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Abstract— In this paper, a global sliding mode control
(GSMC) scheme is implemented on a piezo-driven XY parallel
micropositioning stage to compensate for the unmodeled hys-
teresis aiming at a sub-micron accuracy motion tracking con-
trol. The GSMC controller is designed with the consideration
of all uncertainty bounds. In the controller implementation, a
high-gain velocity observer is adopted to estimate the feedback
velocity from the measured position. The effectiveness of the
GSMC over ordinary SMC and traditional PID control is
demonstrated through simulations, while the variations of
design parameters on control performances are examined as
well. Results show that the GSMC can reduce the hysteresis to
a negligible level and lead to a sub-micron accuracy tracking
with tolerance to some degrees of external disturbances, which
provides a sound base of practical control of the microposition-
ing system for micro/nano scale manipulation.

I. INTRODUCTION

Micropositioning stages with piezoelectric actuation are

applied more and more extensively in various ultra-precision

applications [1]. Piezoelectric actuators (PZTs) are capable

of nanometer resolution positioning with high stiffness and

fast response, and hence usually employed to meet the

requirements. Nevertheless, the major problem of piezo-

driven stages comes from the nonlinearities introduced by

PZT attributed to the hysteresis, creep, and drift effects. The

hysteresis is reflected as the nonlinear relationship between

the applied voltage and output displacement of PZT and

induces a severe open-loop positioning error as high as 10–

15% of the stage travel range. So, the hysteresis has to be

suppressed for practical applications.

The successful compensation of hysteresis relies on the

design of suitable control strategies. Typically, the hysteresis

is compensated by the feedforward control resorting to an

inverse hysteresis model based on the Preisach model and so

on. Considering that most hysteresis models are only applica-

ble with some particular input signal frequencies, a combined

feedback control can be adopted for a precision motion

control [2], [3]. For example, a sliding mode control with

an inverse modified Prandtl-Ishlinskii model compensation

is used in [4] for a precision positioning or tracking control.

On the other hand, the establishment and identification of

a hysteresis model is a complicated procedure leading to a

time consuming work for a controller design process. Hence,

more approaches without modeling the hysteresis have been
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exploited. To name a few, a traditional PI (proportional-

integral) feedback controller is employed to compensate for

the hysteresis in a nonopositioning stage [5], H∞ robust con-

troller designed with identified plant model [6] and inversion-

based feedforward combined with polynomial-based feed-

back control [7] are implemented for high-bandwidth control

of nanopositioning stages, respectively.

Actually, considering the hysteresis as a disturbance or

uncertainty, sliding mode control (SMC) can be employed

in a piezo-driven stage [8], since the major advantage of

SMC lies in its robustness in the presence of model im-

perfection and uncertainties. SMC is a nonlinear control

method which drives the nonlinear system’s state trajectory

onto a specified sliding surface and maintains the trajectory

on this surface for the subsequent time. Since the control

can be as simple as switching between two states, it is not

sensitive to parameter variations and uncertainties entering

into the control loop. Generally, a reaching phase motion

exists in the conventional SMC before the system state

arrives at the sliding surface. However, the existence of

such a reaching phase reduces the robustness property of the

control system [9]. In this research, a global sliding mode

control (GSMC) strategy [10] eliminating the reaching phase

is adopted to obtain a sliding mode during the entire system

response. Specifically, a GSMC with the consideration of

bounds on all uncertainties of the system is designed to

compensate for the unmodeled hysteresis effects for an XY

parallel micropositioning stage (PMS) [11]. Moreover, the

advantages of GSMC over ordinary SMC for the motion

tracking control will be demonstrated.

In the rest of the paper, after a brief description of

the XY stage architecture and its dynamics uncertainties

in Section II, an ordinary SMC and GSMC controllers

are designed in Sections III and IV, respectively, and the

stability of the closed-loop systems is proved via Lyapunov

method. Based on the preliminary experimental test results in

Section V, simulation studies are carried out in Section VI to

verify the effectiveness of designed controllers. Particulary,

the modified Prandtl-Ishlinskii model is used to represent the

system with hysteresis, and a traditional PID controller is

implemented as well for the purpose of comparison. Finally,

some concluding remarks are summarized in Section VII.

II. SYSTEM DESCRIPTION AND DYNAMICS

PROPERTY

A. Architecture Description of the XY Stage

As illustrated in Fig. 1, the XY parallel micropositioning

stage (PMS) is designed with four identical PP (P stands
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Fig. 1. A decoupled XY PMS.

for prismatic joint) limbs and actuated by two PZTs through

the integrated displacement amplifiers. It is known that PZT

can not bear transverse loads due to the risk of damage.

The designed displacement amplifier acts as an ideal P joint

and possesses larger ratio of stiffness in transverse direction

than that in working direction. Hence, the amplifier also acts

as a decoupler with the roles of transmitting axial force of

actuator and preventing the actuator from suffering undesired

transverse motions and loads as well. By this way, the two

actuators are well isolated and protected. Moreover, the ideal

translation provided by compound parallelogram flexures

allows the generation of decoupled output motion for the

stage. Different from a common decoupled XY PMS with

output motion decoupling, the proposed one has both input

and output decoupling in virtue of actuation isolation and

decoupled output motion. This totally decoupling property

is necessary for situations where the platform is under-

actuated and sensory feedback of end-effector positions is

not allowed. More details about the stage working principle

can be found in [11].

B. Dynamic Model and Uncertainties

Since the stage is well decoupled, the two axial motions

can be treated independently. Thus, two single-input-single-

output (SISO) controllers can be employed for the X and

Y axes, respectively. For conciseness, only the treatment of

x-axis motion is presented in this paper.

Taking the micropositioning stage as a mass-spring-

damper system, the dynamic model integrating the stage and

PZT actuator can be derived as follows [12]:

Mẍ + Bẋ + Kx =
KcT

As(Kc + Ka)
(u − v), (1)

where the variable x denotes the x-axis displacement, M , B,

and K represent the equivalent mass, damping parameter,

and output stiffness of the system, respectively. Besides,

Kc is input stiffness of the stage, Ka is stiffness of PZT

actuator, As denotes the amplification ratio of output to

input displacements of the stage, T is electromechanical

transformer ratio of actuator, u represents input voltage

applied to the actuator, and v denotes an internal voltage

which induces hysteresis effects to the PZT.

It is observed that the left hand side of the model (1)

represents a linear second order system, i.e.,

ẍ + 2ξωnẋ + ω2
nx =

KcT

AsM(Kc + Ka)
(u − v), (2)

where ωn is the natural frequency and ξ denotes the damping

ratio of the stage system, which can be determined by

experiments on open-loop transient response of the system.

As far as system parameters in (2) are concerned, actuator

stiffness Ka is provided by the producer, the stiffness Kc

and amplification ratio As can be determined by resorting to

finite element analysis (FEA). Then the equivalent mass M
can be derived accordingly. In addition, with a static signal

input, the transformer ratio T of PZT can be derived by:

T =
AsM(Kc + Ka)ω2

n

Kc

x

u
, (3)

where the rate x
u

represents the slope of the rising or falling

curves in displacement-voltage hysteresis loop, which is

variable. Moreover, there exist uncertainties in the dynamic

model since the aforementioned dynamic parameters can

only be identified with some tolerances, and the complicated

hysteresis can not be modeled accurately. To compensate for

these uncertainties, a SMC can be employed since the major

advantage of SMC lies in its robustness in existence of model

imperfection and uncertainties. In the following sections, an

ordinary sliding mode controller is constructed firstly.

III. ORDINARY SMC DESIGN

In this section, an ordinary SMC controller is designed to

compensate for the unmodeled hysteresis, which is taken as

a bounded disturbance v in (2).

The system model (2) can be rewritten into the form:

ẍ + aẋ + cx = b(u − v), (4)

where the nominal values for the variable parameters are

a = 2ξωn, (5)

c = ω2
n, (6)

b =
KcT

AsM(Kc + Ka)
> 0. (7)

Additionally, the error coordinates are defined as

e1 = x − xd, (8)

e2 = ẋ − ẋd, (9)

where xd denotes the desired position trajectory.

In view of the linear second order system, a sliding surface

or switching function is selected as the first order function:

s = e2 + λe1, (10)

where λ (λ > 0) is a design parameter. By taking the

time derivative of both sides of (10), the following sliding

dynamics can be obtained:

ṡ = ė2 + λė1

=−(a − λ)ẋ − cx + b(u − v) − ẍd − ẋd. (11)
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With the assignment of ṡ = 0 and v = 0, an equivalent

control law for the reaching phase motion can be derived as:

ueq =
1

b
[(a − λ)ẋ + cx + ẍd + λẋd] . (12)

In order to compensate for the uncertainty v, a corrective

control law is designed below to guarantee the convergence

of the state trajectory to the sliding surface:

uc = −βsign(s) − φs, (13)

where the switching gain β is selected as β = ηvm with

η > 1 so as to meet β > v to guarantee the stability, φ is

a positive constant to be designed, and the signum function

sign(s) is:

sign(s) =







1 for s > 0
0 for s = 0
−1 for s < 0

. (14)

As a summation of the two control items (12) and (13),

the SMC control law is derived as:

u = ueq + uc. (15)

To evaluate the stability, the following Lyapunov function

candidate is considered:

V =
1

2
s2. (16)

Differentiating (16) with respect to time, results in

V̇ = sṡ. (17)

Substituting (11) into (17) with the consideration of (15),

yields

V̇ =−b[v + ηvmsign(s) + φs]s

=−bvs − bηvm|s| − bφs2 ≤ 0. (18)

Thus, the sliding condition is satisfied by the designed

control law (15). Furthermore, to alleviate the chattering

phenomenon, the signum function in (15) is replaced by the

saturation function with the notation:

sat(s) =







1 for s > δ
s/δ for |s| ≤ δ
−1 for s < −δ

, (19)

where δ (δ > 0) represents the boundary layer thickness.

A simulation study conducted shortly shows that the above

SMC controller is not satisfactory for motion tracking control

of the micropositioning system with complex hysteresis.

Thus, an alternative SMC is designed in the subsequent

section.

IV. GSMC DESIGN

In the GSMC, there exists no reaching phase motion, and

a global sliding phase guarantees the robustness property of

the controller. In what follows, a GSMC strategy with the

consideration of all parameter uncertainties and unmodeled

hysteresis is constructed for the micropositioning system.

Desired
trajectory

, ,
d d d
x x x� �

� ��

SMC/GSMC
controller

Velocity
observer

ˆ ˆ,x x�

�

ROBUST CONTROLLER

PZT drive
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Displacement
sensor

PZT
u

x

PLANT

Fig. 2. Block diagram of the (global) sliding mode control.

A. GSMC Controller Design

In order to design a GSMC controller, it is assumed that

the parameters in (4) are bounded by

bmin ≤ b−1 ≤ bmax, (20)

amin ≤ ab−1 ≤ amax, (21)

cmin ≤ cb−1 ≤ cmax, (22)

v ≤ vm. (23)

Based on the error coordinates e1 and e2 defined in (8)

and (9) with respective initial states e10 and e20, a global

sliding surface is selected as follows [10]:

s = e2 + λe1 − f(t), (24)

where the first order differentiable function f(t) = f(0)e−kt

is designed to be f(t) → 0 as t → 0, with the initial value

f(0) = e20 + λe10. It follows that the initial state locates in

the sliding surface s(0) = 0, which means that the reaching

phase is eliminated. Therefore, the global sliding mode can

be obtained with the assigned sliding surface.

Taking the time derivative of both sides of (24), we have

ṡ = ė2 + λė1 − ḟ

= ẍ − ẍd + λ(ẋ − ẋd) − ḟ

= ẍ + (λẋ − ḟ) − (ẍd + λẋd)

=−aẋ − cx + bu − bv + (λẋ − ḟ) − (ẍd + λẋd). (25)

A global control with exponential asymptotic law is de-

signed below:

u =−b̄(cẋ − ḟ) + āẋ + c̄x + b̄(ẍd + cẋd)

−
{

b|cẋ − ḟ | + a|ẋ| + c|x| + vm

+b|ẍd + cẋd|
}

sign(s) − k|s|rsign(s), (26)

where the design parameters k > 0, 0 < r < 1, and

b̄ =
bmax + bmin

2
, b =

bmax − bmin

2
, (27)

ā =
amax + amin

2
, a =

amax − amin

2
, (28)

c̄ =
cmax + cmin

2
, c =

cmax − cmin

2
. (29)

In order to prove the stability of the system, a Lyapunov

function candidate is chosen as usual:

V =
1

2
s2. (30)
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Substituting (26) into (25) and rearranging the items, gives

an expression:

b−1ṡ = (b−1 − b̄)(λẋ − ḟ) − b|λẋ − ḟ | sign(s)

−(b−1 − b̄)(ẍd + λẋd) − b|ẍd + λẋd| sign(s)

+(ā − b−1a)ẋ − a|ẋ| sign(s)

+(c̄ − b−1c)x − c|x| sign(s)

−v − vmsign(s) − k|s|rsign(s). (31)

Differentiating (30) with respect to time, yields

V̇ = sṡ. (32)

Then, substituting (31) into (32) results in

b−1V̇ = b−1sṡ

= (b−1 − b̄)(λẋ − ḟ)s − b|λẋ − ḟ ||s|

−(b−1 − b̄)(ẍd + λẋd)s − b|ẍd + λẋd||s|

+(ā − b−1a)ẋs − a|ẋ||s| − vs − vm|s|

+(c̄ − b−1c)xs − c|x||s| − k|s|r+1. (33)

In view of (20)—(22), we can derive that

b−1 − b̄≤ b , (34)

ā − b−1a≤ a , (35)

c̄ − b−1c≤ c . (36)

Finally, substituting the above (34)—(36) into (33) and

considering (7) and (23), we can deduce that

V̇ ≤ 0, (37)

which means that the closed-loop system is stable.

Furthermore, to alleviate the chattering phenomenon, the

signum function in control law (26) is replaced by the

saturation function described in (19) as well.

B. Controller Implementation

An insight into (26) and (15) indicates that both full

state feedback and full state trajectory are required to im-

plement the GSMC or SMC controller. Although the full

state trajectory can be generated by differentiating the desired

position trajectory in advance, the velocity feedback has to

be estimated since only the position can be measured by the

displacement sensor. Generally, the velocity can be estimated

by resorting to the measured position using a backward

difference equation:

ẋ =
x(ti) − x(ti−1)

ts
, (38)

where x(ti) denotes the measured position at the i-th sam-

pling time ts. In spite of its simplicity, it has limitations

due to the accuracy and quantization noise, which restricts

the achievable bandwidth of the feedback controller. Alter-

natively, a closed-loop high-gain observer can be employed

without the above limitations [13]. Thus, a high-gain ob-

server is adopted to estimate the feedback velocity as follows:
[

ẏ1

ẏ2

]

=

[

−β1/τ 1
−β2/τ2 0

] [

y1

y2

]

+

[

β1/τ
β2/τ2

]

x, (39)

Fig. 3. Photograph of experimental setup.

where the measured x is the position input to the observer,

and the observer output is the full state feedback, i.e., x̂ = y1

and ˙̂x = y2. The bandwidth of the observer depends on

design gains β1 and β2, and the accuracy of the estimated

velocity relies on the design parameter τ .

Therefore, the robust controller is constructed by the

above two components of GSMC (or SMC) controller and

velocity observer. The block diagram of the control scheme

is illustrated in Fig. 2. It can be observed that the input to

the robust controller is the desired position, velocity, and

acceleration trajectories and measured position, while the

output is the voltage that will be applied to drive the PZT.

V. HARDWARE CONFIGURATION AND

PRELIMINARY TEST

The experimental setup of the XY stage prototype is

graphically shown in Fig. 3. The monolithic stage is fab-

ricated from a piece of light material Al 7075-T651. Two

20 µm-stroke PZT (model PAS020 produced by Thorlabs,

Inc.) are adopted to drive the XY stage, and the PZT is

actuated with a voltage of 0–75 V through a two-axis piezo

amplifier and controller (BPC002 from the Thorlabs). The

displacements of the output mobile platform are measured

by two laser displacement sensors (Microtrak II, head model:

LTC-025-02, from MTI Instrument, Inc.). The analog voltage

outputs of the two sensors are connected to a three-channel

data acquisition box (UBOX-20016 from TDEC Ltd.), which

is embedded with 16-bit A/D convertors. The digital output

of the acquisition box is then simultaneously read by a

personal computer through a USB interface. The resolution

of the displacement detecting system is 0.04 µm.

Preliminary open-loop test shows that the XY stage has

a workspace around 120 µm×120 µm with the maximum

cross-talk of 1.5% between the two axes, which verifies the

well-decoupled property. From open-loop step response test,

the damping ratio ξ = 0.12 and natural frequency ωn =
1054.9 rad/s can be identified. Besides, for the developed

XY micropositioning stage, the amplification ratio As = 6.2,

output stiffness K = 1.84 × 105 N/m, and input stiffness

Kc = 9.9 × 106 N/m can be obtained by FEA simulation.

So, the equivalent mass and damping parameter can be

determined as M = 0.165 kg and B = 41.86 N·s/m,

respectively. Besides, the actuator’s stiffness Ka = 5 × 107

N/m is provided by the manufacturer, and the T̄ = 10.85 C/m

is the nominal value for the transformer ratio. After that,
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nominal values for a, b, and c in (4) can then be calculated

according to (5)—(7). The effectiveness of the designed

controller is demonstrated in the subsequent discussions.

VI. SIMULATION STUDIES AND RESULTS

A. Controller Setup

In the current research stage, numerical simulations are

performed with MATLAB to discover the efficiencies of the

design GSMC as well as ordinary SMC controller. Besides,

an incremental type PID controller is also implemented for

the comparison purpose. The gains of the PID control are

tuned to maintain the overshoot within 10%, i.e., KP = 0.91,

KI = 0.37, and KD = 0.06.

In the simulation, the plant as indicated in Fig. 2 is

expressed by the modified Prandtl-Ishlinskii hysteresis model

[14], which is identified based on experimental data provided

by the laser displacement sensor with an input signal rate

of 0.125 Hz. For a periodical sinusoidal wave voltage input

covering the voltage range of 0 to 60 V, the hysteresis loop

produced by the identified modified Prandtl-Ishlinskii model

is shown in Fig. 4.

It is observed that the hysteresis leads to certain differ-

ences between the rising and falling displacement-voltage

curves. Concretely, the maximum width of the hysteresis

loop is as high as 14.5% of the travel range, which provides

a challenge for the controller design. Additionally, it is seen

that vm = 9.5 V, which is the maximum difference in input

voltage between the rising and falling curves with respect to

the same output displacement value. The uncertain ratio T
is bounded within 0.9T̄ ≤ T ≤ 1.1T̄ . Thus, the uncertainty

bounds for parameters b, a, and c can be calculated by (20)—

(22). Additionally, the sampling time interval is assigned as

ts = 0.045 s to simulate the real situation achievable with

the current hardware. Besides, λ = 9800, η = 5, φ = 450,

and δ = 10 are assigned for the ordinary SMC and λ = 18,
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Fig. 6. Comparison of step responses with external disturbance. (a)
Responses of the three controllers, (b) response of the GSMC with different
λ values.

k = 0.5, r = 0.5, and δ = 50 are chosen for the GSMC,

respectively.

B. Control Results and Discussions

First, the step responses for a 50-µm displacement input

are tested and the results are plotted in Fig. 5. The controller

parameters are tuned to obtain a response as rapid as possible

within 10% overshoot magnitude. It is observed that the

settling time (with 5% tolerance) for the three controllers

are: tSMC < tPID < tGSMC . That is, the SMC produces

the most rapid transient response among the three controllers,

while GSMC can only creates the lowest response speed.

Moreover, it is found that as the increasing of control param-

eters λ for SMC and GSMC controllers, quicker responses

with smaller steady-state errors can be obtained which are

at the expense of higher overshoot and clearer chattering,

respectively.

In addition, to test the robustness property of the three

controllers for disturbances rejection, the input signal is

increased by a factor of 10% at the time of 6 s. The control

results are compared in Fig. 6(a). It can be seen that all

of the controllers can tolerate the disturbances since the

control results return to the normal values quickly, except

for a larger oscillation in the GSMC response. The tuning

of control parameters shows that the oscillation magnitude

can be reduced by decreasing the value of λ for GSMC as

illustrated in Fig. 6(b). As can be expected, the decreasing

of λ results in a slower initial response and a larger steady-

state error on the other hand. Hence, a tradeoff between the

performances is necessary to select the control parameters

for practical applications.

Besides, a 0.125-Hz 60-µm sinusoidal motion tracking

control is performed by employing the three controllers and

the results are described in Fig. 7. We can observe that the

GSMC is superior to both PID and SMC controllers in terms

of peak-to-peak (p-p) tracking error. In addition, the SMC is

not superior to PID since the p-p error is only reduced from
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Fig. 7. 0.125-Hz sinusoidal motion tracking. (a) Tracking result, (b)
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3.14 µm to 3.10 µm by SMC as indicated in Fig. 7(b). In

contrast, with the GSMC, the p-p error has been significantly

reduced to 0.56 µm. This is the main reason why GSMC is

designed although SMC is implemented at first. Additionally,

from the controller output signal as shown in Fig. 7(c), we

can see that no chattering exists in the control signal. Based

on the designed controllers, the hysteresis of the system is

tested as well. For the travel range of 100 µm, the hysteresis

loop is reduced to 3.4%, 2.9%, and 0.4% by PID, SMC,

and GSMC controllers, respectively. Therefore, the GSMC

substantially reduces the hysteresis to a negligible level.

Moreover, as the increasing of input rate from 0.0625

to 0.5 Hz, the corresponding tracking control has been con-

ducted and percentage p-p errors with respect to the travel

range are summarized in Fig. 8. As can be observed that

the control errors increase correspondingly as the rising of

input rate due to the bandwidth capability of the implemented

controllers. The best performance of GSMC over PID and

SMC is clear to see. With the GSMC method, to maintain

the p-p error within 6% of the tracking range, the input rate

should be restricted within 0.5 Hz.

In summary, among the three implemented controllers,

SMC is more proper to set-point regulation while GSMC

is more suitable for motion tracking control of the devel-

oped XY micropositioning system. It is noticeable that the

bandwidth of a feedback controller relies on the sampling

frequency heavily. In order to reduce the control error with

higher input rate, one immediate future work is to implement

a shorter sampling time, which depends on the data acquisi-

tion hardware available. Besides, experimental studies with

the designed controller will be conduced as well for practical

applications in our future works.

VII. CONCLUSION

The major contribution of this paper lies in the design

of a suitable controller for an XY parallel micropositioning

stage to compensate for the unmodeled hysteresis effects.

It is verified that the dominate hysteresis phenomenon can
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Fig. 8. Percentage peak-to-peak error versus input rate.

be suppressed by employing a GSMC approach. The per-

formances of the implemented GSMC over PID and SMC

controllers have been illustrated by extensive simulation

studies. Results show that the hysteresis can be reduced to

a negligible level of 0.4% with the GSMC controller, and

the peak-to-peak tracking error is maintained within 6%

of the overall travel range with an input rate lower than

0.5 Hz. In our future works, high-rate tracking control will be

implemented and tested on the prototype for real micro/nano

scale manipulation, which heavily depends on the hardware

available.
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