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Abstract— In this paper, we propose a new approach to
the locomotion control of the trident snake robot, focusing on
its “double-linked” case where the robot is composed of a
triangular body and three branches of double-linked snake-
like legs. Originally, this robot was proposed by the authors
as a novel example of nonholonomic mobile robot. This robot
is quite interesting from a theoretical point of view; the well-
known LARC(Lie Algebra Rank Condition) for its nonlinear
controllability has a unique structure that it contains two
’generator’ vector-fields and higher order Lie brackets, which
makes its control problem extremely challenging. In this paper,
for this difficult control problem, we first propose a design
algorithm which partially achieves the desired locomotion. Then
we discover that the resulting motion may or may not be a stable
limit cycle, depending on the eigenvalues of the corresponding
discrete-time dynamics on its Poincaré map. Finally, we propose
a full controller design by combining the stable limit cycles.
The validity of the proposed idea is examined by numerical
simulations.

I. INTRODUCTION

The trident snake robot is a novel kind of wheeled mobile
robot proposed by the authors [1]. This robot is composed
of three branches of serial links and a root block, where
the three branches are connected to the root block at center,
just like a three-pointed star. Each branch is the same as a
conventional snake-like robot: i.e., every link has a passive
wheel and all the joints are actuated.

This is quite interesting from a theoretical point of view
since the well-known LARC(Lie Algebra Rank Condition,
given by Chow’s theorem[2]) for its nonlinear controllability
has a unique structure (given by eq. (10)). It contains two
’generator’ vector-fields as well as higher order Lie brackets,
which makes the control problem extremely challenging.

The locomotion principle of the trident snake has been
clarified for the single-linked case, by analyzing its control-
lability structure and corresponding holonomy [3]. Now we
proceed to tackle with the double-linked case. Unlike 1-link
model, the controllability structure of double-linked model is
composed of higher order Lie brackets, whose controllability
structure is quite complicated. It also has some physical
advantages to the 1-link model, e.g., it seldom falls into
singular posture, and each wheel supports less load because
the contact force is ditributed to larger numbers of wheels.

In this paper, for this difficult control problem, we first
propose a design algorithm which partially achieves the
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desired locomotion utilizing the principle of holonomy. Then
we discover that the resulting motion may or may not be
a stable limit cycle, depending on the eigenvalues of the
corresponding discrete-time dynamics on its Poincaré map.
Finally, we propose a full controller design by incorporating
the stable limit cycles. Note that, among a lot of studies on
nonhonomic motion planning([4], [5], [6]), gait generation
and analysis([7], [8], [9]), an advantage of the proposed
method is to focus on the stability of oscillations, and to
utilize a relatively simple (first-order) gait to deal with com-
plicated (more than second-order) controllability structure.

This paper is organized as follows. Section II introduces
the symbol definitions and the kinematic model of the robot.
In Section III, we give its controllability analysis and a
fundamental control principle based on the controllability
structure and the holonomy generation (so-called Lie bracket
motion). The control algorighm for translational locomotion
is proposed in Section IV, followed by the shape control
(rearrangement of the robot’s shape without changing its
position) proposed in Section V. Section VI concludes the
paper.

II. MODELING OF THE TRIDENT SNAKE ROBOT

The following symbols are used throughout the paper: R
denotes the set of all real numbers, Z denotes the set of
all integers, N denotes the set of all natural numbers and
N0 := N ∪{0} denotes the nonnegative integers. Lie bracket
of any two vector-fields f(ξ) and g(ξ) is given by

[f, g](ξ) :=
∂g

∂ξ
f(ξ) − ∂f

∂ξ
g(ξ).

A. Kinematics of the Robot

Fig. 1 illustrates the overview of the trident snake robot
placed on the flat plane. In the middle of its body, the root

Fig. 1. Model of the double-linked trident snake robot
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block of the robot is an equilateral triangular plate with three
actuated joints at its vertices.

The robot has three branch legs as well, which are
connected to the root block via the joints. Each blanch is
composed of serial double-link with an actuator at its ’hinge’
joint. Each link has a passive wheel on its center, which is
assumed not to slip, nor slide sideways. This implies that the
motion of each wheel is constrained to parallel translation
along the link or spin about its vertical axis.

We assume that the radius of the triangle (the distance
between its center and a vertex) is the unit length and all the
links are twice as long as the unit, thus the distance between
a wheel and its adjacent joint is 1.

The position of the robot is characterized by the coordi-
nates (x, y) of the center P of the root block. The front
face of the robot is supposed to be the joint φ21, and the
orientation of the robot is characterized θ0. The configuration
vector of the robot is

w := [ x, y, θ0 ]> ∈ SE(2)

Let φij denote the j-th joint of the i-th branch. The link
between the joints φij and φij+1 is called the link-(i, j).
Now we gather all the ’root’ angles into φ.1, and all the
’hinge’ angles into φ.2, as follows:

φ.1 : = [ φ11, φ21, φ31 ]>

φ.2 : = [ φ12, φ22, φ32 ]>

Finally, we combine φ.1 and φ.2 into the shape vector φ:

φ : = [ φ.1, φ.2 ]>

Considering the nonholonomic constraints concerning the
non-slide-slip condition of the wheels, the kinematics of this
robot is described as follows:

A(φ)R>
θ0

ẇ = B(φ)φ̇ (1)

See [3] for the detail of its derivation. Here Rθ0 is the
homogeneous transformation matrix on SE(2):

Rθ0 =

 cos θ0 − sin θ0 0
sin θ0 cos θ0 0

0 0 1


implying the rotation of the configuration w counter-
clockwise by θ0. A(φ) ∈ R6×3, B(φ) ∈ R6×6 are matrix-
valued function of the shape φ, while Rθ0 depends only on
the configuration w.

B. State Equation

Now we are ready to convert the kinematics equation into
the nonlinear state equation. We define the state vector of
the robot as

ξ := [ φ, w ]> (2)

while the dimension of state variables is 9. Since the num-
ber of nonholonomic constraints is 6 (which equals to the
number of the wheels), the velocity ξ̇ is confined in a three-
dimensional (tangent) subspace at every instance, as far as

kinematics is concerned. From control point of view, this
implies that we may have only 3 control parameters to
specify the velocity ξ̇, nevertheless the number of active
joints is 6. In this paper, we derive two forms of state
equations, depending on the choice of control inputs. We
take the base velocity ẇ as the control input in the first
case, while it is the angular velocity of the root joints φ̇.1

in the second case. Both cases are essentially equivalent to
each other under proper input transformation.

Case 1: Let u = [ x, y, θ0 ]
From (1), we obtain following state equation[

φ̇
ẇ

]
=

[
B(φ)−1A(φ)R>

θ0

I3

]
u (3)

where I3 is 3 × 3 indentity matrix. Then we can rewrite it
in the following form

ξ̇ = g1(ξ)u1 + g2(ξ)u2 + g3(ξ)u3 (4)

where g1 ∈ R9×1, g2 ∈ R9×1, g3 ∈ R9×1 are smooth
vector-fields.

Case2: Let u = [ φ11, φ21, φ31 ]
We divide the 6 × 6 matrix B(φ) into following block

matrix

B(φ) =
[
B1(φ) B2(φ)

]
(5)

where B1(φ) ∈ R6×3, B2(φ) ∈ R6×3. Using (5), kinematics
equation (1) transforms as follows[

−B2(φ) A(φ)R>
θ0

] [
φ̇.2

ẇ

]
= B1(φ)φ̇.1 (6)

Then, we can obtain following state equation φ̇.1

φ̇.2

ẇ

 =
[

I3[
−B2(φ) A(φ)R>

θ0

]−1
B1(φ)

]
u (7)

Now we rewrite it in the vector-field form

ξ̇ = h1(ξ)u1 + h2(ξ)u2 + h3(ξ)u3 (8)

where h1 ∈ R9×1, h2 ∈ R9×1, h3 ∈ R9×1 are smooth
vector-fields. In summary, both state equations (4) and (8) are
3-input and 9-state drift-free (or symmetric affine) systems.

Remark 1: From now on, we sometimes omit the ar-
guments ξ from the vector-fields g(ξ), h(ξ). In addition,
we use the notation gw,hw ∈ R3×1, gφ.1 , hφ.1 ∈
R3×1, gφ.2 ,hφ.2 ∈ R3×1 to indicate the components of the
vector-fields, corresponding velocities of the base, angular
velocities of the root and angular velocities of the hinge joint
respectively, as follows.

g =

 gφ.1

gφ.2

gw

 , h =

 hφ.1

hφ.2

hw

 (9)
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III. CONTROLLABILITY ANALYSIS AND THE
FUNDAMENTAL CONTROL PRINCIPLE

A. Controllability Analysis
Consider the set of input vector-fields G := {g1, g2, g3}.

Controllability of symmetric affine systems is completely
characterized by controllability Lie algebra, i.e., the smallest
distribution Ḡ that contains G and closed under the Lie
bracket operation. The system is controllable if and only if
the dimension of Ḡ coincides with the dimension of state
space at all points. This condition is known as LARC(Lie
Algebra Rank Condition) given by Chow’s theorem[2].

The controllability Lie algebra of the double-linked model
is obtained by calculating Lie brackets as follows. Let us
compute the first-order Lie brackets

g12 := [g1, g2], g23 := [g2, g3], g31 := [g3, g1].

and some of the second-order Lie brackets

g121 := [[g1, g2], g1], g122 := [[g1, g2], g2],
g311 := [[g3, g1], g1].

By complicated but straightforward computation of Lie
bracketting, we can check that

Ḡ := span{g1, g2, g3, g12, g23, g31, g121, g122, g311} (10)

and Ḡ(ξ) spans full tangent space R9 for almost all ξ,
except some singular postures1, thus the state equation (4) is
controllable. Likewise, starting from the set of input vector-
fields H := {h1, h2, h3}, we can also conclude that the
state equation (8) is controllable.

B. Periodic Input Design via Exterior Product Equation
We propose a new control design method to realize desired

locomotion of the robot by periodic inputs, which moves the
state variables to subspace spanned by the first order Lie
brackets g12, g23, g31.

First, suppose that the control input u ∈ R3×1 is param-
eterized by the vector ū ∈ R2 and the matrix K ∈ R3×2 as
follows:

u =

 K11 K21

K12 K22

K13 K23

 ū (11)

where K1i ∈ R,K2i ∈ R (i = 1, 2, 3). Geometrically,
this implies that u is rescticted to the subspace spanned by
K1 := [K11,K12,K13]T and K2 := [K21,K22,K23] with
the coefficients ū1, ū2 (See Fig. 2).

When the input u is restricted to this form, the state
equation can be reduced to

ξ̇ =
[
ḡ1 ḡ2

]
ū (12)

where ḡ1, ḡ2 are linear combinations of input vector-fields
g1, g2, g3 as follows.

ḡ1 :=
3∑

i=1

K1igi, ḡ2 :=
3∑

i=1

K2igi (13)

1The singularity occurs when A(φ) fails to be full column-rank. See [3]
for detailed issue on the singularity.

Fig. 2. Cyclic trajectory on the subspace spanned by K1, K2

Now suppose to apply the following time-periodic signal to
ū:

ū = [ ū1, ū2 ]> = [ −εω sinωt, εω cos ωt ]> (14)

then ξT := ξ(T ) where T = 2π/ω, the state after one cycle,
is given by the first-order Lie bracket [ ḡ1, ḡ2 ] as follows:

ξT = ξ0 + πε2 [ ḡ1, ḡ2 ] + O(ε3) (15)

This formula is called the principle of holonomy, or the area
rule[6]. The reminder O(ε3) tends to be small for high order
of ε1. The net displacement of the state is approximated by

∆ξT := ξT − ξ0
∼= πε2 [ ḡ1, ḡ2 ] (16)

Using the skew-symmetry of Lie bracket operation ([f , g] =
−[g, f ]), we have

[ ḡ1, ḡ2 ] = κ12g12 + κ23g23 + κ31g31 (17)

κ12 := K11K22 − K12K21,

κ23 := K12K23 − K13K22,

κ31 := K13K21 − K11K23.

κ := [κ23, κ31, κ12]> satisfies the following exterior product
equation:

κ = K1 × K2 (18)

Conversely, given κ, we can always find K1 and K2

which satisfy (18) though the solution is not unique. The
corresponding control input is given by (11) and (14).

C. Approximate equilibrium and analysis of its stability

In this subsection, we consider the periodic dynamics
of the system (15) under above pre-specified input design
method. Let us we approximate displacement of the state by
focusing on the influence of first-order Lie brackets. Suppose
∆ξT is given by the approximated formula (16). Then, a
state ξ∗ that satisfies

[ ḡ1, ḡ2 ] (ξ∗) = 0 (19)

is called an approximate equilibrium of first-order .
Next, let us discretize the original continuous-time system

with the interval T :

ξ[k] := ξ(kT ), k ∈ N0, T = 2πω (20)
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Then (15) and (16) are expressed by following equation.

ξ[k + 1] = ξ[k] + ∆(ξ[k])
∆(ξ[k]) ∼= πε2 [ ḡ1, ḡ2 ] (ξ[k]) (21)

Finally, linearization of the system (21) in a vicinity of ξ∗

is obtained as follows.

ξ[k + 1] − ξ∗ ∼=

(
I9 +

∂∆(ξ[k])
∂ξ[k]

∣∣∣∣
ξ[k]=ξ∗

)
(ξ[k] − ξ∗)

(22)

where I9 ∈ R9×9 is 9 × 9 identity matrix.
ξ∗ is a locally asymptotically stable equilibrium of the

Poincaré map if the spectral radius of

A := I +
∂∆(ξ[k])

∂ξ[k]

∣∣∣∣
ξ[k]=ξ∗

is less than 1.

IV. CONTROL FOR TRANSLATIONAL LOCOMOTION

The purpose of translation control is to change (x, y)
without changing the other variables: the change of state
variables after one cycle ∆ξT have to satisfy with

∆ξT = [ 0, 0, 0, 0, 0, 0, αx, αy, 0 ]> (23)

where αx, αy is constant of translation. In translation control,
we take the angular velocities of the root joints for control
input, so state equation is (8).

A. The Periodic Input Design Based on Analysis of Stability

Now, the orientation of the robot doesn’t change, so
without loss of generality, we set θ0 = 0. Firstly, not
caring with the change of the hinge joint angle, we find
[ κ12, κ23, κ31 ]> to satisfy with ∆wT = [ αx, αy, 0 ]>

from following equation: αx

αy

0

 = πε2
[
hw

12(φ) hw
23(φ) hw

31(φ)
]  κ12

κ23

κ31

 (24)

where hw
12(φ), hw

23(φ), hw
31(φ) depends on only the

root joint angle φ.1. Furthermore, rank[hw
12(φ), hw

23(φ),
hw

31(φ)]> = 3 for arbitrary φ.1, so we can obtain
hw

12(φ), hw
23(φ), hw

31(φ) uniquely. Under the pre-specified
κ12, κ23, κ31, the change of the hinge joint angle ∆φ.2 is
expressed as

∆φ.2
∼= πε2

[
hφ.2

12 (φ) hφ.2

23 (φ) hφ.2

31 (φ)
] κ12

κ23

κ31

 (25)

Here, φ∗
.2 satisfying with ∆φ.2 = 0 is the approximate

equilibrium of first-order for φ.2 under pre-specified φ.1

and κ. Furthermore, analyzing the stability of φ∗
.2, we can

know the convergent shape of the hinge joint angle for
translation.
[Procedure 1] Control input design for translation
Step 1 From (24), set κ12, κ23, κ31 for pre-spcified φ.1.
Step 2 Solve ∆φ.2 = 0 in (25) to obtain the approximate
equilibrium of first-order: φ∗

.2 and analyze the stability of

φ∗
.2 to know the convergent shape of the hinge joint angle

for translation.
Step 3 Solve K1, K2 in (??) and (??).
Step 4 Determine control input u from (11).

B. Simulation

θ

(a)Response of the location

φ

φ

φ

(b)Response of the root joint angles

φ

φ

φ

(c)Response of the hinge joint angles

Fig. 3. Simulation results(Translation)

We set ε = 0.2, ω = 1 and αx = 1, αy = 0. In the Step
1, we obtain κ12 = 0.34, κ23 = −0.34, κ31 = 0 from (24)
for initial shape φ0 = [π

2 , 0,−π
2 , 0, 0, 0]>. In the next Step

2, we set K1 = [0,−0.69, 0]>, K2 = [0.49, 0, 0.49]>, then
the control input for translate from (24) is

u1 = 0.49 cos t

u2 = 0.69 sin t

u3 = 0.49 cos t

(26)
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(a)Initial Posture (b)Final Posture

Fig. 4. Simulation results(Translation)

Fig. 3 and Fig. 4 show the simulation results. In Fig. 3, (a)
shows the time response of the configuration of the robot:
x, y, θ0. And (b) and (c) show the time response of the
root joint angle: φ11, φ21, φ31 and the hinge joint angle:
φ12, φ22, φ32 respectively. From (a), we can confirm that y
and θ0 after one cycle return to initial value, but by contrast,
x moves along x-axis to the minus direction. (b) shows that
the root joint angle φ.1 doesn’t change periodically. This is
because we take φ̇.1 to control input and apply it periodic
function. Furthermore, we can confirm that the hinge joint
angle φ.2 converges to a specific value, which is attributed
to the stability of the approximate equilibrium of first-order
φ∗

.2 := [φ∗
12, φ

∗
22, φ

∗
32]

> = [1.05, 0,−1.05]>.

V. CONTROL FOR SHAPE REARRANGEMENT

The purpose of shape control is to change an initial shape
φ[0] to arbitrary reference shape φref without changing the
configuration vector w: the change of state variables after
one cycle ∆ξT have to satisfy with

∆ξT =
[
φref

11 , φref
21 , φref

31 , φref
12 , φref

22 , φref
32 , x[0], y[0], θ0[0]

]>
(27)

where x[0], y[0], θ0[0] is an initial shape. In shape control,
we take the velocities of the base for control input, so state
equation is (4).

A. The Existance of Stable Equilibrium and The Definition
of Invariant Sets

The orientation of the robot doesn’t change, so without
loss of generality, we set θ0 = 0. Now, gφ.1

21 , gφ.1

23 , gφ.1

31 are
constant vectors and are linear independent. Therefore, we
can set a constant vector [κ12, κ23, κ31]> to realize aribitrary
change of shape ∆φ.1 from following equation:

∆φ.1 = πε2(κ12g
φ.1

12 + κ23g
φ.1

23 + κ31g
φ.1

31 ) (28)

Then, under the pre-specified [κ12, κ23, κ31]>, the change of
the hinge joint angles is expressed as follows:

∆φ.2
∼= πε2(κ12g

φ.2

12 + κ23g
φ.2

23 + κ31g
φ.2

31 ) (29)

Fig. 5 shows the time response of the hinge joint angles
under pre-specified κ12 = 0.5, κ23 = 0, κ31 = 0 in (29).
We can confirm that the hinge joint angles converge in a
specific value with time, which is due to the stable equibrium
existing at the vicinity of the approximate equibrium −π. As
Fig. 5, the hinge joint angles converge to a stable equibrium

φ

φ

φ

Fig. 5. Convergence of the hinge joint angles to a stable equilibrium

quickly in initial stage, but decay gradually. Furthermore, we
can regard all hinge joint angles as the almost same value
over time even if the initial values of them are different from
each other. Then, we call the almost same value the vicinity
shape of the stable equibrium and describe as follows:

φ#
.2 := [ φ#

12, φ#
22, φ#

32 ]> (30)

Now, we define following set M1 for (φ.1, φ.2).

M1 :=
{

(φ.1, φ.2)
∣∣∣φ.2 = φ#

.2

}
(31)

M1 is an invariant set because if (φ.1[`], φ.2[`]) ∈ M1 for
∃` ∈ N0, then (φ.1[` + n], φ.2[` + n]) ∈ M1 for ∀n ∈ N.

Next, we define following set M2 for (φ.1,φ.2).

M2 :=
{
(φ.1, φ.2)

∣∣φ.1 = φref
.1 − Dk(φref

.2 , φ.2), k ∈ Z
}

(32)

where Dk(φref
.2 , φ.2) is the amount of displacement of φ.1

which we control φ.2 to φref
.2 after k cycles as follows:

Dk(φref
.2 , φ.2) ∼= πε2

k∑
`=1

[ gφ.1

12 gφ.1

23 gφ.1

31 ]κ[`] (33)

where κ[`] can be solved from following equation:

κ[`] ∼=
1

πε2n

[
gφ.2

12 (φ.2[` − 1]) gφ.2

23 (φ.2[` − 1])

gφ.2

31 (φ.2[` − 1])
]−1

(φref
.2 − φ#

.2) (34)

(34) is the design equation for κ12[`], κ23[`], κ31[`] to con-
trol φ.2 to φref

.2 after k cycles and make the amount of
displacement after one cycle equal. In fact, if φ ∈ M2,
then we can control φ.2 to φref

.2 and φ.1 to φref
.1 simul-

taneously under pre-specified κ12[`], κ23[`], κ31[`] in (34).
Furthermore, as long as we set κ12[`], κ23[`], κ31[`] in (34), if
(φ.1[`], φ.2[`]) ∈ M2 for ∃` ∈ N0, then (φ.1[`+n], φ.2[`+
n]) ∈ M2 for ∀n ∈ N, so the set M2 is an invariant set.

B. Periodic Input Design Using Invariant Sets

In this section, we describe about the method of control
design using M1, M2 effectively. If φ := (φ.1, φ.2)
belongs to M2, we can control φ to φref by setting
κ12[`], κ23[`], κ31[`] in (34). Therefore, we have only to
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φ

φ

φ

(b)Response of the hinge joint angles

Fig. 6. Shape control (1st step, φ[0] → φM )

control initial shape (φ.1[0], φ.2[0]) to (φM2
.1 , φM2

.2 ) ∈
M2. Here, we define a following set:

M := M1 ∩ M2 (35)

We can set κ12, κ23, κ31 in (28) to control φ.1[0] to φM
.1 ∈

M and under such a κ12, κ23, κ31 it can be expected that
φ.2 converges to the vicinity of φ#

.2 as Fig. 5 shown. So we
can control φ to φM ∈ M along M1. Finaly, we swich a
control method and control φ to φref along M2.
[Procedure 2] Control input design for shape control
Step 1 Set φ#

.2 and solve κ[`](1 ≤ ` ≤ k, ` ∈ N) from (34)
Step 2 Set Dk(φref

.2 , φ#
.2) from (33)

Step 3 Set κ12, κ23, κ31 from (28) and determine control
input u form (??), (??) and (11) to control φ to φM

Step 4 Determine the control input u from (11) and (18)
using κ[`] obtained in Step 1, to change φ from φM to
φref .

C. Simulation

We set the initial shape φ0 = [−0.7,−1.0,−0.8,
2.2, 2.3, 2.2]>, the reference shape φref = [0, 0, 0, 0, 0, 0]>,
ε = 0.1, ω = 1 and φ#

.2 = −2.7. Fig. 6 shows the simulation
results at Step 3 and Fig. 7 shows the simulation results at
Step 4. Finally, Fig. 8 shows initial posture and final posture
of the robot. From Fig. 7, we can confirm that the shape of
the robot is controlled to the reference shape.

VI. CONCLUSIONS

In this paper, we proposed a new contol method for
locomotion control problem of the double-linked trident
snake robot. The feature of our proposed method is not to
create the behavior corresponding high order Lie brackets
which characterize controllability structure of the robot but
to use a specific nonlinear dynamics effectively. In the case
of this robot, a specific dynamics is the periodical property
that some state variables whose behavior can’t be designed
directly, the hinge joint angles, converge to a stable cycle
under pre-specified control prameter. This proposed idea can
be a practical control method not only for this robot but also
for such a nonlinear system, whose controllable structure is
complicated, as multi-generater system.

φ

φ

φ

(a)Response of the root joint angles

Fig. 7. Shape Control (2nd step, φM → φref )

(a)Initial Posture (b)Final Posture

Fig. 8. Shape Control
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