
Toward Automated Tissue Retraction in Robot-Assisted Surgery

Sachin Patil and Ron Alterovitz

Abstract—Robotic surgical assistants are enhancing physician
performance, enabling physicians to perform more delicate and
precise minimally invasive surgery. However, these devices are
currently tele-operated and lack autonomy. In this paper, we
present initial steps toward automating a commonly performed
surgical task, tissue retraction, which involves grasping and
lifting a thin layer of tissue to expose an underlying area.
Given a model of tissues in the vicinity, our method computes
a motion plan for a 6-DOF gripper that grasps a tissue flap
at an optimal location and retracts it such that an underlying
target is fully visible. The planner considers three optimization
objectives relevant to medical applications: minimizing the
maximum deformation energy, minimizing maximum stress,
and minimizing the control effort in lifting the tissue flap.
The planner can be used to locally improve physician specified
retraction trajectories based on the optimization criteria or to
compute a de novo plan. We use a physically-based simulation to
compute equilibrium configurations of the tissue flap subject to
manipulation constraints. These configurations are used with a
sampling-based planner to explore the space of deformations
and compute an optimal plan subject to discretization and
modeling error. Our experimental results illustrate the ability
of the method to compute retractions for heterogeneous tissues
while avoiding obstacles and minimizing tissue damage.

I. INTRODUCTION

Robotic surgical assistants (RSAs), such as Intuitive Sur-
gical’s da Vinci R© system [8], are enhancing physician perfor-
mance, enabling them to perform more delicate and precise
minimally invasive surgery. Studies have shown that these
robots can improve procedure success rates, reduce bleed-
ing, and decrease recovery time [9]. As a result, hospitals
are increasingly adopting RSAs, with over 1,000 installed
worldwide [8]. In their current form, RSAs are tele-operated;
the surgeon performs the medical procedure using an input
device outside the patient, and the robotic device duplicates
the motions of the input device inside the patient (possibly at
a different scale and with smoothed motions). Because of the
dependence on tele-operation, clinically-used RSAs currently
lack autonomy and require direct control by physicians.

Integrating motion planning with RSAs has the potential to
enable RSAs to perform certain motions autonomously or to
improve physician-specified trajectories to minimize tissue
stress and forces. In this paper, we focus on a relatively
simple but commonly performed task: tissue retraction. The
goal is to manipulate an outer layer of tissue to provide
the physician with a line of sight to an area of interest
underneath while avoiding contact with obstacles and nearby
sensitive structures (see Fig. 1). The manipulation must
balance competing objectives: provide sufficient exposure
and avoid excessively large forces that damage the tissues.
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Fig. 1. During tissue retraction, the tissue flap (initially flat) is manipulated
by the gripper such that the area of interest (marked by the red circle) is
completely visible from a given camera viewpoint (left frame). An obstacle
(protruding from left in left frame, shown at bottom from a different
perspective in right frame) must be avoided during retraction.

Enabling RSAs to autonomously perform sub-procedures
like tissue retraction could have a significant impact on
patient care. Adding some level of autonomy has the potential
to reduce surgical errors by enabling the physician to focus on
the important, challenging aspects of a procedure rather than
being distracted by motion control of devices. This would
also enable RSAs to utilize more than two manipulators si-
multaneously, enabling greater dexterity and faster procedure
completion times. Also, the absence of force-feedback in
most current tele-operated surgical systems hampers physi-
cians’ ability to correctly estimate crucial physical quantities
such as exerted forces and stress buildups in the deformed
tissue. Underestimating these quantities during a procedure
may cause tissue damage, resulting in side effects and longer
recovery times. RSAs utilizing a motion planner with an
embedded physically-based model could improve physician-
specified trajectories to minimize unnecessary tissue damage.

We present an approach to compute plans for automated
tissue retraction using a generic 6-DOF gripper. Our method
can either be used for fully automating the tissue retraction
task (global optimization) or for improving physician speci-
fied retraction trajectories (local optimization). We consider
three optimization objectives relevant to medical applications:
minimizing the maximum deformation energy, minimizing
maximum tissue stress, and minimizing the cumulative con-
trol effort. The method relies on a physically-based simula-
tion to compute equilibrium states of the tissue flap for sam-
pled gripper configurations. These states are used to construct
a global roadmap to explore the space of deformations and
compute an optimal plan that avoids obstacles. To compute
the portion of a target area visible beneath the tissue flap, we
use a fast visibility test using occlusion queries on a graphics
processing unit (GPU). Our planner computes trajectories for
the gripper to accomplish the tissue retraction task while
avoiding obstacles, as shown in Fig. 1.

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 2088



This planner is an initial step toward automating the task
of tissue retraction during robot-assisted surgery. Ultimately,
we plan to improve planner performance and integrate it with
pre-operative medical imaging and RSA hardware.

II. RELATED WORK

Robotic Surgical Assistants (RSAs): Tele-robotic or mas-
ter/slave systems, such as the da Vinci R© system [8], operate
under direct control of the surgeon and offer improved pre-
cision and dexterity for minimally invasive procedures com-
pared to non-robotic approaches [8], [15]. Some autonomous
systems have been successfully used for performing surgeries
on non-deformable tissue (such as bones) when detailed
quantitative pre-operative plans of the procedure are available
[29]. Our approach proposes to autonomously perform the
task of tissue retraction involving deformable tissues.
Modeling of Deformable Objects: Physically-based simu-
lation of deformable objects is a well-studied area in solid
mechanics [30] and computer graphics [22]. The choice of the
underlying model is application-specific and has a substantial
influence on the physical accuracy of the estimated deforma-
tions. Finite Element Methods (FEM) are based on the theory
of continuum mechanics [30] and simulate deformations
accurately at the cost of increased computational complexity
when model parameters are known. Nonlinear FEM models
are preferred when the correctness of the simulation is
important and have been successfully used for simulating soft
tissue for surgical simulations [6], [24], [23].
Motion Planning/Manipulation of Deformable Objects:
Research in robot motion planning and manipulation has his-
torically focused on robots composed of rigid links operating
in environments with rigid objects [20]. Recent work has
begun to explore motion planning for deformable robots in
static environments. Lamiraux et al. [19] developed the f-
PRM framework to plan paths for flexible robots of simple
geometric shapes such as surface patches or simple volumet-
ric elements. Bayazit et al. [3] use a two-tier approach based
on probabilistic roadmaps (PRM) and free-form deformation
(FFD) to plan paths for deformable robots. Gayle et al. [12]
use a constraint-based motion planner for deformable objects
modeled as mass-spring systems. Rodriguez at al. [25] use
rapidly exploring random trees (RRT) to plan for robots
in completely deformable environments. Frank et al. [11]
use co-rotational linear FEM with a PRM-based planner to
achieve significant speedups for path planning in deformable
environments. Motion planning algorithms have also been
developed for clinical applications, including deformable
robots traveling through body cavities [12], deformable lin-
ear objects [21], [26], and flexible needle devices traveling
through deformable tissue [2].

Prior work on robot grasping and manipulation have gen-
erally assumed that the grasped object is rigid [4]. Howard
et al. [17] model deformable parts using a mass-spring
model and use a neural network to control the gripper.
Hirai et al. [16] propose a robust control law for local
manipulations of deformable parts using tactile and video
feedback. Gopalakrishnan and Goldberg [13] extend the

form closure framework to grasping of planar, deformable
objects using a two-point gripper. We address the problem of
motion planning for constrained deformable objects subject
to contact and manipulation constraints.

In concurrent work to ours, Jansen et al. [18] combine
the D-Space framework proposed by Gopalakrishnan and
Goldberg [13] with a geometric approach to compute candi-
date grasp locations and optimal trajectories for automated
tissue retraction. This computationally fast approach con-
siders a 2D cross-sectional model of the tissue flap and
computes trajectories for the gripper in a plane. In contrast,
our approach works with a fully 3D tissue model, handles
generic contact and manipulation constraints, and searches
for optimal solutions in constrained environments containing
obstacles that must be avoided.

III. PROBLEM STATEMENT

We assume that the geometry of the tissue, including the
flap to be retracted and the obstacles, is known from data
obtained from medical images or other sensors. We model the
tissue as a 3D deformable body M (represented as a tetra-
hedral finite element mesh Mref for simulation purposes).
We assume that M has known material properties, which
may be heterogenous throughout the volume of the tissue.
We model the robot gripper as a rigid 6-DOF gripper with
a non-zero surface area of contact. Let qi be a configuration
of the gripper in SE(3).

We do not plan for the motion of the actuators or the
linkages but only consider their cumulative effect on the
gripper pose. We assume that the tissue moves slowly as it is
manipulated by the gripper such that dynamics can be ignored
and we can approximate the process as quasi-static. We also
assume that the motion of the gripper and the subsequent
tissue deformations are deterministic; we plan to consider
the effects of uncertainty due to factors such as material
parameters, actuation, and slippage in future work.

Exerting excessive forces at the gripper or inducing exces-
sively large deformations of soft tissue during manipulation
can cause tissue damage (such as tearing of tissue). We
propose the following optimization objectives which quantify
these crucial physical quantities:

• Minimizing maximum deformation energy: The total
deformation energy of a deformed body provides a quan-
titative measure of the extent of its overall deformation.
In a clinical application, paths that involve high-energy
intermediate states may introduce plastic deformations
and cause other irreversible tissue damage. Paths with
lower deformation energies will be less susceptible to
these effects.

• Minimizing maximum stress: The maximum stress
(tensile or compressive) encountered in the deformed
body represents an upper limit to the forces that can be
applied to deformable objects without causing damage
(such as tearing and fracture) [30]. Minimizing the
maximum stress helps discard states that are close or
beyond the point of damage, resulting in safe plans.
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• Minimizing total control effort: We define the total
control effort expended in performing the task as a com-
bination of the total deformation energy and the gripper
displacement, which measures mechanical effort. Mini-
mizing the total control effort balances two competing
objectives: minimizing the deformation energy of the
intermediate states along the path and minimizing the
total mechanical effort involved in executing the plan.

The choice of optimization objective depends on several fac-
tors such as maneuverability of the gripper in the workspace
and the type of tissue involved in the retraction task and
should be determined by the physician during the procedure.

The problem can now be broken down into two subprob-
lems and formally stated as follows:
Problem 1: To compute a sequence of gripper configurations
(position and orientation) that optimizes the chosen objective
subject to the constraint that the area of interest beneath the
tissue flap becomes completely visible from the physician’s
fixed viewpoint.

Input: Initial configuration of the gripper q0, tissue mesh in
its reference stateMref, area of interest beneath the tissue flap
A, fixed camera viewpoint V , description of the environment
(set of obstacles O) and tissue material parameters (e.g.
Young’s modulus E, Poisson’s ratio ν, and density ρ).

Output: An optimal trajectory (discrete sequence of config-
urations) P = (q0,q1, . . . ,qn) of the gripper to manipulate
the tissue flap and perform the retraction procedure.
Problem 2: The first problem assumes that the initial grasp
location of the gripper is known. This can be generalized to
also compute the optimal grasp location for the gripper q*

0,
which optimizes the chosen objective over all possible grasp
locations for a given scenario.

IV. MANIPULATION AND PATH PLANNING

The two key components of our approach are a sampling-
based global planner and a physically-based simulator as
shown in Fig. 2. For each randomly sampled configuration
of the gripper qi ∈ SE(3) generated by the planner, the
simulator computes the corresponding deformed equilibrium
state of the mesh Mi subject to contact and manipulation
constraints (see Sec. V). These configurations are used to ex-
plore the space of deformations and compute an optimal plan.
It should be noted that even though the planner is essentially
independent of the simulator, the accuracy, correctness, and
speed of computation of the results is implicitly dependent
on the chosen simulator.

A. Generating Valid Samples

Manipulation Constraints: The tissue flap in the mesh M
is assumed to be anchored at a subset of nodes (usually
along one or more edges of the flap) and can be manipulated
by specifying a non-zero displacement of the grasped nodes
along the unconstrained edges of the flap boundary. To
account for a realistic grip, we constrain multiple nodes on
the surface of the flap at the gripper location. Based on the
initial grasp location in the reference state Mref, we define
all nodes within the bounding box of the gripper jaws as
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Fig. 2. System Overview: The probabilistic roadmap (PRM) based global
planner (Planner) relies on the deformable body simulator (Simulator)
to compute static, equilibrium states of the tissue flap corresponding to
randomly sampled gripper configurations and generate an initial roadmap.
The roadmap is queried for an optimal plan based on the chosen optimization
objective, which is validated using the Simulator using a lazy approach.
Notation for input/output explained in Sec. III.

“grasped” nodes. We generate manipulation constraints of
the tissue by randomly sampling configurations qi ∈ SE(3)
of the 6-DOF gripper. For a given sample qi, we displace
and fix all grasped nodes by the transformation given by qi.
As described in Sec. V, we can then compute an equilibrium
mesh stateMi corresponding to the gripper configuration qi.
Checking Mesh Validity: We consider a mesh state Mi

(and corresponding configuration qi) to be valid if the final
topology of the mesh is valid (i.e. no inverted elements or
self-penetration). We use Tetgen [28] to discretize the mesh
and reliably detect self-penetration.
Sample Optimization: Since the gripper configuration qi
is sampled randomly, the equilibrium mesh states may have
undesirably high stresses in the elements constrained by
the gripper. For every valid sample generated, we perform
local gradient-descent optimization on the orientation of the
gripper (while keeping its position in R3 constant) to alleviate
the stress on the constrained elements (as shown in Fig.
3). Our experiments indicate that fewer states are eventually
required in the roadmap to compute a feasible plan if this
local improvement is applied.
Local Improvement of Physician-Specified Trajectories: In
the absence of force-feedback mechanisms and/or restricted
visibility, our method can also be used for local improvement
of physician specified retraction trajectories in challenging
scenarios. The physician indicates an approximate retraction
path for the gripper (using the tele-operated surgical system).
In our implementation, the physician indicates a final gripper
position (in R3) and the trajectory is implicitly defined as
a straight line joining the initial and user-specified gripper
position (as shown in Fig. 4). A multi-linear trajectory (based
on multiple way-points) can also be considered. The gripper
configurations qi are then uniformly randomly sampled in
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Fig. 3. For each sampled gripper configuration, we optimize orientation
to minimize the stresses in the elements constrained by the gripper. For a
randomly generated configuration, these stresses can be high (left). Local
optimization re-orients the gripper to minimize these stresses (right).

a user-defined neighborhood of this trajectory. It should be
noted that the quality of the final solution obtained will
depend on the physician-specified trajectory and the choice
of neighborhood sample distribution.

B. Computing Visibility

The objective of the retraction task is to expose an area of
interest A from the given camera viewpoint V . A mesh state
Mi is designed as a goal state if A is completely visible
from the given viewpoint.

There are two primary types of methods to compute
visibility. Object-space methods intersect the view frustum
of the camera with primitives in the scene and compute
the exact area visible from the given viewpoint. These
methods are exact but computationally expensive. Image-
space methods render a scene as an image from the camera
viewpoint and compute the area visible in terms of pixels.
These methods are approximate but fast. The pixel accuracy
suffices since we are only interested in the exposure of a pre-
defined area of interest. For highly-parallel, fast performance,
we implemented the visibility computation using occlusion
queries on graphics processing units (GPUs) [7]. Based on
results of the visibility tests, we identify the set of goal mesh
states Mg : {M(1)

g , . . . ,M(m)
g } and corresponding gripper

configurations Qg : {q(1)
g , . . . ,q(m)

g }.

C. Constructing the Roadmap

A PRM-based planner can be used to compute a plan from
the start configuration qs and a goal configuration from set
Qg . We store the mesh state Mi along with each sample qi
for computing the distance metric defined below.
Distance Measure: We use a heuristic distance measure [19]
for selecting the nearest neighbors of a sample. If Mi and
Mj are the mesh equilibrium states corresponding to config-
urations qi and qj , then the distance measure is defined as
d(qi,qj) = dD(Mi,Mj)+dC(qi,qj), where dD(Mi,Mj)
is the DISP distance metric defined as the maximum length
over all displacement vectors for each node on the surface of
Mi toMj and dC(qi,qj) is the distance metric between two
configurations defined for the SE(3) group [20]. Attempts
to weight dD and dC have not yielded better results but we
found that using only dD works reasonably well.
Local Planning: We define a path between two samples
represented by gripper configurations qi and qj by linearly

Fig. 4. Heuristic sampling strategy for local improvement of physician
specified retraction trajectories. In our test cases, the user specifies a
trajectory by an initial gripper location and a final gripper position in
R3 (left). The gripper configurations qi are sampled within a user-defined
neighborhood of the trajectory (right).

interpolating between them in SE(3) [20] and executing
the simulator to obtain intermediate mesh states. The edge
connecting any two samples in the roadmap is considered to
to be valid if each of the intermediate mesh states is valid
(see Sec. IV-A) and if both the mesh and the gripper do not
collide with any obstacles in the workspace. We use PQP
[14] for collision detection with obstacles.

D. Assigning Roadmap Edge Weights

We use the optimization objectives outlined in Sec. III to
assign weights to edges in the roadmap. These weights are
computed as follows:
Minimizing maximum deformation energy: The cost of an
edge is set to be the maximum deformation energy encoun-
tered as the gripper moves from configuration qi to qj . The
total energy of a single tetrahedral element τ is given by the
sum of the internal elastic energy stored in the tetrahedron
and the work done by the applied external forces fext on each
of the nodes η ∈ τ . The total deformation energy Πi of the
mesh state Mi is: Πi =

∑
τ∈Mi

v(τ) ·W (E) +
∑
η fηext ·uη ,

where v(τ) is volume of the tetrahedron τ , uη is displace-
ment of node η, E is the Green strain tensor, and W (E) is
the energy density function for the chosen material model.
We refer the reader to [30], [23] for additional details.
Minimizing maximum stress: The cost of a edge is chosen
to be the maximum stress (tensile or compressive) encoun-
tered as the gripper moves from qi and qj . For a tetrahedron
τ ∈ Mi, let σi(Sτ ), i ∈ {1, 2, 3} be the ith eigenvalue
of the second Piola stress tensor Sτ . Positive eigenvalues
correspond to tensile stresses and negative ones to compres-
sive stresses. Since Sτ is real and symmetric, it will have
three real, not necessarily unique, eigenvalues. The maximum
stress in τ is then given by max(abs(σi)), i ∈ {1, 2, 3} [30].
Minimizing control effort in lifting tissue flap: We express
the total control effort C using the metric defined in Moll
et al. [21] along a specified path (q1, . . . ,qn) as: C =∑n−1
i=1

1
2d(qi,qi+1)(Πi + Πi+1). A better approximation of

this integral can be obtained by considering a larger number
of subdivisions along the path.

E. Computing Optimal Plans

The local planner requires running the simulation along the
interpolated path, which is computationally expensive. We
use a lazy local planning scheme [5] to reduce computation
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times. We construct an initial roadmap by assigning edge
weights using configurations at endpoints only. For optimiza-
tion objectives such as minimizing maximum deformation
energy or tissue stress, we set the edge weight to be the
maximum of the objective function value at the two endpoints
(which serves as a lower bound for the actual edge weight).
For minimizing the total control effort, the actual edge weight
is readily computed.

We search for a minimum-cost path from qs to Qg in
this roadmap. We use Dijkstra’s shortest path algorithm for
searching for an optimal path from q0 to Qg for addi-
tive optimization objectives (such as minimizing the total
control effort). The problem of minimizing the maximum
edge weight in an acyclic graph (the edge weight is the
deformation energy or tissue stress in our case) is referred to
as the Bottleneck Shortest Paths problem and can be solved
by a minor modification to Dijkstra’s algorithm [1].

The local planner is used to check if all the edges along
the path are valid. Any invalid edges are discarded and
valid edges are marked as processed and their edge weights
updated. This process is repeated until a valid (optimal) plan
is obtained or no solution is found. As the number of samples
generated in the pre-processing phase increase, the solution
converges to the true optimal.

Since the paths generated by PRM-like methods are not
necessarily short or smooth, we use an iterative shortening
and smoothing scheme to improve the final solution. Given
a solution path comprising of discrete gripper configurations,
P = (q1, . . . ,qn), the final continuous sequence of controls
is obtained by interpolating between the configurations using
a cubic spline [10] to ensure C1-continuity.

V. SIMULATION OF TISSUE FLAP RETRACTION

Simulating soft tissue is challenging since simulation must
provide realistic response to manipulations such as grasping
and pulling. We chose to model tissue deformations using
a finite element method (FEM) and nonlinear continuum
mechanics to account for large tissue deformations. The
tissue itself is assumed to be isotropic and nearly incompress-
ible and exhibit hyper-elasticity according to the St. Venant
Kirchhoff material model (commonly chosen to represent
bio-mechanical deformable objects [24], [23]). We refer the
reader to [30] for an introduction to nonlinear FEM.

The equilibrium configuration of the tissue mesh is deter-
mined by balancing all global external forces fext with all
internal elastic forces Φ(u), where u represents the global
displacement of all the nodes N in the mesh and Φ is a
(possibly nonlinear) function describing the internal elastic
forces as a function of the nodal displacements u.
Assembling External Forces: The tissue flap is subject to
external forces exerted by gravity as well as other contact and
manipulation constraints. To compute gravitational forces, we
use a lumped mass formulation [24]. We resolve collisions
of the flap with the underlying tissue (modeled as a plane
in our experiments) using a penalty-based scheme where
reaction forces are proportional to the penetration depth of
the intersecting nodes. More sophisticated collision resolution

schemes could also be used [11]. We do not directly consider
the interaction forces between the gripper and the tissue flap
and instead fix tissue nodes inside the gripper to the gripper
using displacement constraints.
Assembling Elastic Forces: The elastic force acting on a
node is given by the negative gradient of the elastic energy
in the element with respect to the nodal displacement. The
total elastic force acting on a node is obtained by summing up
the elastic forces exerted by all the individual tetrahedra that
are incident to the node. We follow the approach suggested
in [23] for computing elastic forces. We also add penalty
forces to each node of the tetrahedron proportional to the
variation in the volume of the tetrahedron as suggested in
[24]. This allows us to model the nearly incompressible
nature of soft tissue and to prevent inversion of tetrahedra
under manipulation constraints.
Solving for Static Equilibrium: The tissue flap is anchored
at a subset of nodes (usually along one or more edges along
the boundary of the flap) and is also manipulated by the
gripper. Let Nfix denote the set of anchored nodes (which
have zero displacement) and grasped nodes (for which the
displacement is determined by the gripper configuration qi).
The equilibrium state of the mesh Mi corresponding to the
gripper configuration qi is given by solving the (reduced)
system of equations, Φ̃(ũ) = f̃ext, where ũ represents the
global displacement of all the nodes in the set N \Nfix and
f̃ext represents the external forces acting on the corresponding
nodes. We solve this system of equations using an iterative
nonlinear conjugate gradient solver [27].

VI. RESULTS

We implemented the planner in C++ using OpenMP for
parallelization and tested it on a 3.33 GHz 4-core Intel R© i7TM

PC. We use a rectangular tissue flap model of dimensions 5
cm × 5 cm × 0.25 cm for our experiments. The tetrahedral-
ized tissue flap mesh (constructed using Tetgen [28]) contains
4000 elements. We set tissue density ρ = 1000 kg/m3,
Poisson’s ratio ν = 0.45, and Young’s Modulus E = 1 MPa
(unless otherwise specified) and gravity at 9.8 m/s2 acting
downwards.

We applied our method in two contexts. The first is full
autonomy, where the planner globally sampled the entire
feasible space to compute a de novo plan. The second is local
improvement of a physician-specified trajectory, as shown in
Fig. 4. We evaluated our method using two tissue retraction
scenarios described below.
Scenario 1: Fig. 5 shows an incision in the tissue from
an overhead viewpoint. The objective here is to expose
the arbitrarily shaped area of interest by parting the two
tissue flaps while minimizing the maximum deformation
energy and avoiding obstacles. Since the two tissue flaps are
symmetric in the initial boundary conditions (each tissue flap
has one straight non-fixed edge), we compute equilibrium
mesh states in the pre-processing stage for a single tissue
flap. The optimal initial grasp configuration q*

0 is obtained
by performing an exhaustive search over a set of 5 possible
initial grasp configurations along the free edge of each tissue
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flap. The trajectories of the grippers are then computed by
our framework independently for the two tissue flaps. Fig. 5
shows the optimal initial grasp positions and the retraction
trajectories of the grippers.
Scenario 2: Fig. 6 shows a scenario in which the tissue flap
is free along two straight edges and the gripper is allowed
to grasp anywhere along these edges. An obstacle protrudes
from the side and extends over the tissue flap. The tissue flap
is modeled as a heterogeneous structure with vessels that are
stiffer in comparison to the surrounding tissue. In our imple-
mentation, we use a threshold image of the tissue texture to
segment the vessels and assign appropriate tissue parameters
to the mesh elements in the flap. In this experiment, we set
the Young’s Modulus for the vessels to be 1 MPa and for
the surrounding tissue to 250 KPa. The optimal initial grasp
configuration q*

0 is obtained by performing an exhaustive
search over a set of 9 possible initial grasp configurations.
Figs. 6 and 7 show the optimal grasp locations and retraction
trajectories for the gripper when the objective is to minimize
the control effort and the tissue stress respectively. In both
cases, the gripper successfully lifts the tissue while avoiding
obstacle intersection. Fig. 4 shows the optimized retraction
trajectory obtained after local improvement of a physician-
specified tissue retraction trajectory.
Performance: Table I provides detailed computation times.
Table II compares the variation in the chosen optimization
objective for the global optimization method to compute a
de novo plan versus a local improvement method.

Lazy planning
Scen- Num Sample Collision Mesh FEM Total
ario samples generation detection validation sim

(hrs) (secs) (secs) (secs) (secs)

1 1000 1.21 (± 0.15) 0.56 24.94 7.11 32.71 (± 5.98)

2 1000 3.03 (± 0.23) 1.80 32.85 48.15 83.32 (± 38.98)

TABLE I
METHOD PERFORMANCE. AVERAGE TIMES AND STANDARD DEVIATIONS

COMPUTED OVER MULTIPLE INITIAL GRASP LOCATIONS q
(i)
0 .

Global optimization Local improvement % RMS error
Scen- Num Sample Num Sample Min. Min.
ario samples generation samples generation maximum maximum

(hrs) (hrs) energy stress

1 1000 1.21 (± 0.15) 200 0.16 (± 0.01) 88.9% 73.6%

2 1000 3.03 (± 0.23) 200 0.29 (± 0.02) 65.6% 90.9%

TABLE II
COMPARISON OF THE GLOBAL OPTIMIZATION AND LOCAL

IMPROVEMENT METHODS. % RMS ERROR IN COMPUTED FOR LOCAL
IMPROVEMENT AS COMPARED TO GLOBAL OPTIMIZATION OVER 10

SUCCESSFUL RUNS FOR THE OPTIMAL GRIPPER CONFIGURATION q*
0 .

The sample generation process involves expensive simula-
tions and is the computational bottleneck of our method. We
plan to build on recent advances in finite element simulation
[6] to enable interactive execution of our method. Neverthe-
less, our method is successfully able to compute retractions
for heterogeneous tissues in constrained environments, while
avoiding obstacles and minimizing tissue damage.

VII. CONCLUSION

We have described a framework that takes steps toward au-
tomating the task of tissue retraction in robot-assisted surgical

procedures. The method is directly applicable to arbitrarily
shaped tissue flaps. Given a model of the tissue flap, a
physically-based simulator generates equilibrium mesh states
corresponding to randomly sampled gripper configurations.
These can be used with a sampling-based motion planner to
compute an optimal sequence of controls for the gripper. We
demonstrated the method for several optimization objectives
particularly relevant to medical applications: minimizing the
maximum deformation energy, minimizing maximum stress,
and minimizing the control effort in lifting the tissue flap.

A key challenge in terms of future work is to improve
the speed of the method to enable interactive execution in a
clinical setting. Another important issue that needs to be ad-
dressed is the discrepancy between simulation and observed
tissue behavior due to uncertainty in material parameters,
gripper actuation, and tool-tissue interaction. As in prior
work on Stochastic Motion Roadmaps [2], we will investigate
approaches to encode uncertainty information into the global
roadmap used for tissue retraction planning.
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