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Abstract— Robust feature extraction within 3D environments
is a crucial requirement for many autonomous robotic and
tracking applications. 3D Laser range finders and cameras
provide extremely rich data about an environment. However,
the algorithms which attempt to compress the vast data sets
produced by these sensors into features, tend to be fragile in
the presence of sensor noise, or computationally expensive.

This paper presents a 3D feature extraction technique which
greatly compresses 3D range data based on principal compo-
nent analysis (PCA). PCA can provide a greatly compressed
vector set, representing the dominant directions of data points,
thus grouping them into planes or lines. It is shown however,
that the naive application of PCA to full, 3D, point cloud data
sets, results in a poor representation of the dominant data
directions. Therefore, a combination of a panoramic camera
and 3D laser range finder is used to extract robust planes
from 3D range data. The panoramic camera image is first
filtered with the Mean Shift algorithm to smooth segments
within it, whilst preserving the integrity of the segment edges.
These segments are then used to guide the PCA, through
an approximate image to range space calibration, to act on
the corresponding individual segments of range data. The
application of PCA to segmented subsets of 3D point cloud
data sets, will be shown to be robust for the detection of planes
in both indoor and urban, outdoor environments.

I INTRODUCTION

3D laser range representations of the environment are now
popular, since rich descriptions of an autonomous vehicle’s
surroundings can be made available for robust navigation
[2]. However, since such 3D scans are composed of dense
point clouds, the processing necessary for successful feature
extraction can be overwhelming.

Horn et al. [5] extracted vertical planes from 3D data, with
the aim of aiding autonomous docking procedures, based
on planar data association with predicted plane positions.
Weingarten et. al. used a segmentation method to decompose
the robot navigational space into cells [6]. 3D, laser based,
raw data points were associated with their corresponding
cells and a recursive region growing algorithm was applied
to “grow” the data points into possible planes. Another
approach for 3D planar extraction is discussed in [4]. The
approach employs the expectation maximization algorithm
to fit a planar model to 3D range data. In the presence of
Gaussian noise, the goal of the algorithm is to determine the
set of planes that maximizes the likelihood of the data.
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3D planar extraction from a single still image has been
examined in [13], in which superpixel segmentation is used
to find the 3D position and orientation of the 3D surface
it represents. Such information can also be obtained from
stereo cameras. In [3], a Digiclops tri-stereo camera is used
to provide 3D range information. Grid-based range data seg-
mentation and plane extraction techniques are implemented
with the range data. However, it is pointed out that the
success of stereo vision is highly dependent on lighting,
distance and surface texture conditions.

Laser range finders and cameras have been integrated to
form fused sensing systems for applications varying from
3D SLAM to vehicle recognition [7]. In this article, both
the visual and laser range information are fused under a grid
based scheme. Although grid based methods can, over time,
reduce the effect of sensor errors in autonomous navigation
frameworks, they are accompanied by large computational
issues, since at each time step, each grid cell’s occupancy
probability value must be recalculated.

This paper describes an integrated system which combines
a 3D LADAR and panoramic camera. Visual information is
obtained from stitched images produced by the panoramic
camera and 3D point cloud data is produced by the contin-
uously scanning, 3D laser range finder. It is demonstrated
that dominant data directions, based on principal component
analysis (PCA), can be used to efficiently compress and
represent 3D point cloud subsets of complete 3D laser
range scans. The subsets are generated by first smoothing
the panoramic camera image, whilst preserving, as far as
possible, the image edges. Smoothed regions of approxi-
mately constant colour are then segmented to form clus-
ters. Through an approximately calibrated transformation
between the 3D laser range point and image pixel locations,
the image clusters can be used to extract the corresponding
3D laser point cloud subsets. Applying PCA to these subsets
yields robust, planar segments requiring minimal compu-
tational storage, which can be used as features within an
autonomous navigation framework.

The paper is structured as follows. Section II explains the
camera and laser range finder system and section III demon-
strates the problems of naively applying PCA to complete
3D range scans. Section IV presents the 3D point cloud
data, augmented with colour information. This provides a
calibration between the image and 3D laser range space. The
Mean Shift algorithm segments the images in section V so
that regions of approximate constant colour can be extracted,
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without blurring the region edges. Section VI shows the final
results in which planar regions are successfully extracted
from both outdoor and indoor environments.

II THE PANORAMIC VISION AND 3D LADAR SYSTEM

The sensor system, comprises an in-house built 3D
LADAR, based upon a Riegl laser range finder and a Point
Grey Research, Ladybug 2 camera. The Ladybug is mounted
on top of the 3D LADAR as shown in Figure 1, with their
vertical axes coinciding. The camera is able to produce a

Fig. 1: The panoramic vision and 3D laser range finder.

stitched image to give a 360o field of view of the environ-
ment. To use information from both sensors, correspondents
need to be found, so an approximate calibration between the
two sensors is necessary.

II-A Ladybug 2 Panoramic Camera

The Ladybug-2, panoramic camera is a spherical digital
video camera system. It consists of 5 cameras at the side
of the cylinder covering 360 degrees, and another camera
on the top. 6 images are produced simultaneously. An
image stitching algorithm has been developed to merge the
6 images together and generate a stitched image with a
360o panoramic view. The stitching process determined the
intrinsic and extrinsic parameters of the camera system,
so that the overlapping regions of each individual camera
could be determined and aligned to stitch the six images
together. Figure 2 shows an image of NTU’s School of
Communication after the stitching process.

Fig. 2: A “stitched”, panoramic image of NTU’s School of
Communications.

II-B 3D Laser Range Finder

An illustration of a scan using the 3D LADAR is shown
in Figure 3. At each elevation angle, a full horizontal

Fig. 3: 3D point cloud data from NTU’s School of Commu-
nications.

360 degree scan is performed. The environment is then
represented by batches of horizontal planes at each elevation
angle. Figure 3 shows a point cloud, again of NTU’s School
of Communication. The scan resolution in this case was 720
points per 360o sweep, at 60 elevation angles between ±15o

of the horizontal scanning plane. The scans took 15 seconds
to record, at this resolution with this scanning system.

III 3D PRINCIPAL COMPONENT ANALYSIS (PCA)

PCA is a powerful tool which can determine dominant
data directions within entire data sets, and use these to
represent the data in a compressed form with little loss of
information [9]. A brief overview of the algorithm is now
presented, along with the problems it yields when naively
applied to 3D laser range data.

Assuming a 3D set of data X = {xi, yi, zi} with i =
1, 2, ..., n, the means xm, ym and zm of the data set of each
coordinate value, are given by:
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where n is the number of points per 3D scan. By subtracting
the relevant mean from each data point the data variance
terms can be calculated as:
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Figure 4 shows the results of applying PCA to the real
data set of figure 3. The axes shown in red, represent the
ellipsoid of the covariance matrix from equation 3. The
lengths of these correspond to the eigenvalues of the matrix,
and their directions lie in the corresponding directions of
their eigenvectors. The axes lengths in the figure are of com-
parable magnitudes, and hence do not detect any dominant
data directions within the point cloud, indicating a “random”
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Fig. 4: PCA covariance matrix principal directions superim-
posed on the point cloud data of figure 3.

nature to the data. If however, an appropriate portion of the
point cloud is removed from the figure, this results in figure
5, where the eigenvalue axis lengths are 2.0, 7.01 and 17.01
respectively. One of the axis lengths is significantly smaller

Fig. 5: A subset of the point cloud of figure 3, with its
covariance matrix principal directions superimposed.

than the other two, which indicates 2 dominant directions in
the point cloud data. This implies that the 3D point cloud
subset can be approximately represented as a 2D plane, as
is visually evident as most of the data comes from the flat
ground.

This indicates that some form of segmentation of the full,
3D, point cloud data sets is necessary before PCA can be
successfully applied. Therefore, colour information from the
Ladybug-2 panoramic camera is to be used to first segment
the 3D laser range data into suitable regions in which PCA
can be applied with greater success. This first requires an
approximate calibration between the laser range points, and
their corresponding colour intensity values in the camera
image.

IV 3D LADAR - CAMERA CALIBRATION

The aim of the calibration of the panoramic camera
system and laser range finder is to produce 3D colour

Fig. 6: Range-colour calibration. Each 3D point has a range,
bearing, elevation and red, green, blue intensity value.

registered laser range data, as shown in figure 6. The laser
range finder yields point cloud data of the form P (ρ, α, β)
where ρ is the range to the point, α is its bearing angle with
respect to a datum on the sensor and β is its elevation angle.
The calibration method described in [8], in which known
correspondents in the real world between their laser range
points P (ρ, α, β) and image pixel coordinates I(xi, yi) with
red, green, blue intensity values [ri, gi, bi]T is used. This
results in a transformation linking each laser range point
with an image point (if it lies within the field of view of the
panoramic camera), so that each laser range point can be
augmented with colour information P (ρ, α, β, r, g, b), giving
a coloured point cloud (the output in figure 6).

By fusing the colour values of each pixel with the 3D
point cloud, coloured 3D scans are obtained as shown in
Figures 7 and 8. Since the calibration is not perfect, some

Fig. 7: Coloured 3D point cloud from NTU’s School of
Communications.

Fig. 8: Coloured 3D point cloud within an indoor laboratory.

points are indexed with the incorrect colour, this is due to
errors in the transformation matrix. However, in terms of
overall performance, the fusion gives a better visualization of
the environment. Trees, walls, posters, objects and buildings
possess textures and colours as their appearance in the real
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world. The main point however is that, due to the colour
information which is an addition attribute of the objects,
feature identification can be easily achieved.

V IMAGE FILTERING AND SEGMENTATION

As shown in section III, segmentation is of paramount
importance before PCA can be successfully applied to range
data. Accurate segmentation relies on smoothing sections
of the image, whilst maintaining the localisation of the
edges between these sections. Then, smoothed regions with
approximately constant colour (HSV) values1 will be ex-
tracted to form segments. Numerous filtering methods exists
which simultaneously attempt to preserve image edges.
Anisotropic diffusion is an image smoothing method which
prevents smoothing across edges by performing averaging
in the orthogonal direction to the gradient of the luminance,
which has also been directly applied to laser range data
[1]. Its convergence properties are not however guaranteed
under all image possibilities [12]. Bilateral filtering [10]
is a non iterative scheme for edge preserving smoothing
which combines colour space and spatial domain filtering.
The Bilateral filter has been shown to produce excellent
smoothing, but can degrade the localisation of the edges
between different colour regions. The Mean shift algorithm
[11] and [12], which is a non-parametric estimator of the
density gradient in the spatial-colour range domain, is a
useful tool for edge preserving, filtering and segmentation.
The Mean shift algorithm is a clustering technique which
does not require prior knowledge of the number of clusters
and is therefore applied in this work.

V-A Image Filtering: The Mean Shift Algorithm

The Mean Shift algorithm [11] and [12] makes use of a
Kernel density estimation technique known as the Parzen
window technique, which is the most popular density esti-
mation method, to determine the convergent centroid of the
window. The idea is to find the local maxima of a probability
density on both the colour and spatial information within the
image. Figure 9 illustrates the procedure of the algorithm, in
which the points shown represent the spatial distribution of
points within an image. Since an image is a combination

Fig. 9: The Mean Shift algorithm – principle of operation.

of spatial and colour spaces, the Mean Shift algorithm
smoothes, but at the same time preserves the edges. To apply
the Mean Shift algorithm to an image, for each j = 1...n,
where n is the number of the image pixels we:

1) Initialize k = 1

1Note that Hue, Saturation, Value (HSV) colour coding is used, as it is
less sensitive to ambient lighting than Red, Green, Blue (RGB) coding.

2) Initialize a new variable yk = xj , for each image pixel
xj , where xj is a vector containing the spatial and
range (colour) information of pixel j.

3) Compute yk+1 = 1
nk

∑
xi∈S1(yk) xi, where S1(yk) is

a window with a predefined radius, centered on yk,
and there are nk points are in the window.

4) Increment k, and repeat step 4 until convergence by
checking ‖ yk+1 − yk ‖< exp−3m where m is the
greater value between hs and hr (defined below).

5) Assign zi = (xs
i , y

r
conv). This implies that image pixel

at xj has the range (colour) components of the point
of convergence yr

conv .

In this work, the spatial and range (colour intensity as an
integer between 0 to 255) thresholds hs and hr were set to
8 and 7 respectively, and M (the minimum cluster size) was
set to 100 pixels. These settings produced good results with
moderate computational time.

In order to examine how lighting affects the filtering
process, indoor and outdoor environments were examined
separately. The first batch of results are from the out-
door scene. The system was setup in front of the NTU
communication school. It was recorded at noon and under
a clear sky (figure 10). The other scene was inside the
NTU Autonomous Robotics Research Laboratory (figure
11). The room was subjected to artificial lighting. Careful

Fig. 10: Original (upper) and mean shift filtered (lower)
images of NTU’s School of Communications.

Fig. 11: Original (upper) and mean shift filtered (lower)
images of NTU’s Autonomous Robotics Research Lab.

examination of both scenes shows that successful smoothing
and image edge preservation is possible in both outdoor and
indoor environments.
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V-B Segmentation

After image filtering, a clustering process takes place. The
aim is to segment the image into small regions according
to the closeness of spatial and colour range information
after the filtering process. This is so that the corresponding
laser point cloud data can be extracted for PCA to be
applied. An algorithm is applied to find the connectivity
between neighbouring pixels. Two pixels are considered as
connecting to each other if their difference in spatial and
range (colour) value is less than the given threshold (hs and
hr). A label index is assigned to the cluster to differentiate
one from another. Then, based on this cluster index, the
range data is segmented and PCA is applied to determine
if the data forms a line or a plane. The process can be
illustrated as the flow chart shown in Figure 12. First, a

Fig. 12: Flow diagram: Visually aided range segmentation.

connectivity matrix is initialized as shown in Figure 13. It
is a binary matrix. If m and n are the width and height of the
given image, the connectivity matrix is initialized with the
size of (2m+1)×(2n+1). Binary 1 is assigned to locations
{2i, 2j} for all i = 1, 2, ...,m and j = 1, 2, ..., n. Binary 0
is assigned to the remaining cells of the matrix. This ensures
that every “1” is surrounded by “O”s. The left, right, top and
bottom cells of each binary 1 will contain the information
between the image pixel with its left, right, top and bottom
neighbours respectively. Binary 1 is assigned to the cell if
the difference for both spatial and range value between the
two cells is below the given threshold (hs = 8 and hr = 7),
and binary 0 otherwise. Figure 14 is an example of the final
output of the connectivity matrix. After all binary 1s and
0s are filled in the matrix, based on the comparison made
between each pair of adjacent pixel values, the connectivity
test takes place to group all the pixels which connect to
each other. In Figure 14, three clusters are formed. In order
to facilitate range data segmentation later, the colour value
of each pixel is replaced by the cluster label.

In the Mean Shift algorithm, the clustering is constrained

Fig. 13: Initialization of the connectivity matrix.

Fig. 14: The final connectivity matrix and labeled clusters.

by another parameter M . Clusters whose number of pixels
fall below the value of M are eliminated. In this case, the
value of M is set to 100 pixels. Label value 0 is assigned
to pixels which do not belong to any cluster. Figure 15

Fig. 15: Mean Shift filtering and segmentation.

shows the result of Mean Shift filtering and segmentation.
It highlights one section of the image undergoing filtering
and segmentation. Different clusters are visualized by using
different colours as shown in Figure 16.

Fig. 16: Segmented image of the School of Communications.

It can be observed that some regions (shown in the
original image colour) didn’t belong to any clusters. This
is because these regions were assigned a number of pixels
less than the value of M . In Figure 15, it is clear that there
are two clusters and a stripe (horizontally in the middle of
the highlighted boxes in Figure 15) which doesn’t belong
to any of the two clusters. Figure 17 shows the cluster map
corresponding to the cut region of the image. Three values
appear in the map. Numerical figures 38 and 40 represent
two clusters respectively, where 0 represents those pixels not
belonging to any clusters in the map. cluster labels from the
image space are then attached to each range data point to
assign that particular range point to the cluster.

The central images in figures 18 and 19 show the coloured
point cloud data from figures 7 and 8 respectively, and
their respective colour segmentation. The different colours
represent different clusters or objects in the environment.
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Fig. 17: Segmentation labeling and clustering.

VI PCA WITH SEGMENTED RANGE DATA

After range segmentation, PCA is applied to the seg-
mented data as represented in Figure 12. Figures 18 and 19
show the results of applying PCA to the segmented range
data from the outdoor and indoor environments respectively.
The range data is segmented according to the number of
the clusters in the image. The cluster index number tag is
attached to each range data point to identify which cluster
that particular range data belongs to. Moreover, the range
data can now be sorted based on the cluster index number.
For each cluster, the range data undergoes PCA to determine
whether the data belongs to a plane, a line or is randomly
distributed over the, now reduced, segmented space.

For each point cloud cluster, their mean and covariance are
calculated. Then, the eigenvalues of the covariance matrix
(equation 3) are obtained. In figures 18 and 19, the bold
red lines in each segmented range image represent the axes
of the ellipsoid of the covariance matrix. In this particular
case, a ratio test is carried out for each set of eigenvalues.
For i = 1, 2, 3, assuming λi, to be the eigenvalues of the
data set, their ratios are defined as

Ti =
λi

λ1 + λ2 + λ3
(4)

These ratios determine the categories of the data. If one, two
or none of the Ti is/are smaller than the given threshold T ,
it indicates that the data set is estimated to be approximately
on a 2D plane, co-linear or randomly scattered (meaning no
extracted features) over the given space respectively.

For the outdoor scene, 12 sets of segmented range data
corresponding to 12 clusters of the image are found (figure
18), and 9 segments are found in the indoor scene (figure
19). PCA was then applied to each set of segmented point
cloud data, resulting in the successful detection of planer
sections within the 3D environments. The threshold T was
set to 1%, for the accepted detection of lines or planes.

For example, for cluster 12 in figure 18, the eigenvalues
λ1, λ2 and λ3 of the covariance matrix are 8.205, 80.40 and
176.198 respectively, giving ratios (equation 4) T1 = 3.09%,
T2 = 30.29% and T3 = 68.72%, all of which are greater
than T = 1%. Therefore, this data segment is assumed
random, although 2 of the directions dominate. This makes
sense, since that section of the image shows a section of
a building wall (planar) which is corrupted with trees and
their shadows on the floor. This is clearer in figure 20.

2The index is shown on the corner of each segmented point cloud set in
figures 18 and 19.

Fig. 18: PCA applied to the segmented outdoor scene.

In cluster 10 the eigenvalue ratios are 0.09%, 24.01%
and 75.9% respectively, and the data is assumed to be
approximately co-planar. The normal of the plane can be de-
termined from the eigenvector corresponding to the smallest
eigenvalue: u = −0.0146i−0.0043j+0.9999k which makes
sense (figure 21) since that portion of scan corresponds to
the floor and has a normal in the z-axis direction.

In cluster 5 of figure 19 the eigenvalue ratios are 0.21%,
47.47% and 52.32%. T1 is once again smaller than the
threshold, and the eigenvector corresponding to λ1 is u =
0.1552i +0.9879j +0.0024k. This plane is perpendicular to
the y-axis and is a section of the vertical wall (figure 22).

VII CONCLUSIONS

PCA is a simple, yet powerful technique capable of
representing large 3D data sets in terms of their dominant
directions. It was demonstrated that if the data can first
be segmented, then PCA could yield useful and efficient
features from the segmented subset of the data.

To carry out the segmentation process of 3D point cloud
data, an integrated 3D laser range finder and panoramic
camera system was built and described. After an approx-
imate calibration, the system was able to provide 3D point
cloud data with augmented HSV colour information. The
Mean Shift image smoothing algorithm allowed the image
to be segmented into clusters, which were then used to
segment the corresponding 3D point cloud data into smaller
groups. Finally, PCA was applied to each of these groups
to categorize the data as planar, linear or random in form.
The results showed a high performance in terms of plane
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Fig. 19: PCA applied to the segmented indoor scene.

Fig. 20: Segment 1 from fig. 18 and its dominant directions.

extraction, in both indoor and outdoor environments, and
yielded their planar surface normals.

It should be noted however that misclassification between
laser range and image data can occur due to several factors:
1) Calibration errors can cause colour values to be assigned
to the wrong range data points; 2) Different objects having
the same colour can be clustered into the same group;
3) Single objects having several colours can be split into
groups of clusters; 4) Different lighting conditions can
cause different segmentation results. Since only dominant
directions are determined within subsets of 3D point clouds,
the presented feature extraction method is robust to small
amounts of the above errors.

As an extension to this work, an error feedback system
could be possible to minimize the calibration error. A cluster
from an image is linked to a certain subset of the range data,
through the calibration. If the corresponding range point
subset then fails to yield PCA based dominant directions,
the calibration could be erroneous. The range data subset

Fig. 21: Segment 10 from figure 18 - a horizontal plane.

Fig. 22: Segment 5 from figure 19 - a vertical plane.

could then be trimmed in a methodical manner, dependent on
the relationship between 3D range points and image points,
to remove possible out-lier data, which could then be used
to automatically adjust the calibration parameters. This is a
focus of our ongoing research.
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