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Abstract— Human motion coordination is a long-standing
research issue in biomechanics, and it should also have some
implications for humanoid robot control. We have built a whole-
body somatosensory reflex model based on our neuromuscu-
loskeletal model and identified its parameters through non-
invasive measurements and statistical analysis. Such models
are crucial for analyzing and estimating signals in the nervous
system. In this paper, we focus on signal transmission delay of
the somatosensory reflex loop and investigate its relationship
with the generalization capability of the reflex model. We
obtain some sets of model parameters assuming different
time delays using the data obtained from a stepping motion,
and perform cross validations against stepping motions with
different cycles as well as entirely different behaviors such
as squat and jump. Interestingly, time delays close to the
value expected from physiological properties show better cross-
validation results than others. This result suggests that relatively
simple reflex control can be generalized to multiple behaviors
if the parameters are appropriate, and that robust control is
possible even with large feedback delay.

I. INTRODUCTION

Understanding the mechanism for generating and coor-
dinating human motions is still an open research issue.
Previous effort towards such problems have focused on
either simplified macroscopic model of the musculoskeletal
system [1] or microscopic models of the mechanical [2], [3]
and sensory [4], [5] characteristics of the muscle. However,
there is still a large gap between the two approaches. We have
been building a whole-body neuromusculoskeletal system
for somatosensory calculation [6], [7] to understand this
mechanism utilizing many methods and knowledges from
many different fields.

This mechanism has a hierarchical structure comprising
the reflex behavior, the emotional behavior, and the rational
behavior, in accordance with the hierarchical brain structure
shown by MacLean [8]. A possible approach to understand
the mechanism is to build and identify the model from the
lower part of this hierarchical structure using anatomical,
mathematical, and statistical knowledge, where the lower
part includes the descending pathway from the spinal nerve
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rami to the muscles, and the ascending pathway from the
proprioceptive sensory receptors on the muscles to the spinal
nerve rami. Unlike the central nerve system, the peripheral
nerve system including the somatic nerve system is investi-
gated in the field of medicine and anatomy. For example,
the function of proprioceptive sensory receptors [9], [10]
and the physiological characteristics of muscles [2], [3] are
experimentally verified, and modeled mathematically. The
neuronal bindings between the spinal nerve rami and the
muscles are also investigated in the anatomy field, and
their functionality are partly verified in the field of the
neurophysiology [11], [12].

In [6], [7], we presented our somatosensory reflex model
that attempts to model a part of this system. This model has
a three layered neural network that represents the relation-
ship between the somatosensory information perceived by
proprioceptive receptors (muscle spindle and Golgi tendon
organ) and the muscle activity. The knowledge from many
fields, e.g. anatomical knowledge about neuronal binding
between spinal nerve ramus and muscle and physiological
characteristics of proprioceptive receptors, are implemented
in this model. Its weight parameters that represent the so-
matosensory feedback gains are identified using experimental
human motion data and a back-propagation algorithm.

The time delay caused by the nerve signal transmission
characterizes the timing and amplitude of somatosensory
reflex signals. In this paper, we apply different time delays
at the identification and cross-validation processes of the
somatosensory reflex model. If this time delay is critical
for the motion generation and coordination, an inappropriate
time delay would have a negative impact on identification
and cross-validation results. The experimental results show
that the somatosensory reflex model with appropriate time
delay yields better identification and cross-validation results
than others, and can generalize to multiple motion patterns.
This implies that human motion pattern is characterized by
the geometric nerve structure and the anatomical properties,
and the human nerve structure generates the whole-body
motion pattern only from simple motion command signals.

The rest of this paper is organized as follows. In section
II, we briefly describe our somatosensory reflex model and
present the method to identify the model parameters using
experimental human motion data. The identification and
cross-validation results using different time delays are shown
in section III, followed by the concluding remarks.
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II. SOMATOSENSORY REFLEX MODEL

A. Modeling of Somatosensory Reflex Model [6], [7]

In the human body, the nerve network is composed of the
following elements:

1) α motor neuron, γ motor neuron, and interneuron,
2) efferent pathway,
3) muscle,
4) muscle spindle,
5) Golgi tendon organ, and
6) afferent pathway.

Fig. 1 shows our neuromuscular network model. The model
is constructed as a six-layered neural network. The part en-
closed by the dashed rectangle represents the somatosensory
reflex network model. In this part, each layer represents:

1) NNJ,i(i = 1, . . . , nm) (filled circle): This layer rep-
resents the neuromuscular junctions on the muscles.
Here, nm represents the number of muscles included
in this musculoskeletal model. This layer receives and
integrates the motion command signal from the α
motor neuron in the spinal nerve ramus. The integrated
signal activates the muscle, which produces tension.

2) NMS,i(i = 1, . . . , nm) (filled square): This layer rep-
resents the muscle spindles that measure the muscle
length and its velocity. In our model, these values are
computed by forward or inverse kinematics computa-
tion using the musculoskeletal model.

3) NGT,i(i = 1, . . . , nm) (filled triangle): This layer
represents the Golgi tendon organs that measure the
muscle tensions. These values can be computed from
the muscle activity (the motion command signal) using
the Hill-Stroeve muscle model [2], [3] or from the
inverse kinematics and dynamics computation using
the musculoskeletal model.

These layers are connected to each other as follows:
1) From NNJ to NMS and NGT (solid line): NNJ,i is

connected to NMS,i and NGT,i(i = 1, . . . , nm). The
descending connections between these layers represent
the conversion from the motion command signal to the
muscle tension through the muscle dynamics model,
and this tension is perceived by NGT. This tension
changes the posture of musculoskeletal model subject
to the dynamics of the musculoskeletal model. This
posture determines the muscle length and its velocity,
which are perceived by NMS.

2) From NMS and NGT to NMS (dashed line): These
ascending connections represent the reflex arc between
proprioceptive receptor and muscle via the interneu-
rons and α motor neurons in the spinal nerve rami.
These connections are the main part of this model
and modeled in detail following the anatomical nerve
structure. The neuronal bindings between the spinal
nerve rami and the muscles are also investigated in
the anatomy field [11], [12].

The weight parameters of the somatosensory reflex model
are identified using experimental human motion data. The

TABLE I
NEURAL TRANSMISSION SPEED OF EACH NERVE FIBER [15], [16].

type of fiber transmission speed [m/sec]
α motor fiber 100

Ia fiber 75
Ib fiber 75
II fiber 55

muscle length, velocity and tension are computed using the
inverse kinematics and dynamics computations [13], and
the muscle activity is computed using the physiological
muscle model [2], [3]. We train this network model so that
it outputs the computed muscle activity at NNJ when the
somatosensory information is fed back to NMS and NGT.

B. Time Delay by the Nerve Signal Transmission

One of the critical characteristics of the somatosensory
reflex is the time delay caused by the nerve signal transmis-
sion. The reflex arc consists of the proprioceptive sensory
receptors, the Ia and II nerve fibers, the interneurons and α
motor neuron, and the α motor fiber. The total time delay in
somatosensory reflex therefore consists of:

1) The signal transmission by the Ia/II fiber and the α
motor fiber.

2) Time between the beginning of muscle extension to the
beginning of muscle spindle actual potential discharge.

3) The synaptic transmission from the Ia/II fiber to the α
motor neuron or interneuron.

4) The signal transmission from the end plate to the
muscle fiber.

5) The diffusion of action potential along the muscle fiver.
6) The induction of muscle contraction by the action

potential (excitation-contraction coupling).
The time delay for a particular muscle can be estimated from
physiological properties. The delay 1) (δT ) can be estimated
by dividing the length of the fiber between a spinal nerve
ramus and muscle [14] by the neural signal transmission
speed shown in Table I [15], [16]. The delays 2)–6) (δt)
have been investigated experimentally. In Quadriceps, for
example, the time delay caused by 1) is 16 msec1, and
the time delay caused by 2)–6) is 9–14 msec. So the total
time delay of monosynaptic extension reflex of Quadriceps
is therefore 25–30 msec2.

In this paper, we consider the time delay as a parameter
that represents the geometrical nerve structure of human
body. Based on the hypothesis that the mechanism for
generating and coordinating whole-body motion optimizes its
parameters for the body through the evolution or growth pro-
cess, the time delay of somatosensory reflex that is decided
by the anatomical and physiological structure is assumed to
have some advantages in the motion control. We identify
and cross validate the somatosensory reflex network with
some different time-delay condition δT ′ = δT + δt (δt =

1The distance between Quadriceps and spinal nerve ramus is 800 mm
2This delay is often observed as the latency of knee-jerk reflex.
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Fig. 1. The neuromuscular network modeled with 6 layered neural network. Each layer represents central nerve system, spinal nerve rami, α motor
neuron, neuromuscular joint, muscle spindle and Golgi tendon organ. The part enclosed by dashed rectangle represents the somatosensory reflex network
model.

0, 5, 10, 15, 30, 60msec) to confirm this. If this parameter is
critical for the mechanism of generating and coordinating
whole-body motion, the results of identification and cross
validation will be better with the physiologically appropriate
time delay.

C. Identification of Somatosensory Reflex Model with Time
Delay

The identification proceeds as follows. We first analyze a
whole-body motion with T frames measured using an optical
motion capture system with 35 markers (improved version
of Helen Hayes Hospital marker set). The inverse kinematics
computation based on a nDOF (= 143)-DOF skeleton model
calculates the joint angle data θ ∈ RnDOF ×T , and the
lengths of nm(= 989) muscles and their velocities l, l̇ ∈
Rnm×T . Then an inverse dynamics calculation is carried out
to obtain the generalized force data τG ∈ RnDOF ×T and we
estimate the muscle tensions f ∈ Rnm×T using a biological
muscle model and mathematical optimization. Finally the
muscle activity a ∈ Rnm×T is computed based on the
biological muscle model that represents the relationship
between muscle tension, activity, length, and its velocity [2],
[3].

We then estimate the sensor activities from those physical
quantities. The somatosensory information of the i-th muscle
associated with the somatosensory reflex are mi, the activity
of muscle spindle, and gi, the activity of Golgi tendon organ.
The former feeds back the information of muscle length and
its velocity, and the latter feeds back the muscle tension as

follows:

mi(t) = 4.3l̇i(t)0.6 + 2li(t) + δmi (t = 1, . . . , T ) (1)

gi(t) = fi(t). (2)

Eq. (1) represents muscle spindle model proposed by Proc-
hazka and Gorassini [17] that considers the discharge rate of
the Ia nerve fiber. Here each value ai, mi, gi ∈ RT (i =
1, . . . , nm) is normalized to [0− 1].

Then we identify the parameters of the somatosensory
reflex model. First, the somatosensory information fed back
by the proprioceptive sensory receptors, mref , gref ∈
RnSN n2

m , are computed considering the time delay of nerve
signal transmission. The reflex arc between muscles goes
through one or more spinal rami, and we consider them
separately. If the i-th muscle and j-th muscle are connected
via the k-th spinal nerve ramus:

mref (nSNnm(i− 1) + nSN (k − 1) + j)(t)
= mj(t− δT ′

i,j,k) (3)

gref (nSNnm(i− 1) + nSN (k − 1) + j)(t)
= gj(t− δT ′

i,j,k) (4)

where δT ′
i,j,k is the time delay caused by the nerve signal

transmission from i-th muscle to j-th muscle via k-th spinal
nerve ramus computed from the nerve length and neural
transmission speed. Then we use the simple back propagation
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to obtain the weight parameters W ref,m and W ref,g(∈
Rnm×nSN n2

m) that satisfy:

a(t) = σ(W ref,mmref (t) + W ref,ggref (t)) (5)

where σ(∗) is the sigmoid function:

σ(x) = 2
(

1
1 + e−x

− 1
2

)
. (6)

Here we consider the anatomical neuronal binding between
the spinal nerve ramus and the muscles [18], [19] as the
constraints of these weight matrices. If the i-th muscle and
j-th muscle are not anatomically connected via the k-th
spinal nerve rams, (i, nSNnm(i − 1) + nSN (k − 1) + j)-
th elements of W ref,m and W ref,g are constrained to be
0. The convergence calculation continues until the residue at
the muscle activity:

δa(t) = a(t)− σ(W ref,mmref (t) + W ref,ggref (t)) (7)

becomes sufficiently small.

III. EXPERIMENTAL RESULTS

A. Measurements

We use experimental human motion data for the identi-
fication and evaluation of the neuromuscular network. The
motion data is measured by a commercial optical motion
capture system composed of 10 cameras with the resolution
of 1280x1024 pixels and the frame rate of 200 frame/sec.
The contact forces between the human and the floor are
measured by two force plates. Each plate measures the
center of pressure, three-axial force, and moment around
the vertical axis. The muscle activity is measured by a
wireless electromyograph (EMG) system with 16 electrodes.
Contact force and EMG data are measured at 1000 Hz
and synchronized with the motion data. The subject wears
35 markers based on an improved version of Helen Hayes
Hospital marker set and 16 EMG electrodes on the muscle as
shown in Table II. The muscles to attach the EMG electrode
are selected to cover at least one single- and multi-joint
muscle for flexion and extension of each of hip, knee, and
foot joints.

The following three types of motions are measured for the
analysis:

1) Step motion in 100 step/min by Subject A (DATA100).
2) Step motion in 170 step/min by Subject A (DATA170).
3) Step motion with its speed change gradually from

120 step/min to 150 step/min in 6 sec by Subject A
(DATA120−150).

4) Jump motion by Subject B (DATAjump).
5) Squat motion by Subject B (DATAsquat).

The speed of stepping is controlled with a metronome.

B. Result of Identification of Somatosensory Reflex

First, we train the model with seven different time delays
using the motion data DATA120−150. Fig. 2 shows the result
of identification of the somatosensory reflex network model.
The standard back-propagation algorithm [20] is carried out

TABLE II
MAPPING BETWEEN EMG ELECTRODE AND MUSCLE.

# of channel name of muscle
ch01 / 09 Right / Left Rectus Femoris
ch02 / 10 Right / Left Vastus Lateralis
ch03 / 11 Right / Left Tibialis Anterior
ch04 / 12 Right / Left Gluteus Maximus Os
ch05 / 13 Right / Left Biceps Femoris Caput Longum
ch06 / 14 Right / Left Biceps Femoris Caput Breve
ch07 / 15 Right / Left Gastrocnemius
ch08 / 16 Right / Left Soleus

TABLE III
AVERAGE AND VARIANCE OF ERROR IN THE IDENTIFICATION RESULT.

(DATA120−150)

time delay average variance
δT + 0msec 2.60e-002 1.60e-002
δT + 5msec 2.59e-002 1.42e-002
δT + 10msec 2.40e-002 1.18e-002
δT + 15msec 2.47e-002 1.21e-002
δT + 30msec 2.57e-002 1.20e-002
δT + 60msec 3.97e-002 2.29e-002
δT + 120msec 3.63e-002 1.55e-002

for the training where the learning rate is 0.01, forgetting rate
is 0.001, and the number of iteration is 1000. The horizontal
axis represents time [sec] and vertical axis represents the nor-
malized activity of right Vastus Lateralis. The top and bottom
graph show the first and last 2.5 seconds of DATA120−150

respectively. The black dashed line represents the muscle
activity computed using the musculoskeletal model, and
the solid lines represent the reconstructed activity using
the identified somatosensory reflex networks with different
time delays as shown in the figure. Table III represents the
average and variance of the error between computed and
reconstructed muscle activities.

Then we apply these somatosensory reflex network models
to the other motion data DATA100, DATA170, DATAjump,
and DATAsquat for cross validation. The cross validation is
performed for each of the seven time delays and the resulting
errors are evaluated.

Fig. 3–5 show the results of the cross validation. In each
graph, the horizontal axis represents time [sec] and verti-
cal axis represents the normalized activity of right Rectus
Femoris(Figs. 3 and 4) or right Vastus Intermedius (Fig. 5).
The top graph shows the result of DATA100 and bottom
graph shows the result of DATA170 in Fig. 3, and the top
graph shows the result of DATAjump and bottom graph
shows the result of DATAsquat in Figs. 4 and 5. The line
types and colors are same as in Fig. 2. Table IV represents
the average and variance of error between computed and
reconstructed muscle activity for cross validation. Fig. 6
summarizes the results in Table III and IV as a graph. The
horizontal axis represents the offset of time delay, and the
vertical axis represents the average error of the lower-body
normalize muscle activity and its standard deviation. The
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Fig. 2. The computed activity of right Vastus Lateralis and reconstructed
data for DATA120−150 using the identified neuromusculoskeletal sys-
tem model. Black dashed line: computed muscle activity, red solid line:
reconstructed data by somatosensory reflex system whose time delay is
δT +0msec, green solid line: δT +5msec, blue solid line: δT +10msec,
cyano solid line: δT + 30msec. magenta solid line: δT + 120msec. Top:
first part of stepping motion, bottom: last part of stepping motion.

black dashed line is the result of DATA120−150, the red solid
line is the result of DATA100, the green solid line is the result
of DATA170, the blue solid line is the result of DATAjump,
and the cyano solid line is the result of DATAsquat.

C. Discussion

These experimental results suggest the following points:
1) The result of identification shows that the somatosen-

sory reflex network models can learn the muscle ac-
tivity pattern with only 2–4 % error. The difference
of time-delay offset has little impact on the result
of identification if the offset is less than 30 msec.

If the time delay offset is greater than 60 msec, the
wave shape of reconstructed muscle activity becomes
inaccurate in both timing and amplitude.

2) The cross validations using DATA100 and DATA170

show that the identified somatosensory reflex network
model can estimate the muscle activity with 2 %
error when the time-delay offset is less than 10 msec.
The difference due to the time-delay offset is more
significant than at the identification. Both DATA100

and DATA170 show the minimum error when the time-
delay offset is 10 msec. In particular, the simulated
muscle activity with 10 msec offset is more accurate
at the peaks of the wave form than the others. This time
delay is within the range of measured delay of knee-
jerk reflex (between δT + 9 and δT + 14 msec). The
precision of the reconstruction is somewhat surprising
because the novel stepping motions are much slower
or faster than the learned motion, and the muscle
usage, especially the co-contraction pattern, is likely
to change depending on the speed. Our result suggests
that humans apply similar control strategies for a wide
range of instances of the same behavior.

3) The result of cross validations using the motion data
DATAjump, DATAsquat show that the the identified
somatosensory reflex network model can estimate the
muscle activity with 5 % error when the time-delay off-
set is 5 msec. These motions are significantly different
from stepping, so the usage of synergist and antagonist
muscles and the pattern of co-contraction must be
entirely different. For example, the co-contraction of
the muscles around knee joint at the preparatory phase
of jumping motion is not included in the normal
stepping motion, and it can be computed only with the
measured EMG. The reconstructed activities of Rectus
Femoris and Vastus Intermedius have impulsive shapes
that are same as those seen in the activities computed
using the dynamics computation and optimization3, if
the offset of time delay is appropriately selected. The
difference due to the time-delay offset is much more
significant than the cross validations with DATA100

and DATA170. The wave shape of estimated activity
is significantly different especially in the Vastus Inter-
medius (Fig. 5), and 5 msec is more appropriate than
others in terms of the muscle tension.

4) The comparison between the results of cross vali-
dation using DATA100, DATA170, and DATAjump,
DATAsquat shows the interesting results about the
offset of time delay. Fig. 6 shows that the error changes
particularly in DATAjump and DATAsquat, though it
does not change so much in DATA100 and DATA170.
From statistical point of view, the error does not change
so much if the patterns of data used for the identifi-
cation and cross validation are similar (e.g. between

3We use the measured EMG to estimate the activity of Rectus Femoris,
so its co-contraction during the jump and squat motions appears in the
computed activities.
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TABLE IV
AVERAGE AND VARIANCE OF ERROR IN THE CROSS VALIDATION

RESULT. (AVERAGE / VARIANCE)

delay DATA100 DATA170

0msec 1.65E-02 / 2.60E-04 3.96E-02 / 8.49E-04
5msec 1.89E-02 / 7.46E-04 1.77E-02 / 4.37E-04
10msec 1.63E-02 / 7.10E-04 1.43E-02 / 3.82E-04
15msec 2.00E-02 / 1.09E-03 2.80E-02 / 1.91E-03
30msec 3.21E-02 / 2.34E-03 3.03E-02 / 2.20E-03
60msec 3.32E-02 / 2.54E-03 3.41E-02 / 2.17E-03
120msec 6.51E-02 / 4.53E-03 6.04E-02 / 5.17E-03

delay DATAjump DATAsquat

0msec 1.22E-01 / 1.07E-02 6.76E-02 / 1.62E-03
5msec 5.56E-02 / 1.38E-03 4.54E-02 / 9.18E-04
10msec 8.17E-02 / 4.30E-03 5.70E-02 / 9.69E-04
15msec 7.04E-02 / 2.25E-03 7.59E-02 / 3.56E-03
30msec 8.46E-02 / 7.50E-03 7.51E-02 / 2.92E-03
60msec 1.85E-01 / 1.55E-02 1.55E-01 / 6.26E-03
120msec 2.96E-01 / 5.03E-02 3.17E-01 / 2.18E-02

DATA120−150, DATA100, and DATA170), or there is
no relationship between the somatosensory information
and muscle activity. The phenomenon that the relation
between the time-delay offset and the error of cross
validation is not ever-increasing or -decreasing and
has a minimum value suggests that the reflex system
is optimized for a particular time delay. Furthermore,
this length of time delay roughly matches the value
estimated from the anatomical structure and geometry
of the human body.

5) The result that the somatosensory reflex network model
identified using the stepping motion can be generalized
to jumping and squat motions suggests that there is a
possibility that the human body can generate whole-
body motions only from simple motion command
signals. In this model, muscle activity patterns can
be generated by giving the first few frames of mus-
cle length, its velocity and tension. This information
will work as the trigger for the somatosensory reflex
network model to generate the muscle activity of the
rest of motion.

IV. CONCLUSION

In this paper, we investigated the effect of the nerve signal
transmission delay on the generalization capability of our
human somatosensory reflex model. We first identified the
parameters of the model assuming several different time
delays, using the motion and muscle tension data obtained
from a stepping motion with continuously changing speed.
We then performed cross validations against slower and
faster stepping motions as well as entirely different behaviors
such as jump and squat. The results suggest the following
two important points:

1) The model identified with physiologically appropriate
time delay resulted in better identification and cross-
validation results than others. This result suggests that
the reflex parameters are optimized for the time delay

Fig. 3. The computed activity of right Rectus Femoris and reconstructed
data for DATA100 and DATA170 using the identified neuromusculoskele-
tal system model. The parameter of somatosensory reflex is identified using
DATA120−150. The color of lines are same as in Fig. 2 Top: DATA100,
bottom: DATA170.

determined by the geometric nerve structure of the
human body.

2) The model identified with physiologically appropriate
time delay had better generalization capability to dif-
ferent behaviors than others. This result suggests that
the human nerve structure generates various whole-
body motion patterns only from simple motion com-
mand signal.

These results indicates that the human nerve system gen-
erates muscle activities that realize balanced whole-body
motions by a feedback system as slow as 10 Hz. In con-
trast, today’s humanoid robots usually employ high-speed
feedback control at around 1000 Hz, although their control

5081



Fig. 4. The computed activity of right Rectus Femoris and reconstructed
data for DATAjump and DATAsquat using the identified neuromuscu-
loskeletal system model. The parameter of somatosensory reflex is identified
using DATA120−150. The color of lines are same as in Fig. 2 Top:
DATAjump, bottom: DATAsquat.

is not as robust as human motor control. The somatosensory
reflex model proposed in this paper does not consider the
external forces including the ground contact forces that gives
us the information of environment and our own status. We
expect that including these data as the feedback signal will
improve the accuracy and capability of the somatosensory
reflex model, and give some insights about the generation
and coordination of humanoid robot motions.

Fig. 5. The computed activity of right Vastus Intermedius and reconstructed
data for DATAjump and DATAsquat using the identified neuromuscu-
loskeletal system model. The parameter of somatosensory reflex is identified
using DATA120−150. The color of lines are same as in Fig. 2 Top:
DATAjump, bottom: DATAsquat.
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