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Trajectory scaling for a manipulator inverse dynamics control subject
to generalized force derivative constraints
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Abstract— The behaviour of robotic manipulators is affected
by the actuators dynamic limits. When such limits are not
explicitly considered, manipulators performances rapidly de-
crease. In this paper, dynamic saturations are handled by
means of a real-time technique based on a trajectory scaling
method: whenever saturations occur, trajectories are auto-
matically scaled by means of a dynamic filter in order to
preserve an accurate path tracking. Commonly known scaling
algorithms only consider the existence of torque saturations.
In this paper, the strategy is enriched by also accounting for
torque derivatives constraints. The solution proposed is suited
to be used in conjunction with standard inverse dynamics
controllers. The adopted methodology explicitly requires the
realtime evaluation of the derivative of the manipulator inertia
matrix. To this purpose, a novel efficient procedure is proposed.

I. INTRODUCTION

Efficiency is an important issue in robotics. The time
required to accomplish a given task has an evident impact
on the productivity of any industrial process. For this reason,
users ask for very demanding robot trajectories, which possi-
bly conflict with the manipulators limits. In order to avoid po-
tential problems deriving from the manipulator capabilities,
kinematics limits are normally considered while planning
trajectories, e.g., by bounding velocities, accelerations, and,
when possible, jerks. Conversely, dynamic constraints are
rarely taken into account owing to their difficult evaluation,
so that system actuators could easily saturate, thus causing
tracking losses. Typically, dynamic bounds are considered
during trajectory planning: off-line optimizations are used
to minimize the manipulator traveling times by introducing
explicit constraints on the sole joint forces or torques, i.e., on
the Generalized Forces (GF). Initial results for nonredundant
manipulators have been proposed in [1], where a scaling fac-
tor is introduced to guarantee the feasibility of a planned tra-
jectory. This approach has been subsequently extended to the
case of robots in cooperative tasks, [2], and for manipulators
with elastic joints, [3]. It is worth noting that off-line methods
require an a priori knowledge of the exact robot dynamics,
which in many practical situations can only be roughly
estimated. For this reason, due to model uncertainties and/or
external disturbances, trajectory tracking can still be lost. To
obviate this drawback, scaling methods have been proposed
in the past in order to online reshape planned trajectories and
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fulfill kinematic and/or dynamic limits. Initial solutions have
been proposed in [4]-[6] for robot manipulators subject to
torque limits, while in [7] a robust online extension of [1] has
been described. Moreover, in [8], online adaptation schemes
of the manipulator torque controller are introduced in order
to track a given path with a prescribed tolerance. The strategy
known as path-velocity decomposition [9] has been used in
all the previously mentioned works. It is based on a two
step approach: first, a desired path is planned and, then, the
time law along the path is defined. The trajectory scaling
method online modifies this second planning depending on
the active dynamic constraints. The purpose is to preserve
an accurate path tracking by dropping, if required due to
dynamic saturations, the planned time law.

Although these methods improve tracking accuracy, they
still do not consider existing physical constraints on the
Generalized Force Derivatives (GFD). Also such constraints
affect tracking performances: commonly used minimum-time
solutions require rapidly changing GFs, which cannot be
provided due to the actuators dynamic characteristics.

For this reason, new offline approaches have been recently
proposed in order to plan optimal trajectories subject to
constraints both on GFs and on GFDs, [10]-[12]. Evidently,
these approaches require new methods for the online trajec-
tory scaling. To this purpose, the original problem proposed
by Dahl and Nielsen [4] has been recently revised [13] in
order to consider the generation of trajectories subject to
constraints both on GFs and on GFDs. More precisely, in [13]
a scaling method based on a nonlinear filter was proposed.
It was suited to be used with Feedforward Controllers with
Position and Velocity feedback (FCPV).

In this paper, the topic is newly reconsidered in order
to improve and extend the previous obtained results. First,
a new scaling filter is proposed, which shows dead-beat
convergence properties and, secondly, the control scheme
is adapted to be used with an Inverse Dynamics Controller
(IDC). The same methodology is assumed: dynamic con-
straints are online converted into equivalent kinematic con-
straints and an appropriate filter is then used to autonomously
scale the trajectory in order to fulfill such constraints. The
computational burden of the new control scheme is higher if
compared with that of the controller proposed in [13], since it
explicitly requires the online evaluation of more terms and, in
particular, of the derivative of the manipulator inertia matrix.
To this purpose the paper proposes an algorithm, which could
also be used in other contexts, for the efficient evaluation of
such matrix.

The paper is organized as follows. In §II the trajectory
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scaling problem is formulated. The dynamic expressions
which characterize the manipulator high order dynamics are
proposed in §III. The control strategy and the method used
for the online conversion of the dynamic limits into kinematic
limits are described in §IV: they require the online evaluation
of the derivative of the manipulator inertia matrix which
is obtained by means of an efficient algorithm reported in
the Appendix. The nonlinear dynamic filter for the online
trajectories scaling is proposed in §V, while the overall
control strategy is tested in §VI by means of an example
case. §VII concludes the paper.

II. THE TRAJECTORY SCALING PROBLEM
According to the path-velocity decomposition, let us define
the assigned path qg, expressed in the joint space, as follows

f:0,ur] — R”

- (1)
u - qq:=f(u)
where u is the scalar used to parametrize the curve, uy is
its final value, and »n is the number of independent joints. A

monotonically increasing time law is then needed in order
to describe the movement along the curve

w:[0,z7] — [0,y
t — g =ulr) @
where t; is the total traveling time. Necessarily,

ug(t) >0,Vr €[0,1y].
Bearing in mind (1) and (2), the following expressions
hold due to the chain differentiation rule

40 = f(u)' 3)
i = f) i +fu )ii “)
= fu)" 3+3f( Y a1 £(u) i . )
where superscrlpt " indicates a differentiation with respect
to u, e.g., f(u ) (:>, while, as usual, dots indicate time

derivatives, e.g., u(t) = d%(z)'

The trajectory scaling problem can be summarized as
follows: given a trajectory, assigned according to the path-
velocity decomposition, automatically scale its velocity pro-
file such that path tracking is not lost even if a dynamic
saturation occurs. Practically this implies that trajectory
tracking is occasionally lost if dynamic limits are reached,
but, in any case, path tracking is maintained. Usually [4],
trajectory scaling only considers GF constraints, i.e., given
for each joint k =1,2,...,n an upper bound 7; and a lower
bound 7, the trajectory is online modified such that the
controlled GF, i.e., T, is bounded between assigned limits

T ST < T 6)

This paper continues the discussion started in [13]. More
precisely, the problem is deepened by also considering
bounds on the GFD 1,k=1,2,...,n

T <t <T, (7)

where T, and Ty represent the lower and the upper bounds on
the k-th joint GFD. Differently from [13], the time scaling
methodology is used in association with an inverse dynamics
controller.

III. MANIPULATORS HIGH ORDER DYNAMICS

The time scaling procedure proposed in the next section is
based on the exact knowledge of the dynamic stresses acting
on each joint. To this purpose, it is essential to represent GFs
and GFDs by means of closed form equations. Generalized
forces T can be evaluated by means of the classic inverse
dynamics equation,

T=H(q)G+C(q,4)q +g(q) +f(q,q) . ®)

As usual, q,q,{ € R" indicate the joint variables and their
first and second time derivatives, H(q) € R™ is the sym-
metric positive definite inertia matrix, C(q,q) € R™ is the
matrix of centripetal and Coriolis terms, g € R” is the vector
of the gravity forces, and f(q,q) € R" is the vector of the
friction forces.

Equation (8) can also be posed in scalar form by explicitly
writing each single term of T:= [t T -+, 7,7

%= hj(q)
=

where

Gi+ Y (@) g+ (@) + fila,q) . (9)
Jj=1

Zcuk q)4i,

being c;jx the so-called Christoffel symbols of the first kind.

Closed form expressions are also needed for the evaluation
of the manipulator GFDs: they will be used to check con-
straint (7). By differentiating (9) with respect to time, and
taking also into account (10), for each joint it is possible to
write (k=1,2,...,n)

Ck] q, q (10

qqq,+):hkj i+
j=1

dj(q,q q,+226k, q,q)G;+
]71

™= T M: T M:

bk,qqq,+2ek,qq) (11)
Jj=
where
. oh
hij(4,q) = 2 g’q di » (12)
deipla)
dij(@.4) = Z”):1 ‘a’; Qrd (13)
2 2filg,
bij(a.q) = g’;(j) f’;(;‘j ), (14)
2fil 4,6
1j(a.4) foa), (s)
J

Equation (11) can be posed into the following compact form

H(q,q)4+H(q) 4 +D(q,q)q+2C(q,q) 4+
B(q,q9)q+E(q,q) (16)

The first two terms represent the components of the GFD
which are due to the system inertia. In the same way, the
second two terms are due to the Coriolis and centripetal
components, while the last two terms refer to the gravity
and the friction effects.

't =
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Fig. 1. The manipulator control scheme. The dashed box surrounds the
automatic trajectory scaler.

IV. THE CONTROL STRATEGY

As anticipated in the introduction, the manipulator is
driven by an inverse dynamics controller. The overall control
scheme is shown in Fig. 1. As known [14], an inverse
dynamics controller is described by the following dynamic
equation

T = H(q)4s+C(q,9)q+g(q) +f(q,q)

+kle+klé, A7)

where e := q; —q and é := q, — q respectively represent the
tracking errors and their first derivatives; k, € R" and k, € R"
are the gain vectors of the feedback action. Convergence
properties of controller (17) are well investigated [14], so
that they will be not discussed in the following.

The controller equation can be reparametrized by means
of (1)—(4) leading to

T(u,i,ii;q,q) = by(u;qii+by(u,i:q,q), (18)

where
bi(u;q) = H(q)f(u) (19)
by(u,izq,q) = H(q)f(u) > +C(q,q)q+g(q)+£(q,q)
+kle+kle. (20)

Terms by (u;q) = [b11,b12,...,b1,)" and ba(u,i;q,q) =
[b2.1,b22,...,b2,]" need to be online evaluated. To this pur-
pose, efficient strategies are required to calculate the inertia
matrix H(q) as well as the Coriolis, the centripetal, the
friction, and the gravity terms, i.e., C(q,q)q+g(q) +£(q,q).
Solutions to this problem are proposed in the literature [15],
mainly based on an appropriate use of the recursive Newton-
Euler algorithm [16]. It is evident from (18) that GFs depend
on u,u,i. It is thus necessary to supply a proper reference
signal u in order to fulfill constraints (6). This is the target of
the two blocks shown inside the dashed rectangle of Fig. 1.
The first block provides a velocity reference signal #,; and
an acceleration reference signal iy, which could be possibly
unfeasible with respect to the dynamic constraints. Such
signals are subsequently scaled by the velocity scaling filter
in order to achieve a feasible signal .

Details on the filter will be given in the next sections.
It is important to highlight that it is designed such to
automatically scale the velocity profile in order to fulfill
proper constraints. To this purpose, inequalities (6) and (7)
must be preliminary converted into equivalent bounds on i

and . Due to (18), for each joint k it is possible to write
T = by xii+ by ;: constraints (6) are satisfied by imposing

T <bipii+byp <Tx, k=12,....n. (1)

Necessarily, this implies that the feasibility of ii is guaranteed
n

if ii € (1) [Br , 0], with

k=1
Te—bok - L bk
by 71fb1~k>0 by k ’lfbl’k>0
_ “byy . — ! by .
o = zkbl kz‘k Jif b <0 and fB; = kal kz‘k if by <0
o, ifbl’k:O —, ifbl,k:O
(22)

or, equivalently, if i € [S™ ,S*] where

5™ = max {Bi},
k=1,...,n

St:= min {4} . (23)
k=1,....n

Depending on the manipulator status of motion it could

happen that S~ > S*: in this case there does not exist any

feasible interval for i and the control will be lost with

certainty.

A similar problem must be solved in order to guarantee
that also (7) are satisfied. To this aim, constraints on the
maximum GFDs must be converted into an equivalent limit
on the maximum admissible jerk along the path. Bearing in
mind (16), it follows that the derivative of (17) can be written
as

t = H(q,9)ds+H(q) 4s+D(q,4)4+2C(q,4)§
+B(q,q)q+E(q,q)4+kj e +kl&. (24)
Also this expression can be parametrized in function of the

curvilinear coordinate u by means of (1)—(5), so that, after
simple manipulations, it is possible to write

t = by(u:q)ii +by(u,i,i;q,q,§) , (25)
where

!

(@)f(u) ,

(q, ) [f(u) i +£(u) i
FH(q) [f()" i + 36 (u) " wid]
+D(q,4)q+2C(q,q)§+B(q,q)q
+E(q,q) G +k) e+k] é. 27)

=

b (u;q)
bZ(”»u»”’qqu(l) =

(26)

=

Term by (u;q) is the same computed in (19). Therefore only
b, (u,1,1i;q,q,q) needs to be evaluated. From Equation (27)
it follows that the knowledge of the inertia matrix derivative,
ie., H(q,q), is required. This give us the opportunity to
propose a new method for the online evaluation of H(q,q).
The new algorithm is described in the appendix so that, from
now on, both by (u,u,ii;q,q,q) and H(q,q) are assumed to
be known.

In order to satisfy the requirements on the GFDs, it is
necessary to guarantee that

T <bili4+bys <Tt, k=12,....n. (28)
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Fig. 2. A detail of the automatic trajectory scaler composed by a velocity
planner and a nonlinear, discrete-time, scaling filter.
n

In this second case, feasibility is achieved if % € ﬂ [0k , Ykl

k=1
with
T—byy . t—bog
%,lfb17k>0 J‘bl;k,lfbhk>0
= T —b; y . and 6 = ? —b k.
% J(bl":k ,lbek <0 k khl.k“ Jif bl,k <0
0, ifbhk:() —0o, ifbhk :O
(29)
or, equivalently, if & € [U~ ,U™"] where
Ut:= min {yp}, U = max {8} . (30)

Again, configurations such that U~ > U™ could arise, thus
indicating that the manipulator status is located inside an area
where feasibility cannot be achieved. In this case, a feasible
solution to the problem does not exist and dynamic limits
are violated with certainty. A more detailed discussion on
the solution feasibility can be found in [13].

V. THE TRAJECTORY SCALING FILTER

The trajectory scaler is implemented according to the
scheme shown in Fig. 2. It was early anticipated that it
is composed by two basic elements. The first is a veloc-
ity planner which provides a velocity reference signal 1y
parametrized in function of the longitudinal coordinate u:
given any point u along the curve its corresponding reference
velocity is iy (u). Function i, (u) is supplied by the users and
could be unfeasible with respect to (6) and (7). The second
part of the system is the dynamic nonlinear filter which
automatically scales i, (u) in order to fulfill constraints (23)
and (30) and, in turn, (6) and (7). It is made by a chain of
three integrators driven by an algebraic nonlinear controller
designed by means of variable structure techniques [17]. A
discrete-time implementation has been considered. In the
following, subscript i is used to denote sampled variables,
so that #y4, corresponds to the reference signal i, acquired
at time t; = iT, where T is the sampling period.

The discrete state-space model of the integration chain is
given by the following equation

3
Uit1 1 T %2 uj %2
w1 |=]10 1 T g |+ | . (31)
iy 0 0 1 lij T
It is driven by the following nonlinear controller C
I U~ sat(o;) if ;>0
C:oui= { —Utsat(o;) if 6;<0 (32)

0 =Z4i—7. (33)

The two terms z; and Z, are evaluated by means of the
following algebraic equations

ST —iig,

-+ = o i 34
2 TU— (34)
_ 41
o= [ z*—mz} : (35)

) S~ — i,
7 = ! 36
z U (36)
_ 1
7 = [=z] |-z - M] , 37
L 2
e Vi i
Uutu f =+=>0
[ Jif s>
@B = T 6
_ e Yio i
+ f —4+2<0
U~ U* i 73S
_ Loy | Vi
= o lT TRl (39)
7t if i < 7t
Y = 7z ifzf<z<z (40)
7= ifz >z
1++/1+8|y
m; = Int %—i—hﬂ , (41)
. . om— 1
Z = _% — l2 sgn(y) , (42)
Vi . Vi s
fl(z;>0& <7z 43
Tlal i {(zl_ Tla] <z) (43)
4 = or(zi<0&T)|)ix|ZZ)]
Vi m;—1 |%|) a+p .
+ + — otherwise .
T [B| ( 2 m; ) |B|
44)

Evidently, iy, is the discrete-time derivative of the velocity
reference signal, y; := 1i; — 1y, is the filter velocity error, J; :=
ii; — tig, is the filter acceleration error. Function [-] provides
the upper integer of its argument, while sat(-) saturates its
argument to &1. Signals 1,4, and iig, are assumed to be known
and iiy, is supposed to be piece-wise constant.

The exact characterization of the filter is beyond the scopes
of this paper due to space limitation, but it is important
to point-out its main characteristics. Its output signal u#;
perfectly tracks iy until this latter fulfill constraints (23)
and (30). If these conditions are not satisfied tracking is
voluntarily lost in order to guarantee that i; does not exceed
the given limits. The filter is similar to that proposed in [13]:
as soon as 1y, becomes feasible, its tracking is newly gained
without overshoot and in minimum time, but, and this is the
novelty, the reference signal is now hanged with a deadbeat
approach.

VI. A TEST CASE

The control strategy has been simulated by considering a
RP planar manipulator characterized by the dynamic param-
eters reported in Table I. The reference path is an ellipse
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TABLE I
ROBOT INERTIAL PARAMETERS

Link Mass Center of gravity Inertia Friction

g m (Kg) x(m) ym) z(m) Lu(Kg.m*) Ly(Kg.m*) I.(Kg.m*) B(N.s/rad)

6, 2390 0 010 O 2.521 1.671 1.358 1.5e-3
d, 388 0 -030 O 0.336 0.336 0.026 2.8e-3
parametrized as follows
6, Atan2(0.8sinu,0.4cosu)
f(u)= = ,ue|0,2x|.
(u) [ dy ] [ v/0.42cos2 u +0.82sin? u [0,27]
(45)

The following tuning parameters have been selected for the
controller: k, = [500 400]”, k, = [10 60]”. The velocity
reference signal is shown in Fig. 3a by means of a dashed
line. It is parametrized as follows

~7.6(u—05)2+2 0<u<05
2 05<u<1.8
tig(u) = 1 1.8<u<3.6 (46)
—5.56(u—3.9%+15 3.6<u<39
1.5 39<u

The corresponding reference acceleration is computed by
considering the chain differentiation rule.

For the considered robot, dynamic saturations are assumed
active on both joints. In particular, we suppose that 71,7, €
[—13,13], 1, € [-200,200], and 1, € [—150,150]. Reference
signal (46) is unfeasible with respect to such dynamic
constraints and for this reason it must be filtered in order
to obtain a new feasible signal u.

The system behavior can be understood with the help
of Fig. 3b and Fig. 3c. Dashed lines correspond to upper
and lower bounds on i and % evaluated by means of (23)
and (30): the time scaling system generates an output signal
i whose first and second derivatives fulfill the imposed
constraints. A comparison between the original i; and u is
shown in Fig. 3a. The feasibility of the generated profile is
proven by Fig. 4: T and 7 always satisfy the given constraints.

The overall accuracy of the controller is verified by
measuring the path tracking error defined as the Euclidean
distance, expressed in function of u, between the manipulator
tool frame and the reference path. Fig. 4e compares the errors
detected with and without the filter: the maximum error
without the filter is equal to 3.770e-2 m, while it decreases
to 6.946e-4 m when the filter is used. The analysis of the
tracking tolerance is beyond the scope of this paper: for
the proposed filter it is currently not possible to predict or
assign a desired path tracking accuracy. Adaptations of the
techniques proposed in [8] could be used to this purpose.

VII. CONCLUSIONS

When saturations on GFDs are neglected path tracking can
be easily lost. The use of appropriate online trajectory scaling
methods can solve this issue. In the paper, a novel technique
to be used with inverse dynamics controllers has been
proposed. It is based on a dynamic filter which automatically
modifies reference trajectories in order to preserve a correct

i (rad s™)

u (rad s?)

u (rad s?)

3
u (rad)

Fig. 3. a) Velocity reference signal i, (dashed line) compared with the
filter output # (solid line); b) and c) acceleration and jerks bounds online
evaluated (dashed line) compared with the filter output ii and % (solid line)

path tracking. The new scaling method requires the online
evaluation of the derivative of the manipulator inertia matrix:
to this purpose an efficient algorithm has been formulated.
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APPEIEDIX
EVALUATION OF by (u, t,ii;q, q, §)

Vector Bz(u, i, ii;q,q, ) must be evaluated in real time, so
that an efficient algorithm must be formulated. Most of the
terms in (27) have a negligible computational burden, since
known efficient techniques can be used for their evaluation.
The only two terms which require attention are the derivative
of the inertia matrix, i.e., H(q,q), and the derivatives of
the Coriolis, centripetal, gravity and friction forces, i.e.,
D(q,q)q+2C(q,4) 4+B(q,9) q+E(q,q) §. The evaluation
of this last term is straightforward once H(q,q) is known: it
can be obtained by evaluating (16) for q = 0.

Coefficients of H(q,q) can be obtained with a two step
approach. The first step determines terms c;;(q,q) of the
Coriolis/centripetal matrix C(q,q), then the second step
devises terms /u;(q,q) of H(q,q).

Let us indicate the unit vectors of a standard orthonormal
base as e; € R",j=1,2,...,n: the j-th component of e;
is equal to one, the other elements are equal to zero. In
the following, friction and gravity coefficients are always set
equal to zero, so that (9) and (11) simplify as follows

n n n
Y mi(@ai+ Y, Y cii(a)did;
=

j=li=1

% = @7)

T =

n n
(4, 9) G+ Y hij(Q) 4+
= =

n n
dij(9,9)4;+2 Y cj(q.a)d; . (48)
=1 j=1

J

J

For efficiency reasons, generalized forces 7 can be evalu-
ated by means of standard recursive Newton-Euler methods
[16], while their derivatives 7; can be obtained through a
recently devised extended Newton-Euler approach [18].

As a first step, the Newton-Euler algorithm is invoked n
times with § =0, q=e;; j=1,2,...,n. Itis evident from (47)
that, under these conditions, the recursive algorithm returns
all the Christoffel symbols which have the same first two
indexes, i.e.,

Yk (q) == T = cjj(q) . (49)

Subsequently, the inverse dynamics is newly evaluated
with § =0, q=e;+e;i,j=1,2,...,n5i # j. It is easy to
verify that this time (47) returns

Yijk(@) := 7 = cjj(@) +cjin(q) +cije(@) +cin(q) - (50)

Since c¢ji(q) = ciju(q), and remembering that terms
cjjx(q) = yx;j have already been computed, it is possible to
reorganize (50) and infer that

_ Vi) — (@) — (@) .

cije(q) 3 (51)

Once all Christoffel symbols ¢;jx(q) have been evaluated,
it is possible to get elements c¢j(q,q) of matrix C(q,q) by
means of (10).

The second step of the procedure is based on the use of the
extended Newton-Euler algorithm [18]. If we assume q=0,

g=e;;j=1,2,...,n, (48) returns

n
wii (4, Q) == T = Iy (q,4) +2ck;(q,9) + Y dij(q,4)4;- (52)
j=1
Analogously, by assuming § = 0, § = 0, from (48) it
descends that
n
wii(4,4) =t =Y dij(0,4) 4, - (53)
j=1
By rearranging (52) and considering (53), we finally obtain
the elements of matrix H(q,q)
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