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Abstract—This paper presents feedback control laws for pur-
suing and catching a fly ball by taking Chapman’s hypothesis
into the closed-loop system connecting perceptions and actions.
Through the analysis of the closed-loop system, we make it clear
that the hypothetical trajectory Chapman showed is a special
dynamic solution of the closed-loop system. Moreover, using a
motion-analyzing technique over a finite time, it is shown that
the proposed feedback control laws make it possible to generate
a pursuing trajectory automatically that a fly ball can be caught
in the right place and at the right time. It is also shown that the
pursuing trajectory gets closer to the one Chapman showed as a
feedback gain increases. In addition, we compare the proposed
feedback control laws with Proportional Navigation (PN) which
is the most common navigation technique for tracking a moving
target, and demonstrate that the proposed control laws perform
better than PN.

Index Terms—closed-loop systems, navigation, nonlinear dif-
ferential equations, theorem proving.

I. INTRODUCTION

PROPORTIONAL Navigation (PN)[1] is well known in

the field of aviation as a guidance control method for

enabling a moving body to track and catch a moving target.

This method is based on the fact that a moving body tracking a

target will always collide with the target as long as the angle

representing the line of sight (LOS) of the moving body in

the direction of the target (LOS angle) is kept constant. PN

accelerates the moving body laterally proportionally to the

rate of change of the LOS angle. It continues to provide the

basic framework for guidance control of moving bodies even

after sensor information other than the LOS angle has become

available in pace with the advancement of measurement and

control technologies.

There are many hypotheses[2]-[13] to explain the action of a

man in tracking and catching a moving target. Some hypothe-

ses explain that tracking and catching are accomplished based
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on angle information alone as in PN. Chapman[2] examined

the task of tracking a moving target over a long distance, such

as catching a flying ball in a baseball game. He demonstrated

for cases where the fielder is in the vertical plane containing

the trajectory of the flying ball that “if the fielder moves at a

constant speed so that he reaches the correct catching position

at the moment the ball drops to the ground, the changes over

time of the tangent of the elevation angle of observation of

the ball as viewed by the fielder are constant.” Based on

this result, Michaels et al. [7] and McLeod et al.[3] proposed

the hypothesis of Optical Acceleration Cancellation (OAC) to

explain the ball-tracking path of a man as “the path where the

acceleration of the tangent of the elevation angle of the ball

is constantly zero” and presented the ball-tracking path of a

man to support their hypothesis. However, the result described

by Chapman merely represents one solution for tracking and

catching a moving target but does not mention the method

for determining the tracking speed of the fielder based on

the elevation angle of the ball. Indeed, for tracking the ball

in the manner indicated by Chapman, the correct catching

position and catching moment must be known before starting

the tracking task in order to determine the tracking speed.

However, if the elevation angle of the ball, on which

Chapman focused, is made to correspond to the LOS angle

in PN, Chapman’s result can be reconsidered as guidance

control laws similar to PN. In this paper, we consider common

cases where the fielder is both inside and outside the vertical

plane that contains the trajectory of the ball and, assuming

that the azimuth angle can also be measured constantly in

addition to the elevation angle of the ball, propose feedback

control laws in which the tracking acceleration of the fielder

is determined based on the angle tangents. Although these

control laws are similar to Marken’s feedback control laws

[8], which tried to describe a similar problem in the framework

of Perceptual Control Theory (PCT) and Tresilian’s feedback

control laws[9], which are based on the OAC hypothesis,

these laws significantly differ from them in that these laws

theoretically take account of the dynamics of the closed-loop

system where the proposed control laws are incorporated and

clarify the conditions for the fielder to arrive at the correct

catching position at the moment when the ball drops to

the ground. Furthermore, in this paper, we also discuss the

similarity and differences between the proposed control laws

and PN.

Section II is presented the feedback control laws for tracking

and catching the ball after formulating the subject. Moreover,

the trajectory described by Chapman becomes a special solu-
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tion for the dynamics of a closed-loop system is demonstrated.

Section III is presented analyzing the action of the fielder in

tracking the ball in a two-dimensional plane as the motion in

the direction of each axis of the two-dimensional orthogonal

coordinate system. The ball remains aloft for a finite period,

and thus a motion-analyzing technique within a finite time will

be used without applying the stability theory. This analysis

will enable us to demonstrate that the ball can be caught at

the exact time and in the correct position starting from an

arbitrary initial position if the proposed feedback control laws

are followed. Furthermore, through comparison with PN, we

will clarify the characteristics of the proposed control laws.

Section IV is demonstrated that an appropriate ball-tracking

and catching path can be generated by means of the proposed

feedback control laws for common cases where the fielder

may be inside or outside the vertical plane that contains the

trajectory of the ball.

II. FEEDBACK CONTROL LAWS FOR FLY BALL

CATCHING

To incorporate Chapman’s hypothesis into a closed-loop

control system that integrates perception and action, we for-

mulate the subject of tracking and catching a fly ball.

A. Problem Formulation

Let o-xyz be a Cartesian coordinate frame fixed to the

ground and let the origin o be the position where the fielder

is initially located, as seen in Fig. 1. The axis oz is vertically

upwards and the fielder runs in the xy-plane. At any instant

of time, the fielder’s position on the ground is described by

x(t) and y(t). The initial condition is x(0) = y(0) = ẋ(0) =
ẏ(0) = 0. The equation of motion of the fielder is given by

ẍ = ax

ÿ = ay
(1)

where (ax, ay) is the acceleration along each axis produced

by the fielder. The problem is how to control the acceleration

(ax, ay) in order to catch the ball at the right place at the right

time, under the condition that the information to be perceived

is limited to data within the relative angles with the ball that

the fielder can observe with a single eye.

y

x

Ball(bx, by)

Fielder(x,y)

γ

Ball's launch site

o

(a)

z

Ball's launch site

Fielder's initial position

α

x
o

(b)

Fig. 1. The angles α, γ defined in a cartesian coordinate frame. (a) Top
view. (b) Side view.

B. Feedback Control Laws

Let us consider the feedback control laws for the system of

(1) given by

ax = kv(rv − d
dt

tanα)
ay = kl

d
dt

tan γ
(2)

where α and γ are the elevation and lateral angles of gaze

at the ball, kv and kl are positive gains, and rv is the rate

of change of the tangent of the elevation angle just after the

ball is launched, that is rv = (d/dt) tanα|t=0, as seen in Fig.

1. The control law in the direction of the x axis incorporates

Chapman’s hypothesis into the fielder’s system model so that

the rate of change of the tangent of the elevation angle remains

constant. Chapman’s hypothesis is presented in detail later.

The control law in the direction of the y axis has the same

form as Proportional Navigation(PN), except using the tangent

of γ. It should be noted that these feedback control laws use

only relative angles with the ball that the fielder can observe

with a single eye.

C. Chapman’s Trajectory as a Special Solution

Chapman demonstrated if the fielder moves at a constant

speed so that he reaches the correct catching position at the

moment the ball drops to the ground, the changes over time of

the tangent of the elevation angle of observation of the ball as

viewed by the fielder are constant. We call this ideal trajectory

of the fielder “Chapman’s trajectory”.

Let the ball leave the launcher, located at (b0, 0, 0), with an

initial velocity (u, v, w). b0 remains positive by defining the x

axis as directed toward the launcher. For 0 < t < 2w/g, the

trajectory of the ball (bx(t), by(t), bz(t)) is then given by

bx(t) = ut + b0

by(t) = vt
bz(t) = −1

2
gt2 + wt

where g is the magnitude of the acceleration of gravity. The

tangents of α and γ are expressed as

tan α = bz(t)/(bx(t) − x(t))
tan γ = (by(t) − y(t))/(bx(t) − x(t)).

(3)

Here, Chapman’s trajectory (x∗(t), y∗(t)) on the ground is

introduced by

x∗(t) = ( gb0
2w

+ u)t
y∗(t) = vt

(4)

which means that the fielder runs at the proper speed so as

to reach the proper spot to catch the ball just as it arrives.

If the fielder follows Chapman’s trajectory, then α and γ
satisfy tanα = wt/b0 and γ = 0 from (3), respectively. This

means that Chapman’s trajectory is a special solution for the

dynamics of the closed-loop control system represented by (1)

and (2), because rv is given by w/b0.
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III. BEHAVIOR OF THE CLOSED-LOOP CONTROL

SYSTEM

Chapman’s trajectory is not applicable to the case in which

the information to be perceived is the relative angles with the

ball as detected by a single eye because Chapman’s trajectory

is obtained using the initial condition of the ball’s position

and velocity in three-dimensional space. How does the fielder

respond to a fly ball if he runs based on the control laws of

(2) ? In this section, we demonstrate that the proposed feed-

back control laws enable the fielder to catch the ball at the

right place at the right time. For the application, it is assumed

that a measurement rv of the true r̄v = (d/dt) tan α|t=0

includes some error ∆rv such that rv = r̄v + ∆rv . We

also demonstrate that the fielder’s running path approaches

Chapman’s trajectory, given by (4), as the feedback gains

of the control laws increase. For the sake of convenience,

combining (1) with (2) and integrating of t, then the equation

ẋ(t) = kv(rvt − tanα)
ẏ(t) = kl tan γ

(5)

holds.

A. Analysis in the xz-plane

The aim of this part is analyzing the fielder’s response to

the ball in the xz-plane. Let us consider the deviation e(t)
of the fielder’s position x(t) from Chapman’s trajectory x∗(t)
that is e(t) = x(t) − x∗(t). tanα is rewritten as

tanα =
bz(t)

bx(t) − (e(t) + x∗(t))
=

wt − 1

2
gt2

gb0
2w

(
2w
g

− t
)
− e(t)

. (6)

For 0 < t < 2w/g, using (4) and (5),

ė(t) = ė(0) −
kvw
b0

t e(t)

gb0
2w

(
2w
g

− t
)
− e(t)

+ kv∆rvt (7)

e(0) = x(0) − x∗(0) = 0 (8)

ė(0) = ẋ(0) − ẋ∗(0) = −ẋ∗(0) = −

(
gb0

2w
+ u

)
.

are obtained. This means that the deviation e(t) satisfies the

first-order nonlinear differential equation. Hence, the following

theorem can be established.

Theorem 1: If kv and ∆rv satisfy the following conditions

[I] kv >
(

w
b0

+ ∆rv

)−1
g

2w
ẋ∗(0)

[II] − w
b0

< ∆rv < w
b0

,

then lim
t→tend

e(t) = 0 where tend = 2w/g and e(t) satisfies (7)

and (8).

Proof: See the Appendix. ¥

B. Examining conditions [I] and [II] of Theorem 1

Let us explain the meaning of conditions [I] and [II] through

numerical simulations performed by setting the initial velocity

of the ball (u,w) = (−20, 20) [m/s] and the feedback gain

kv=200 (except in Fig. 2, which illustrates the influence of kv

on the fielder’s trajectory). In each simulation, we choose two

location points for the ball launcher, b0=75 [m] and 85 [m],

placing the ball’s landing point 5 [m] behind the fielder’s initial

location and 5 [m] in front of the fielder’s initial location.

Condition [I] is always satisfied for an arbitrary kv(> 0) if

the ball lands on the ground behind the fielder’s initial location

(ẋ∗ < 0), as long as condition [II] is satisfied. In contrast, if the

ball lands on the ground in front of the fielder’s initial location

(ẋ∗ > 0), kv is restricted by condition [I]. This condition

is satisfied in a normal situation. For example, if we give

b0=85 [m] and |∆rv|=0, this condition becomes kv > 1.25
and is easily satisfied. Fig.2 plots the time history of e(t),
obtained by setting the feedback gain to kv=200 and 2000 and

assuming |∆rv| = 0. We see from the figure that e(t) → 0
as t → tend(= 2w/g) while maintaining e > 0 when the ball

lands behind the fielder’s initial location and e < 0 when the

ball lands in front of the fielder’s initial location. This figure

also demonstrates that the fielder’s running path approaches

Chapman’s trajectory (4) as the feedback gain kv increases.

Condition [II] is satisfied if a measurement rv includes

less than 10 % error with respect to the true value r̄v in a

normal situation. However, we should note that the proposed

control law tends to generate inefficient trajectories as the

measurement error increases, as seen in Fig. 3. Fig. 3 plots

the time history of x(t) when the ball lands on the ground

5 [m] behind the fielder’s initial location with measurement

errors of ∆rv = 0,+0.1r̄v and −0.1r̄v . Fig. 4 plots the time

history of (d/dt) tanα, corresponding to Fig.3. For example,

when a measurement rv includes a 10 % error with respect

to the true value r̄v , first the fielder moves toward the ball to

bring the rate of change of tanα to a desired rv (with 10 %

error), and then moves backward and approaches to the ball’s

landing point.

If the elevation angle of the ball is made to correspond to

the LOS angle in PN, PN can be expressed as

ax = −kv(dα/dt) (9)

instead of using the control law in the direction of the x axis as

given in (2). Although we performed the numerical simulations

using the control law of (9) under the same conditions as in

Fig. 2, this control law did not work well; that is, the fielder

failed to pursue and catch the fly ball. Another control law

given by

ax = −kv(rv − dα/dt) (10)

1 2 3 4

-1

-0.5

0.5

1

t [s]

e [m]

k  =200v

k  =2000v

Fig. 2. The time history of e with kv=200 and 2000. The trajectory satisfies
e>0 all the time when the ball lands behind the fielder’s initial location and
e<0 when the ball lands in front of the fielder’s initial location.
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1 2 3 4

-6

-4

-2

2

t [s]

x(t) [m]

∆r  = 0

∆r  = 0.1rv

v

_

v

∆r  = -0.1rv

_

v

Fig. 3. The time history of x when the ball lands 5[m] behind the fielder’s
initial location. (∆rv=0, +0.1r̄v , -0.1r̄v)

1 2 3 4

0.22

0.24

0.26

0.28

0.32

tan α
dt
d

t [s]

∆r  = 0

∆r  = 0.1rv

_

v

v

∆r  = -0.1rv

_

v

Fig. 4. The time history of d

dt
tan α corresponding to Fig.3.

can generate a ball-tracking and catching trajectory as seen

in Fig. 5, where rv is the rate of change of α just after

the ball is launched and rv includes the measurement error

∆rv = 0, +0.1r̄v,−0.1r̄v . Comparing Fig. 5 with Fig. 3,

we can observe rapid movement of the fielder near the ball’s

landing point in Fig. 5. This is undesirable for the ball-tracking

and catching task.

1 2 3 4

-4

-2

2

4 ∆r  = 0.1rv

_

v

∆r  = 0v

∆r  = -0.1rv

_

v

x(t) [m]

t [s]

Fig. 5. The time history of x with ax = kv(rv- dα

dt
). (∆rv=0, +0.1r̄v , -0.1r̄v)

Although the proof of Theorem 1 given in the Appendix

assumes parabolic motion of the ball, Theorem 1 holds even

if the ball moves along a straight line at constant speed. Fig.6

represents the result obtained by assuming the ball travels with

a constant velocity (u,w) = (−20,−20)[m/s] from the initial

position (x(0), z(0)) = (75, 80)[m] (the ball’s landing point is

(x(4), z(4)) = (−5, 0)[m]). The result obtained by applying

a PN of (10) is also given in Fig. 6. We can see from the

figure that the proposed control law generates a more efficient

trajectory, that is, the variations in moving speed of the fielder

1 2 3 4

-5

-4

-3

-2

-1

proposed 

control law

x(t) [m]

t [s]

modified PN

Fig. 6. The time history of x obtained by the proposed control law and the
modified PN of (11).

are small in comparison with PN.

C. Analysis in the yz-plane

We now analyze the fielder’s behavior with respect to the

ball in the yz-plane. Let us assume that the fielder’s motion

along the x axis is approximated by Chapman’s trajectory

x∗(t) in order to solve for the motion along the y axis

analytically. In addition, we introduce an inertial coordinate

frame parallel to the coordinate frame in Fig. 1 whose origin

moves along the x axis following Chapman’s trajectory x∗(t).
The distance in the direction of the x axis between the fielder

and the ball is then represented by

p∗(t) = bx(t) − x∗(t) = −(b0g/2w)t + b0.

From the control laws of (2), we have

ẏ = kl(vt − y)/p∗. (11)

This nonlinear differential equation can be solved analytically,

and its solution is given by

y =
vt

1 + u∗

kl

{
1 +

b0

tkl

(−1 + b
kl

u∗

0 (u∗t + b0)
−kl

u∗ )

}
(12)

ẏ =
v

1 + u∗

kl

{
1 − b

1+
kl

u∗

0 (u∗t + b0)
−1−

kl

u∗

}
(13)

where u∗ = −b0g/2w and u∗ + kl 6= 0. Thus, we can derive

the following theorem.

Theorem 2: In the direction of the y axis, the fielder’s

position coincides with the ball’s landing point at the moment

t = tend(= 2w/g) if the feedback gain kl satisfies a condition

of the form

kl/u∗ < −2. (14)

In addition, the fielder’s velocity along y axis at that moment

is v/(1 + u∗/kl).
Proof: Using (13), we can easily verify that ẏ has the value

v/(1+u∗/kl) at the moment the ball lands on the ground if the

condition of (14) is satisfied. It is also confirmed from (12) that

the fielder’s position coincides with the ball’s landing point.

¥

Note that the value v/(1 + u∗/kl) is slightly different from

Chapman’s trajectory of (4), (ẏ∗(t) = v).
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D. Examining Theorem 2

Let us examine Theorem 2 through numerical simulations.

Fig.7 presents the time history of y(t) and y∗(t), obtained

by assuming that the initial velocity of the ball is (v, w) =
(−4, 20) [m/s] and that the feedback gain is kl = 200. We

see from the figure that the fielder’s velocity approaches a

constant value as time passes and finally has the value given

in Theorem 2 at the moment the ball lands on the ground

t = tend (= 4 [s]).

Note that the control law in the direction of the y axis

generates a more efficient trajectory than PN, that is, the

variations in the speed of the fielder are small in comparison

with PN, even though it takes the same form as PN except for

using the tangent of γ.

IV. BEHAVIOR OF THE PROPOSED CONTROL LAW

IN COMMON CASES

In this section, we demonstrate through numerical simula-

tions that an appropriate ball-tracking and catching path can

be generated by means of the proposed feedback control laws

in common cases where the fielder may be inside or outside

of the vertical plane that contains the trajectory of the ball. It

is assumed that the ball is launched from (x, y, z) = (80, 0, 0)
[m] and lands on the ground at t = tend = 4 [s] at

points (x, y) = (5, 5), (−5, 5), (−5,−5), (5,−5), and that the

feedback gains are given as kv = kl = 200. Fig.8 plots the

paths followed by simulated fielders starting the pursuit from

t = 0 [s] and using the proposed control laws. We can see

that each fielder starts the pursuit from (x, y) = (0, 0) [m] and

arrives at the landing point of the fly ball. Moreover, we notice

that the paths are concave towards the ball launch site when

the fielders run forward and convex towards the projection

point when they run backward as indicated by McLeod et al.

[10].

Fig. 9 plots the paths followed by simulated fielders starting

the pursuit from t = 1 [s] and using the proposed control laws

after standing still for one second at the beginning. In this case,

the rate of change of the tangent of the elevation angle rv is

measured at t = 1 [s]. We can see that the paths in Fig.9

are straighter than those in Fig. 8. This result means that it

is possible to take enough time to measure rv with accuracy,

thus allowing practical use of the proposed control laws.

1 2 3 4

-15

-12.5

-10

-7.5

-5

-2.5

y(t) [m]

t [s]

y  (t)*

y(t)

Fig. 7. The time history of y and y∗ obtained by the proposed control law.

V. CONCLUSION

This paper presented feedback control laws for tracking and

catching a fly ball and analyzed the actions of the fielder in

tracking the ball using a motion-analyzing technique over a

finite time, without applying stability theory. As a result, we

demonstrated that the running path described by Chapman

becomes a special solution for the dynamics of a closed-

loop control system. We also revealed that the ball can be

caught at the right time and in the right place starting from an

arbitrary initial position and that appropriate running paths are

generated automatically if the proposed feedback control laws

are followed. In addition, we compared the proposed feedback

control laws with PN and demonstrated that the proposed

control laws perform better than PN.

-4 -2 2 4

-4

-2

2

4

x(t) [m]

y(t) [m]

Fig. 8. The paths followed by simulated fielders starting the pursuit from
the beginning, viewed from above.

-4 -2 2 4

-4

-2

2

4

y(t) [m]

x(t) [m]

Fig. 9. The paths followed by simulated fielders starting the pursuit 1 second
after the beginning, viewed from above.

APPENDIX

PROOF OF THEOREM 1

Putting a = ė(0), b = kvw
b0

, c = gb0
2w

, d = 2w
g

, k = kv∆rv

in (7), e = e(t) satisfies the following differential equation

ė = a −
bte

c(d − t) − e
+ kt (0 < t < d), (15)

where b, c, d > 0. Moreover, for the disturbance term kt, k
satisfies −b < k < b. The aim of this appendix is to show the

following conclusion.
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Theorem 1.1: For −(b + k)d < a < ∞, 0 < b, c, d,−b <
k < b, we have lim

t→d
e(t) = 0 where e(t) satisfies (15).

Putting ẽ = e/c, (15) is rewritten as

c ˙̃e = a −
bt ẽ

(d − t) − ẽ
+ kt (0 < t < d). (16)

Hereafter,˜ is abbreviated. (16) can be expressed as

c
[

(d − t) − e
]
ė =

[
a + (b + k)t

][
f(t) − e(t)

]
(17)

where

f(t) =
(a + kt)(d − t)

a + (b + k)t
.

It should be noted that f(0) = d > 0, f(d) = 0 and

d − t − f(t) =
b t(d − t)

a + (b + k) t
.

Now let us prove Theorem 1.1 for two cases where (I) 0 <
a < ∞ and (II) −(b + k)d < a < 0 (the proof of the case of

a = 0 is omitted because it is easy to prove).

(I) The following relation holds:

a + (b + k)t > 0, (d − t) − f(t) > 0 (0 < t < d).

If k satisfies 0 ≤ k < b, then we have f(t) > 0 (0 < t < d).
If k satisfies −b < k < 0, then we have

f(t)




> 0 (0 < t < ( a
|k| ∧ d))

= 0 (t = ( a
|k| ∧ d))

< 0 (( a
|k| ∧ d) < t < d)

= 0 (t = d)

where A∧B means min{A,B}. For e(0) = 0, ė(0) = a/c >
0, there exist t = t0 (0 < t0 < d) such that e(t0) = f(t0).
Hence ė(t) > 0 (0 < t < t0) and ė(t0) = 0 are obtained. If

there exist t1(t0 < t1 ≤ d) which satisfies d − t1 = e(t1),

0 = c
[

(d − t1) − e(t1)
]
ė(t1) =

[
a + (b + k)t1

][
f(t1) − e(t1)

]

is holds. From this, e(t1) = f(t1) is obtained. Because of

d − t1 = e(t1) = f(t1), t1 = d and e(d) = 0 are hold.

(II) Putting a = −|a|, the following relation holds:

g(t) = −|a| + (b ± |k|)t




< 0 (0 < t < |a|
b±|k| )

= 0 (t = |a|
b±|k| )

> 0 ( |a|
b±|k| < t < d).

If k satisfies 0 < k < b, then we have

f(t) =
(−|a| + |k|t)(d − t)

−|a| + (b + |k|)t



= d (t = 0)

> 0 (0 < t < |a|
b+|k| )

= ∞ (t = |a|
b+|k| − 0)

= −∞ (t = |a|
b+|k| + 0)

< 0 ( |a|
b+|k| < t < ( |a||k| ∧ d))

= 0 (t = ( |a||k| ∧ d))

> 0 (( |a||k| ∧ d) < t < d)

= 0 (t = d).

If k satisfies −b < k ≤ 0, then we have

f(t) = −
(|a| + |k|t)(d − t)

−|a| + (b − |k|)t



= d (t = 0)

> 0 (0 < t < |a|
b−|k| )

= ∞ (t = |a|
b−|k| − 0)

= −∞ (t = |a|
b−|k| + 0)

< 0 ( |a|
b−|k| < t < d)

= 0 (t = d).

For e(0) = 0, ė(0) = −|a|/c < 0, there exist t = t0 (0 <
t0 < d) such that e(t0) = f(t0). Hence g(t0) > 0, ė(t) <
0 (0 < t < t0) and ė(t0) = 0 are obtained. If there exist

t1(t0 < t1 ≤ d) which satisfies d − t1 = e(t1), then we have

0 = c
[

(d − t1) − e(t1)
]
ė(t1) = g(t1)

[
f(t1) − e(t1)

]
.

From this, e(t1) = f(t1) is obtained. Because of d − t1 =
e(t1) = f(t1), t1 = d and e(d) = 0 are obtained.

From the above (I) and (II), Theorem 1.1. is proved. ¥
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