is maintained at each iteration. A complementary protocol to

increase the average state variance is also proposed.

We note for a connected tree graph tr(P (T ,R)) is only

dependent on d (ri, rj) for all {ri, rj} pairs in R, and so only

dependent on the graph of the main path with agents M.

Lemma 4 (Edge Swap for Variance): Consider a tree

graph T1 = (V,E1). If a new graph T2 = (V,E2) is formed

where E2 = E1 − {vi, vj} + {vj , vk}, vi, vj , vk ∈ V ,

vj , vk ∈ N (vi), vj 6= vk and vj , vk ∈ I (vi) then

tr (P (T1,R)) ≥ tr (P (T2,R)).
Proof: Firstly, as vi has |I (vi)| = 2 then vi ∈ M. As

vj and vk are closer to a control agent than the main path

agent vi then vj , vk ∈ M. The edge swap involves removing

vi from M. As tr(P (T ,R)) only depends on the subgraph

involving only agents of M then the effect is to reduce an

edge resistance within the electrical network representing this

subgraph. Rayleigh’s Monotonicity Law states that if the edge

resistance in a regular electrical network is decreased then the

Protocol 3 Average variance reduction edge swap

foreach Agent vi do

if ∃vj , vk ∈ N (vi), vj 6= vk and vj , vk ∈ I(vi) then
E → E − {vi, vj}+ {vj , vk}

end

end

Protocol 4 Unit impulse detection edge swap

foreach Agent vi do
if |I(vi)| > 1 and ∃vj , vk ∈ N (vi), vj ∈ I(vi) and

vk /∈ I(vi) then
E → E − {vi, vj}+ {vj , vk}

end

end

effective resistance between any two agents in the network

can only decrease. This result was extended to generalized

electrical networks. Therefore,
∑

{vi,rj}∈ER
Eeff (vi) will not

increase and the lemma follows.

Protocol 3 that decreases tr(P (T ,R)) follows from this

lemma. Single-agent controlled trees will remain unaf-

fected by this protocol. For double-agent controlled trees

the main path will degenerate to {vi, vj} = M where

({vi, r1} , {vj , r2}) = ER. Protocol 3 was run on a 40 agent

random tree with 3 control agents the original and final

graphs are displayed in Figure 7.

A complementary energy amplification Protocol 4, that

aims to increase tr(P (T ,R)), can also be obtained from

Lemma 2. This protocol is suitable for impulse detec-

tion as larger tr(P (T ,R)) produces higher output energy
∫∞

0
xT (t)x(t)dt.

Remark 2: For |I (vi)| > 2, an edge swap has the effect

of reducing vi’s degree and elongate the main path subgraph.

Rayleigh’s Monotonicity Law cannot be applied in this

scenario as no resistance is being removed from the main

path. Similar to the remark in the previous section these

edge swaps do not guarantee tr (P (T1,R)) ≥ tr (P (T2,R)).
Therefore the posed protocols are the best local-knowledge

edge swapping methods and no guarantees can be made

that the local-knowledge method will converge to the global-

knowledge edge swap solution.

We previously remarked that Protocols 1 and 2 do not alter

the main path. Consequently, by Lemma 3, the tr(P (T ,R))
is conserved throughout these protocols so that, eventhough

the mean convergence is altered, the steady state variance

remains the same. The converse is not true as Protocols

3 and 4 involve manipulations of the main path and, as

remarked in the previous section, this can arbitrarily vary

Javg (T ,R). Generally speaking as tr(P (T ,R)) increases

under Protocol 4 the graphs are elongated and so Javg (T ,R)
tends to increase. Similarly as tr(P (T ,R)) decreases under

Protocol 3 the graphs compress and so Javg (T ,R) tends

to decrease. The extreme examples, for a given r, are star

graphs with smallest Javg (T ,R) and path graphs with

largest Javg (T ,R).
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Original Graph Final Graph

Figure 7. Original random tree and final graph with three external agents
attached (squares) after applying Protocol 3.

IV. EXAMPLE: CLOCK SYNCHRONIZATION

Clock synchronization is often necessary in many dis-

tributed systems improving the consistency of data and the

correctness of algorithms. Precise time synchronization is

needed for distributed application such as sensor data fusion,

scheduling, localization, coordinated actuation and power-

saving duty cycling. Motivated by the work of [5] we

assembled the following experiment.

Consensus on clock time was run on 100 decentralized

computer terminals (our agents) communicating over a tree

network. Because time consensus can only correct for differ-

ential errors between terminals, not absolute errors without a

reference, friendly control agents periodically connect to the

network and deliver the constant correction for the absolute

bias in the system. On connection, the friendly control agents

initiate a friendly flag which is passed through the network,

providing the local direction of the friendly agents and

initiating Protocol 2. The network adapts under this protocol

to promote convergence to the correct absolute clock time.

On disconnection, the agents initiate a disconnect flag.

Similarly, we introduce a malicious control agent that

attempts to drive the system to a false absolute time. On

connection the control adjacent agents send out a distress

signal triggering the network to initiate Protocol 1 so as to

deter the false convergence of the network. It is assumed that

the friendly agents on discovery of an malicious control agent

will clear the network of these foreign agents and trigger the

termination of Protocol 1 before commencing delivery of the

correction signal again. In other words friendly and malicious

agents would not be concurrently connected to the network.

To examine the effectiveness of the protocols, equal time

was provided for both friendly and malicious control agents,

specifically alternating 10 sec intervals for 800 sec. This

switching interval is long enough for transients to settle

and so is appropriate for the protocols. The network was

initialized in a random tree with all agents at the time offset

of 0 sec (the correct offset is 1 sec). The set ER formed over

3 control agents is randomly selected at each new 10 sec

interval. The friendly and unfriendly control agents deliver

time offsets of 1 sec and 0 sec, respectively. The average of

the constant values, i.e. 0.5 sec, would be expected for the

mean offset without the protocols. The protocols are able to

favor the friendly agent bringing the average offset to 0.59

sec. Clock offset means are displayed for the unmodified and

modified graphs in Figure 8.
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Figure 8. The state means (clock offset means) of the unmodified and
modified tree graphs over time.

V. CONCLUSION

This paper presents a formulation of a constant mean con-

trol in semi-autonomous networks. The mean and variance

were examined as they relate to an electrical analogy of

the network. Four decentralized protocols were proposed for

tree graphs to increase or decrease convergence and variance

within the network. The framework provides a setting for

reasoning about amenability of coordination algorithms to

external signals and agents. It also identifies critical graph-

theoretic parameters that can influence the synthesis of net-

work geometries that support the operation of multi-agent

semi-autonomous networks.
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