
A Fast n-Dimensional Ray-Shooting Algorithm for Grasping

Force Optimization

Yu Zheng, Ming C. Lin, and Dinesh Manocha∗

Abstract

We present an efficient algorithm for solving the

ray-shooting problem on high dimensional sets. Our

algorithm computes the intersection of the boundary of

a compact convex set with a ray emanating from an in-

terior point of the set and represents the intersection

point as a convex combination of a set of affinely inde-

pendent points. We use our intersection algorithm to

compute two types of optimal grasping forces, where

either the sum or the maximum of normal force com-

ponents is minimized. In our simulation, the algorithm

converges well and performs the computations in tens

of milliseconds on a laptop.

1. INTRODUCTION

Given a collection of surfaces and objects in R
n,

the ray-shooting problem deals with computing the first

intersection point on the boundary of the objects by a

query ray. This problem has been well studied in com-

putational geometry and computer graphics over the last

four decades [1]–[7]. More recently, there has been con-

siderable interest in ray shooting and related problems

in terms of designing efficient grasping algorithms, such

as grasping force optimization [8], test and synthesis of

force-closure grasps [8], [9] as well as some problems

in fixturing [10]. In grasping, the ray-shooting prob-

lem needs to handle a high-dimensional compact con-

vex set specified by implicit non-linear functions, rather

than low-dimensional polytopes with given vertices or

facets. Some problems must be solved in real time; then

the computational efficiency is a challenging issue.

∗The authors are with the Department of Computer Science, Uni-

versity of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA

{yuzheng,lin,dm}@cs.unc.edu. This work was sup-

ported by ARO Contract W911NF-04-1-0088, NSF awards 0636208,

0917040 and 0904990, DARPA/RDECOM Contract WR91CRB-08-

C-0137, and Intel.

1.1. Related Work

Some ray-shooting algorithms were designed to de-

termine the first facet of a polytope hit by a ray [1].

Matous̆ek and Schwarzkopf [3] presented efficient data

structures to reduce the ray-shooting query time and

avoid the parametric search used in [2]. This work was

later improved by Chan [4]. Szirmay-Kalos et al. [5]

compared various ray-shooting acceleration schemes

used in computer graphics. Though the ray-shooting

problem has been investigated for years, most prac-

tical algorithms are limited to 3-D polytopes or low-

dimensional objects. van den Bergen [6], Zheng and

Chew [7] independently proposed a ray-shooting algo-

rithm applicable to general convex sets and apply it to

collision detection and grasping problems, respectively.

Grasping: In grasping research, Liu et al. [8]–[10]

formulated many problems in terms of the ray-shooting

problem between the convex hull of primitive contact

wrenches and a vector in 6-D wrench space. Using

the linearized friction model and the duality principle,

they cast the ray-shooting problem as a 6-dimensional

linear programming problem and solved it by the sim-

plex method [8]. This approach can be efficient when

the problem size or the number of primitive contact

wrenches is small. However, using fewer primitive con-

tact wrenches reduces the solution accuracy. In grasp-

ing force optimization, linearizing the friction model

can also result in a discontinuous solution. In addition,

if the maximum contact force needs to be minimized,

one may need to calculate the Minkowski sum of the

sets of primitive contact wrenches for different contacts,

which can exponentially increase the problem size with

the number of contacts [11]. There have been attempts

to solve the ray-shooting problem in 6-D wrench space

without linearizing the friction model [7], [12], but the

computation times can be considerably high.

1.2. Main Results

In this paper, we present a novel algorithm for solv-

ing the ray-shooting problem. Similar to [6], [7], our al-

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 1300

gorithm is applicable to general convex sets, including

polytopes, in n-dimensional space as long as their sup-

port functions and support mappings can be calculated.

By contrast, our algorithm does not perform GJK-based

distance computation [13] at the iteration. Instead, we

seek a facet of a simplex inside the convex set inter-

sected with the ray and construct a new simplex using

this facet and the support mapping of the convex set

along the facet normal. We show that this iterative pro-

cess can quickly approach the intersection point of the

boundary of the convex set with the ray, as the support

function of the convex set along the facet normal de-

creases to unity. The computational complexity for de-

termining the facet of a simplex intersected with a ray

depends only on the dimension of space. With the aid

of useful properties given in [14], calculating the sup-

port function and mapping of a convex set often requires

just a few basic operations. Therefore, in each iteration

of our algorithm, the computation cost is much lower

than [6], [7]. To demonstrate its performance, we use

our ray-shooting algorithm with respect to two differ-

ent convex sets to minimize the sum or the maximum

of normal forces in grasping force optimization. Tak-

ing only few milliseconds on a laptop, it can solve this

problem an order of magnitude faster than the earlier

algorithm [7].

The rest of the paper is organized as follows. Sec-

tion 2 presents our ray-shooting algorithm. Section

3 discusses its application to grasping force optimiza-

tion. Section 4 describes its implementation and perfor-

mance.

2. THE RAY-SHOOTING ALGORITHM

2.1. Notations and Problem Statement

Let A be a compact set in R
n and coA the convex

hull of A. The set A is given in specific problems (see

Section 3 for an example). Let rrr be a point in R
n other

than the origin 000 and R the ray from 000 through rrr:

R =
{

λ rrr ∈ R
n | λ ≥ 0

}

. (1)

The ray-shooting problem is to determine the intersec-

tion point of the boundary of coA and R, denoted by sss,

and a set of affinely independent points in A, denoted

by SA, such that sss can be written as its convex combina-

tion. We assume that coA contains the origin 000 of Rn as

an interior point, so that coA and R have an intersection.

To solve the ray-shooting problem, we will use the

support function of A, hA : Rn→R, which is defined by

hA(uuu) = max
aaa∈A

uuuT aaa (2)

coA

0

coV
0

u
0

s
0

R

H
0

coV
1

coV
2

coV
3

H
1H

2

u
1

u
2

s
1

s
2

s

r

Fig. 1: Principle of the ray-shooting algorithm. R is the ray starting

from the origin 000 inside the given convex hull coA through a given

point rrr. sss is the intersection point on the boundary of coA with R to

be determined. H0,H1,H2 are the hyperplanes supporting coA with

normal nnn1,nnn2,nnn3, which are the outward normals to the facets of sim-

plices coV0,coV1,coV2 hit by R.

where uuu∈Rn. The support mapping, sA : Rn→ A, finds

a point sA(uuu) ∈ A such that hA(uuu) = uuuT sA(uuu). The sup-

port function hA together with uuu defines a hyperplane H

with normal uuu supporting coA at the point sA(uuu) [15]:

H =
{

aaa ∈ R
n | uuuT aaa = hA(uuu)

}

. (3)

2.2. Iterations of the Ray-Shooting Algorithm

Here, we denote by subscript l the iteration num-

ber. First, let l = 0 and V0 be an initial set, consisting

of n+ 1 affinely independent points in coA, denoted by

aaa1,aaa2, . . . ,aaan+1, such that coV0 is a simplex containing

000 in its interior. Let Fi =
{

aaa1, . . . ,aaai−1,aaai+1, . . . ,aaan+1

}

.

Then coFi is the i-th facet of coV0. Let

ccc =WWW−1
i rrr (4)

where WWW i =
[

aaa1 · · · aaai−1 aaai+1 · · · aaan+1

]

∈ R
n×n.

Let µ(ccc) and σ(ccc) denote the minimum and the sum of

components of ccc, respectively. It can be proved that R

intersects coFi if and only if µ(ccc)≥ 0. Furthermore, the

intersection point is given by rrr/σ(ccc).
The normal uuui to coFi can be calculated by

uuui =WWW−T
i uuu0 (5)

where uuu0 =
[

1 1 · · · 1
]T ∈ R

n. Let ī designate a

facet coFī intersected with R. We update the set Vl by

Vl = Fī

⋃
{

sA(uuuī)
}

. (6)

The iteration can stop when hA(uuuī) = uuuT
ī

aaa, where

aaa is any element of Fī. Indeed, (hA(uuuī)− uuuT
ī

aaa)/‖uuuī‖ is

the distance between the facet coFī and the supporting

hyperplane Hl to coA with normal uuuī, which is parallel

1301

Algorithm 1 Ray-Shooting Algorithm

Input: A point set A with 000 inside coA and a point rrr

Output: Intersection point sss of the boundary of coA

and R, and an affinely independent subset SA of A

such that sss ∈ coSA

1: uuu0←
[

1 1 · · · 1
]T

2: V ← a set of n+ 1 points in coA such that coV is a

simplex containing 000 as an interior point

3: repeat

4: i← 0

5: repeat

6: i← i+ 1

7: WWW ← the matrix comprising all points in V ex-

cept the i-th one

8: ccc←WWW−1rrr

9: until µ(ccc)≥ 0

10: remove the i-th point from V

11: uuu←WWW−T uuu0

12: add sA(uuu) to V as its last point

13: until hA(uuu)− 1 < ε
14: return rrr/σ(ccc) and V

to coFi. If hA(uuuī) = uuuT
ī

aaa, then Hl contains coFī, which

implies that coFī is on the boundary of coA and its inter-

section point r̄rrl with R is just the intersection point sss we

are seeking, as illustrated in Fig. 1. In addition, from

(5) it follows that uuuT
ī

aaa = 1 for all aaa ∈ Fī. In practice,

therefore, we may adopt hA(uuuī)− 1 < ε as the termina-

tion condition, which ε is the termination tolerance.

2.3. Computation Cost in Each Iteration

In every iteration the algorithm needs to determine

the facet of a simplex intersected with R. In the worst

case, all n + 1 facets of the initial simplex coV0 are

checked, while later only the newly formed n facets are

necessary. For each facet, ccc is calculated by (4) and

the condition µ(ccc) ≥ 0 is verified. By the Gaussian

elimination, the inverse WWW−1
i of WWW i can be computed in

O(n3) complexity; then the computational complexity

for checking a facet is O(n3). Thus for a simplex, the

facet intersected with R can be found in O(n4) in the

worst case. Since WWW−1
i is obtained in computing (4),

calculating uuuī by (5) requires only O(n2) operations.

Also, the algorithm calculates hA(uuuī) and sA(uuuī) for

checking the termination condition and constructing a

new simplex in each iteration. Their complexities de-

pend on the complexity of the given set A in the prob-

lems. With the aid of useful properties indicated in [14],

the computation can be straightforward and simple.

coA0 coV
0

u
0

s
0

R

H
0

coV
1

coV
2

coV
3

H
1

H
2

u
1

u
2

s
1

s
2

s

r

Fig. 2: Singular case in the iteration. R passes through a vertex of

coV0 such that that sss1 = sss0. sss2 in the 2-nd iteration steps towards sss.

2.4. Discussion on the Convergence

Next we discuss the convergence of the algorithm.

We classify the computation into two cases.

Case 1 (regular case): R intersects the relative in-

terior of a facet of coVl in each iteration (see Fig. 2). In

this case, the intersection point r̄rrl+1 in the next iteration

must lie on a new facet and step further from 000. Then

the value σ(cccl) = ‖rrr‖/‖r̄rrl‖ is strictly decreasing. As

r̄rrl ∈ coA, eventually r̄rrl will converge to the intersection

point sss and hA(uuuī) will converge to unity; simultane-

ously σ(cccl) will converge to its minimum value. Hence,

the convergence is well guaranteed in this case.

Case 2 (singular case): Occasionally, R does not

pass through the relative interior of any facet of coVl

but through a face with dimension lower than n−1. For

example, R passes through a point in V0, i.e., a vertex

of coV0 (see Fig. 2). Then ccc determined by (4) satisfies

µ(ccc) ≥ 0 for more than one facet. Currently, the pro-

posed algorithm just adopts the first one found in each

iteration. As described in Fig. 2, the intersection point

r̄rrl on the boundary of coVl with R does not change in the

next few iterations. However, the iteration can recover

to the regular case automatically, as tested in Section 4.

3. GRASPING FORCE OPTIMIZATION

In this section, we apply the ray-shooting algorithm

in 6-D wrench space to grasping force optimization.

3.1. Preliminaries in Grasping

Assume that an object is grasped by m contacts,

which can be frictionless point contacts (FPC), point

contacts with friction (PCwF), and/or soft finger con-

tacts (SFC). Let pppi (i = 1,2, . . . ,m) be the position vec-

tor of contact i, nnni the unit inward normal, and oooi and ttt i

1302

two unit tangent vectors satisfying nnni = oooi×ttti. Then the

contact force fff i is expressed as fff i =
[

fi1 fi2 fi3 fi4

]T
,

where fi1, fi2, fi3 are the force components along nnni, oooi,

ttti, respectively, and fi4 is the spin moment about nnni.

To maintain contact and avoid slippage, fff i must be

within the following set [16], [17]:

Fi =
{

λ fff i | λ ≥ 0, fff i ∈Ui

}

where Ui is the primitive contact force set [7], given by

FPC : Ui =
{

fff i | fi1 = 1, fi2 = fi3 = fi4 = 0
}

PCwF : Ui =
{

fff i | fi1 = 1,
√

f 2
i2 + f 2

i3 = µi, fi4 = 0
}

SFC : Ui =

{

fff i | fi1 = 1,

√

f 2
i2 + f 2

i3

µ2
i

+
f 2
i4

µ2
si

= 1

}

where µi is the tangential friction coefficient and µsi is

the torsional friction coefficient for elliptic SFC model

[17]. Then the primitive contact wrench set is Wi =
GGGi(Ui), where GGGi =

[

nnni oooi ttt i 000
pppi×nnni pppi×oooi pppi×ttti nnni

]

is the grasp

matrix. Two grasp wrench sets are widely used in grasp-

ing research [18], [11], which are defined as

WL1
= co

{ m
⋃

i=1

Wi

}

WL∞ = co

{ m
⋃

k=1

m
⋃

i1<i2<...<ik=1

(Wi1 ⊕Wi2⊕·· ·⊕Wik)

}

.

Both WL1
and WL∞ are compact convex sets in R

6 with

non-linear boundaries and often contain the origin 000 in

their interiors, as grasps are usually force-closure.

To maintain the grasped object in equilibrium, the

resultant wrench wwwres from contacts and the sum of the

other wrenches, denoted by wwwext, must satisfy [19]

wwwres =
m

∑
i=1

GGGi fff i =−wwwext. (7)

Contact force optimization is to compute the min-

imum contact forces fff i ∈ Fi, i = 1,2, . . . ,m satisfying

(7). In what follows, we will use our ray-shooting algo-

rithm with WL1
and WL∞ to yield two kinds of minimum

contact forces. As required in the algorithm, the com-

putation of the support function and mapping of WL1
or

WL∞ has been derived in [7], [20], [21].

3.2. Contact Force Minimization

According to [8], [11], [16], the overall contact

force magnitude can be measured by

σL1
=

m

∑
i=1

fi1 or σL∞ = max
1≤i≤m

fi1.

Using our ray-shooting algorithm with WL1
(or

WL∞) and the ray along wwwres, we obtain a set of points

wwwk ∈WL1
(or wwwk ∈WL∞), k = 1,2, . . . ,K and the non-

negative coefficients ccc =
[

c1 c2 · · · cK

]T
such that

wwwres =∑K
k=1 ckwwwk, where wwwk is the support mapping sWL1

(or sWL∞
) in a certain direction obtained in an iteration.

We also attain an index îk (or an index set Îk) and a

point sssîk
∈ Uîk

(or points sssik ∈ Uik , ik ∈ Îk) such that

wwwk = GGGîk
sssîk

(or wwwk = ∑ik∈Îk
GGGik sssik). Then

wwwres =
K

∑
k=1

ckGGGîk
sssîk

or wwwres =
K

∑
k=1

(

ck ∑
ik∈Îk

GGGik sssik

)

,

which implies that fff i can be expressed by

fff i =
K

∑
k=1

cksssk with sssk =

{

sssîk
(or sssik

) if i = îk (or i = ik ∈ Îk)

000 otherwise
.

It can be proved that such fff i, i = 1,2, . . . ,m have the

minimum σL1
(or σL∞).

4. NUMERICAL EXAMPLES

The proposed algorithm is implemented in MAT-

LAB on a laptop with Pentium-M 1.86GHz CPU and

512MB RAM, and tested with numerical examples.

4.1. Grasp and Algorithm Parameters

We borrow a grasp example used in [7], where the

contact positions and normals are as below:

rrr1 =
[

0 − 3/2
√

3/2
]T
, nnn1 =

[

0
√

3/2 1/2
]T

;

rrr2 =
[

0 3/2
√

3/2
]T
, nnn1 =

[

0 −
√

3/2 1/2
]T

;

rrr3 =
[

3
√

3/8 0 3
√

3/4
]T
, nnn1 =

[

−3/5 0 − 4/5
]T

;

rrr4 =
[

−3
√

3/8 0 3
√

3/4
]T
, nnn1 =

[

3/5 0 − 4/5
]T
.

The contact is SFC, where µi = 0.2 and µsi = 0.2 mm.

The initial set V0 for our ray-shooting algorithm is

taken to consist of the vertices of a 6-D regular simplex

centered at the origin of R6, which are given by

aaav =
(

aaa0
v−

1

7

7

∑
v=1

aaa0
v

)

/10‖aaa0
v−

1

7

7

∑
v=1

aaa0
v‖, v = 1,2, . . . ,7

where aaa0
1 =

[

1 1 1 0 0 0
]T

, aaa0
2 =

[

−1 −
1 1 0 0 0

]T
, aaa0

3 =
[

−1 1 − 1 0 0 0
]T

,

aaa0
4 =

[

1 − 1 − 1 0 0 0
]T

, aaa0
5 =

[

0 0 0
√

5 0 0
]T

,

aaa0
6 =

[

0 0 0
√

5/5 2
√

30/5 0
]T

, aaa0
7 =

[

0 0 0
√

5/5 2/
√

30
√

42/3
]T

. We set the termi-

nation tolerance ε = 10−5.

1303

TABLE 1: RESULTS OF METHODS (i)-(iii) TO MINIMIZE σL1

wwwres
(i) ours (ii) (iii)

σL1
σL∞ N time (ms) time (ms) time (ms)

1 3.5725 1.5027 46 10.75 105.90 210.42

2 4.0356 1.5394 40 8.18 77.83 122.74

3 3.3020 1.2421 32 7.28 95.96 184.87

4 5.2178 1.8060 47 10.05 89.28 106.91

5 3.7799 1.3472 46 9.36 80.03 87.53

6(a) 4.9394 1.5591 48 12.23 97.38 126.44

7 3.6473 1.1326 39 8.55 26.78 100.53

8(b) 22.1498 10.8535 39 7.49 101.44 88.80

N—the number of required iterations

(i)—the ray-shooting algorithm presented in this paper

(ii)—the ray-shooting algorithm in [7]

(iii)—the function fmincon of MATLAB to solve an optimization problem

TABLE 2: RESULTS OF METHODS (i)-(iii) TO MINIMIZE σL∞

wwwres
(i) ours (ii) (iii)

σL1
σL∞ N time (ms) time (ms) time (ms)

1 3.6944 1.4513 69 17.70 154.59 150.79

2 4.1380 1.5005 63 17.47 256.53 103.34

3 3.6321 1.1688 68 19.26 478.42 118.84

4 5.7457 1.6753 75 21.17 300.84 112.20

5 3.9094 1.3091 52 12.78 254.48 85.44

6(c) 5.0119 1.5360 75 21.81 180.72 108.56

7 3.7149 1.1118 67 17.94 2.828 105.53

8(d) 25.8958 10.4439 41 9.86 186.266 117.28

4.2. Numerical Results

First, we respectively assign wwwres = 10aaav for v =

1,2, . . . ,7 and www8
res =

[

3 2 −10 0 0 1
]T

. Tables 1 and

2 exhibit the results and CPU times of our ray-shooting

algorithm used to determine the two minimum grasping

forces with respect to WL1
and WL∞ , respectively. It can

be seen that the CPU times for minimizing σL1
and σL∞

are not much different, since the operation counts for

computing the support functions and mapping of WL1

and WL∞ are similar when the number of contacts, m, is

not large. The iterations of our ray-shooting algorithm

in cases (a)-(d) indicated in Tables 1 and 2 are plotted in

Fig. 3. In cases (a) and (c), since the ray R through wwwres

passes the vertex aaa6 of the initial simplex coV0, σL1
or

σL∞ does not change in the next few iterations. But, later

they quickly decrease and converge to their minima. In

cases (b) and (d), no singular situation occurs.

Next, we assume that wwwres is time-varying:

wwwres =
[

−cos(πt/5)cos(π/4) − 0.5sin(πt/5)cos(π/4)

3sin(π/4) − 0.2cos(πt/5) − 0.2sin(πt/5) 0
]T
.

The external wrench is periodical with the period of 10

s. In each period we take 501 sampling points with in-

terval of 20 ms. The average CPU times for minimizing

σL1
and σL∞ by our ray-shooting algorithm at a sam-

pling point are listed in Table 3, which are below 20 ms

and meet the requirement for real-time applications.

0 10 20 30 40 50
4

5

6

7

8

9

10

Iteration number

σ

0 8 16 24 32 40
0

100

200

300

400

500

Iteration number

σ

0 15 30 45 60 75
0

2

4

6

8

10

Iteration number

σ

0 9 18 27 36 45
0

100

200

300

400

500

Iteration number

σ

L L

LL

1 1

inf inf

(a) (b)

(c) (d)

Fig. 3: Iteration of our ray-shooting algorithm. σL1
in (a), (b) or σL∞

in (c), (d) equals σ(ccc) in the iteration of the ray-shooting algorithm

with respect to WL1
or WL∞ .

TABLE 3: AVERAGE CPU TIMES OF METHODS (i)-(iii)

objective function (i) ours (ii) (iii)

σL1
10.96 ms 112.50 ms 230.74 ms

σL∞ 18.75 ms 382.78 ms 276.93 ms

4.3. Comparisons and Discussions

Besides our ray-shooting algorithm, numbered (i),

we also implement other two methods for determining

the minimum contact forces in these tests:

(ii) the ray-shooting algorithm given in [7];

(iii) the function fmincon provided by the Opti-

mization Toolbox of MATLAB to solve the problem:

minimize σL1
or σL∞

s.t. wwwres =
m

∑
i=1

GGGi fff i and fff i ∈ F1, i = 1,2, . . . ,m.

The above optimization problem is more straightfor-

ward than the one solved in [7] using fmincon. The

problem in [7] has more variables and constraints, so

that the function fmincon requires more time to com-

pute the minimum grasping forces.

The CPU times of methods (ii) and (iii) are also

listed in Tables 1–3, which shows that our algorithm is

about one order of magnitude faster than (ii) and (iii).

In these tests, we also notice that the terminal values of

σL1
or σL∞ obtained by methods (i) and (iii) are same,

but those obtained by method (ii) are slightly bigger.

Our ray-shooting algorithm has higher solution ac-

curacy and computational efficiency than the earlier

work [7], because in every iteration the prior algorithm

[7] needs to perform an iterative GJK-based distance

computation. Since both WL1
and WL∞ here are con-

vex sets with non-linear boundaries in 6-D space, the

1304

GJK-based distance computation does not run as fast as

it typically does for polytopes in 3-D space and must

terminate according to a termination tolerance, called

the “inner tolerance”. The iteration of the earlier algo-

rithm [7] stops based on another termination tolerance,

called the “outer tolerance”. To obtain a more accu-

rate minimum value of σL1
or σL∞ , one must reduce

both inner and outer tolerances. However, this necessar-

ily increases the numbers of iterations required by the

GJK-based distance computation and the algorithm [7],

thereby increasing its overall computational cost. To

reduce the running time, one may lower one or both ter-

mination tolerances at the cost of losing solution accu-

racy. In contrast, our ray-shooting algorithm performs

only one-layer iteration controlled by a single termina-

tion tolerance and a few simple operations with constant

complexity in each iteration (see Section 2.3), so it can

reach the same level of solution accuracy much more

quickly (see the last row of Table 1). Take the case of

www8
res as an example, which was also tested in [7]. The al-

gorithm in [7] used larger tolerances to terminate the it-

eration and the GJK-based distance computation for the

timing reported there, but σL1
= 22.2794. Here we set

smaller termination tolerances for the algorithm in [7] to

obtain comparable solution accuracy as ours; however,

its running time increases significantly in such cases.

5. CONCLUSION AND FUTURE WORK

In this paper, we introduce a new n-dimensional

ray-shooting algorithm. Running in 6-D wrench space,

this algorithm provides a fast method to determine the

minimum grasping forces and shows high computa-

tional efficiency, which makes it possible to perform

optimization of grasping forces in real time.

There remain other possible directions to further

improve this work. First, although the singular case

may rarely occur, there could exist ways to ensure the

iterations would transit from singular to regular cases,

thereby enabling us to derive proof of convergence. The

techniques for avoiding or recovering from the singular

cases need to be investigated, such as proper selection of

the initial set. Methods of accelerating the convergence

of the algorithm would also be very useful. In addi-

tion to possible advances in the algorithmic front, the

applications of n-dimensional ray-shooting algorithms

to other areas, such as robotics and computer graphics,

may provide new excitement and insight to solve this

problem more efficiently. In practical applications, the

direction of the ray can change continuously or incre-

mentally. Therefore, temporal or spatial coherence may

be utilized in designing n-dimensional ray-shooting al-

gorithms to provide additional computational gain.

References

[1] K. Mulmuley, Computational Geometry: An Introduction

Through Randomized Algorithms, Englewood Cliffs, NJ:

Prentice-Hall, 1994.

[2] P. K. Agarwal and J. Matous̆ek, “Ray shooting and parametric

search,” in Proc. 24th ACM Symposium on Theory of Comput-

ing, 1992, pp. 517–526.

[3] J. Matous̆ek and O. Schwarzkopf, “On ray shooting in convex

polytopes,” Discrete Comput. Geom., vol. 10, no. 1, 215–232,

1993.

[4] T. M. Chan, “Output-sensitive results on convex hulls, extreme

points, and related problems,” Discrete Comput. Geom., vol.

16, no. 4, 369–387, 1996.

[5] L. Szirmay-Kalos, V. Havran, B. Balázs, and L. Szécsi, “On the

efficiency of ray-shooting acceleration schemes,” in Proc. 18th

Spring Conf. Computer Graphics., Budmerice, Slovakia, 2002,

pp. 97–106.

[6] G. van den Bergen, “Ray casting against general convex ob-

jects with application to continuous collision detection,” 2004,

http://www.dtecta.com.

[7] Y. Zheng and C.-M. Chew, “A numerical solution to the ray-

shooting problem and its applications in robotic grasping,” in

Proc. IEEE Int. Conf. Robot. Automat., Kobe, Japan, May 2009,

pp. 2080–2085.

[8] Y.-H. Liu, “Qualitative test and force optimization of 3-D fric-

tional form-closure grasps using linear programming,” IEEE

Trans. Robot. Automat., vol. 15, no. 1, pp. 163–173, 1999.

[9] Y.-H. Liu, M.-L. Lam, and D. Ding, “A complete and efficient

algorithm for searching 3-D form-closure grasps in the discrete

domain,” IEEE Trans. Robot., vol. 20, no. 5, pp. 805–816, 2004.

[10] D. Ding, Y.-H. Liu, Y. Wang, and S. G. Wang, “Automatic se-

lection of fixturing surfaces and fixturing points for polyhedral

workpieces,” IEEE Trans. Robot. Automat., vol. 17, no. 6, pp.

833–841, 2001.

[11] Y. Zheng and W.-H. Qian, “Limiting and minimizing the con-

tact forces in multifingered grasping,” Mech. Mach. Theory,

vol. 41, no. 10, pp. 1243–1257, 2006.

[12] X.-Y. Zhu, H. Ding, and Y. Wang, “A numerical test for the

closure properties of 3D grasps,” IEEE Trans. Robot. Automat.,

vol. 20, no. 3, pp. 543–549, 2004.

[13] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast pro-

cedure for computing the distance between complex objects in

three-dimensional space,” IEEE J. Robot. Automat., vol. 4, no.

2, pp. 193–203, 1988.

[14] E. G. Gilbert and C. P. Foo, “Computing the distance be-

tween general convex objects in three-dimensional space,”

IEEE Trans. Robot. Automat., vol. 6, no. 1, pp. 53–61, 1990.

[15] S. R. Lay, Convex Sets and their Applications, New York, NY:

John Wiley & Sons, 1982.

[16] L. Han, J. C. Trinkle, and Z. X. Li, “Grasp analysis as linear

matrix inequality problems,” IEEE Trans. Robot. Automat., vol.

16, no. 6, pp. 663–674, 2000.

[17] R. D. Howe, I. Kao, and M. R. Cutkosky, “The sliding of robot

fingers under combined torsion and shear loading,“ in Proc.

IEEE Int. Conf. Robot. Automat., Apr. 1988, pp. 103–105.

[18] C. Ferrari and J. Canny, “Planning optimal grasps,” in Proc.

IEEE Int. Conf. Robot. Automat., Nice, France, May 1992, pp.

2290–2295.

[19] R. M. Murray, Z.-X. Li, and S.S. Sastry, A Mathematical Intro-

duction to Robotic Manipulation, CRC Press, 1994.

[20] Y. Zheng and W.-H. Qian, “Improving grasp quality evalua-

tion,” Robot. Auton. Syst., vol. 57, no. 6-7, pp. 665–673, 2009.

[21] Y. Zheng and C.-M. Chew, “Distance between a point and a

convex cone in n-dimensional space: computation and appli-

cations,” IEEE Trans. Robot., vol. 25, no. 6, pp. 1397–1412,

2009.

1305

