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Abstract— The behaviour of robotic manipulators is affected
by the actuators dynamic limits. When such limits are not
explicitly considered, manipulators performances rapidly de-
crease. In this paper, dynamic saturations are handled by
means of a real-time technique based on a trajectory scaling
method: whenever saturations occur, trajectories are auto-
matically scaled by means of a dynamic filter in order to
preserve an accurate path tracking. Commonly known scaling
algorithms only consider the existence of torque saturations.
In this paper, the strategy is enriched by also accounting for
torque derivatives constraints. The solution proposed is suited
to be used in conjunction with standard inverse dynamics
controllers. The adopted methodology explicitly requires the
realtime evaluation of the derivative of the manipulator inertia
matrix. To this purpose, a novel efficient procedure is proposed.

I. INTRODUCTION

Efficiency is an important issue in robotics. The time

required to accomplish a given task has an evident impact

on the productivity of any industrial process. For this reason,

users ask for very demanding robot trajectories, which possi-

bly conflict with the manipulators limits. In order to avoid po-

tential problems deriving from the manipulator capabilities,

kinematics limits are normally considered while planning

trajectories, e.g., by bounding velocities, accelerations, and,

when possible, jerks. Conversely, dynamic constraints are

rarely taken into account owing to their difficult evaluation,

so that system actuators could easily saturate, thus causing

tracking losses. Typically, dynamic bounds are considered

during trajectory planning: off-line optimizations are used

to minimize the manipulator traveling times by introducing

explicit constraints on the sole joint forces or torques, i.e., on

the Generalized Forces (GF). Initial results for nonredundant

manipulators have been proposed in [1], where a scaling fac-

tor is introduced to guarantee the feasibility of a planned tra-

jectory. This approach has been subsequently extended to the

case of robots in cooperative tasks, [2], and for manipulators

with elastic joints, [3]. It is worth noting that off-line methods

require an a priori knowledge of the exact robot dynamics,

which in many practical situations can only be roughly

estimated. For this reason, due to model uncertainties and/or

external disturbances, trajectory tracking can still be lost. To

obviate this drawback, scaling methods have been proposed

in the past in order to online reshape planned trajectories and
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fulfill kinematic and/or dynamic limits. Initial solutions have

been proposed in [4]–[6] for robot manipulators subject to

torque limits, while in [7] a robust online extension of [1] has

been described. Moreover, in [8], online adaptation schemes

of the manipulator torque controller are introduced in order

to track a given path with a prescribed tolerance. The strategy

known as path-velocity decomposition [9] has been used in

all the previously mentioned works. It is based on a two

step approach: first, a desired path is planned and, then, the

time law along the path is defined. The trajectory scaling

method online modifies this second planning depending on

the active dynamic constraints. The purpose is to preserve

an accurate path tracking by dropping, if required due to

dynamic saturations, the planned time law.

Although these methods improve tracking accuracy, they

still do not consider existing physical constraints on the

Generalized Force Derivatives (GFD). Also such constraints

affect tracking performances: commonly used minimum-time

solutions require rapidly changing GFs, which cannot be

provided due to the actuators dynamic characteristics.

For this reason, new offline approaches have been recently

proposed in order to plan optimal trajectories subject to

constraints both on GFs and on GFDs, [10]–[12]. Evidently,

these approaches require new methods for the online trajec-

tory scaling. To this purpose, the original problem proposed

by Dahl and Nielsen [4] has been recently revised [13] in

order to consider the generation of trajectories subject to

constraints both on GFs and on GFDs. More precisely, in [13]

a scaling method based on a nonlinear filter was proposed.

It was suited to be used with Feedforward Controllers with

Position and Velocity feedback (FCPV).

In this paper, the topic is newly reconsidered in order

to improve and extend the previous obtained results. First,

a new scaling filter is proposed, which shows dead-beat

convergence properties and, secondly, the control scheme

is adapted to be used with an Inverse Dynamics Controller

(IDC). The same methodology is assumed: dynamic con-

straints are online converted into equivalent kinematic con-

straints and an appropriate filter is then used to autonomously

scale the trajectory in order to fulfill such constraints. The

computational burden of the new control scheme is higher if

compared with that of the controller proposed in [13], since it

explicitly requires the online evaluation of more terms and, in

particular, of the derivative of the manipulator inertia matrix.

To this purpose the paper proposes an algorithm, which could

also be used in other contexts, for the efficient evaluation of

such matrix.

The paper is organized as follows. In §II the trajectory
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scaling problem is formulated. The dynamic expressions

which characterize the manipulator high order dynamics are

proposed in §III. The control strategy and the method used

for the online conversion of the dynamic limits into kinematic

limits are described in §IV: they require the online evaluation

of the derivative of the manipulator inertia matrix which

is obtained by means of an efficient algorithm reported in

the Appendix. The nonlinear dynamic filter for the online

trajectories scaling is proposed in §V, while the overall

control strategy is tested in §VI by means of an example

case. §VII concludes the paper.

II. THE TRAJECTORY SCALING PROBLEM

According to the path-velocity decomposition, let us define

the assigned path qd , expressed in the joint space, as follows

f : [0,u f ] → R
n

u → qd := f(u)
(1)

where u is the scalar used to parametrize the curve, u f is

its final value, and n is the number of independent joints. A

monotonically increasing time law is then needed in order

to describe the movement along the curve

u : [0, t f ] → [0,u f ]
t → ud := u(t)

(2)

where t f is the total traveling time. Necessarily,

u̇d(t) > 0, ∀t ∈ [0, t f ].
Bearing in mind (1) and (2), the following expressions

hold due to the chain differentiation rule

q̇d = f(u)
′
u̇ , (3)

q̈d = f(u)
′′
u̇2 + f(u)

′
ü , (4)

...
qd = f(u)

′′′
u̇3 +3f(u)

′′
u̇ü+ f(u)

′ ...
u . (5)

where superscript
′

indicates a differentiation with respect

to u, e.g., f(u)
′
= df(u)

du
, while, as usual, dots indicate time

derivatives, e.g., u̇(t) = du(t)
dt

.

The trajectory scaling problem can be summarized as

follows: given a trajectory, assigned according to the path-

velocity decomposition, automatically scale its velocity pro-

file such that path tracking is not lost even if a dynamic

saturation occurs. Practically this implies that trajectory

tracking is occasionally lost if dynamic limits are reached,

but, in any case, path tracking is maintained. Usually [4],

trajectory scaling only considers GF constraints, i.e., given

for each joint k = 1,2, . . . ,n an upper bound τk and a lower

bound τk, the trajectory is online modified such that the

controlled GF, i.e., τk, is bounded between assigned limits

τk ≤ τk ≤ τk . (6)

This paper continues the discussion started in [13]. More

precisely, the problem is deepened by also considering

bounds on the GFD τ̇k,k = 1,2, . . . ,n

τ̇k ≤ τ̇k ≤ τ̇k , (7)

where τ̇k and τ̇k represent the lower and the upper bounds on

the k-th joint GFD. Differently from [13], the time scaling

methodology is used in association with an inverse dynamics

controller.

III. MANIPULATORS HIGH ORDER DYNAMICS

The time scaling procedure proposed in the next section is

based on the exact knowledge of the dynamic stresses acting

on each joint. To this purpose, it is essential to represent GFs

and GFDs by means of closed form equations. Generalized

forces τττ can be evaluated by means of the classic inverse

dynamics equation,

τττ = H(q) q̈+C(q, q̇)q̇+g(q)+ f(q, q̇) . (8)

As usual, q, q̇, q̈ ∈ R
n indicate the joint variables and their

first and second time derivatives, H(q) ∈ R
nxn is the sym-

metric positive definite inertia matrix, C(q, q̇) ∈ R
nxn is the

matrix of centripetal and Coriolis terms, g ∈R
n is the vector

of the gravity forces, and f(q, q̇) ∈ R
n is the vector of the

friction forces.

Equation (8) can also be posed in scalar form by explicitly

writing each single term of τττ := [τ1 τ2 · · · ,τn]
T

τk =
n

∑
j=1

hk j(q) q̈ j +
n

∑
j=1

ck j(q) q̇ j +gk(q)+ fk(q, q̇) , (9)

where

ck j(q, q̇) :=
n

∑
i=1

ci jk(q) q̇i , (10)

being ci jk the so-called Christoffel symbols of the first kind.

Closed form expressions are also needed for the evaluation

of the manipulator GFDs: they will be used to check con-

straint (7). By differentiating (9) with respect to time, and

taking also into account (10), for each joint it is possible to

write (k = 1,2, . . . ,n)

τ̇k =
n

∑
j=1

ḣk j(q, q̇) q̈ j +
n

∑
j=1

hk j(q)
...
q j +

n

∑
j=1

dk j(q, q̇) q̇ j +2
n

∑
j=1

ck j(q, q̇) q̈ j +

n

∑
j=1

bk j(q, q̇) q̇ j +
n

∑
j=1

ek j(q, q̇) q̈ j . (11)

where

ḣk j(q, q̇) :=
n

∑
i=1

∂hk j(q)

∂qi

q̇i , (12)

dk j(q, q̇) :=
n

∑
i=1

n

∑
l=1

∂ci jk(q)

∂ql

q̇l q̇i , (13)

bk j(q, q̇) :=
∂gk(q)

∂q j

+
∂ fk(q, q̇)

∂q j

, (14)

ek j(q, q̇) :=
∂ fk(q, q̇)

∂ q̇ j

, (15)

Equation (11) can be posed into the following compact form

τ̇ττ = Ḣ(q, q̇) q̈+H(q)
...
q +D(q, q̇) q̇+2C(q, q̇) q̈+

B(q, q̇) q̇+E(q, q̇) q̈ . (16)

The first two terms represent the components of the GFD

which are due to the system inertia. In the same way, the

second two terms are due to the Coriolis and centripetal

components, while the last two terms refer to the gravity

and the friction effects.
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Fig. 1. The manipulator control scheme. The dashed box surrounds the
automatic trajectory scaler.

IV. THE CONTROL STRATEGY

As anticipated in the introduction, the manipulator is

driven by an inverse dynamics controller. The overall control

scheme is shown in Fig. 1. As known [14], an inverse

dynamics controller is described by the following dynamic

equation

τττ = H(q) q̈d +C(q, q̇)q̇+g(q)+ f(q, q̇)

+kT
p e+kT

v ė , (17)

where e := qd −q and ė := q̇d − q̇ respectively represent the

tracking errors and their first derivatives; kp ∈R
n and kv ∈R

n

are the gain vectors of the feedback action. Convergence

properties of controller (17) are well investigated [14], so

that they will be not discussed in the following.

The controller equation can be reparametrized by means

of (1)–(4) leading to

τττ(u, u̇, ü;q, q̇) = b1(u;q)ü+b2(u, u̇;q, q̇) , (18)

where

b1(u;q) := H(q) f(u)
′
, (19)

b2(u, u̇;q, q̇) := H(q) f(u)
′′
u̇2 +C(q, q̇)q̇+g(q)+ f(q, q̇)

+kT
p e+kT

v ė . (20)

Terms b1(u;q) = [b1,1,b1,2, . . . ,b1,n]
T and b2(u, u̇;q, q̇) =

[b2,1,b2,2, . . . ,b2,n]
T need to be online evaluated. To this pur-

pose, efficient strategies are required to calculate the inertia

matrix H(q) as well as the Coriolis, the centripetal, the

friction, and the gravity terms, i.e., C(q, q̇)q̇+g(q)+ f(q, q̇).
Solutions to this problem are proposed in the literature [15],

mainly based on an appropriate use of the recursive Newton-

Euler algorithm [16]. It is evident from (18) that GFs depend

on u, u̇, ü. It is thus necessary to supply a proper reference

signal u in order to fulfill constraints (6). This is the target of

the two blocks shown inside the dashed rectangle of Fig. 1.

The first block provides a velocity reference signal u̇d and

an acceleration reference signal üd , which could be possibly

unfeasible with respect to the dynamic constraints. Such

signals are subsequently scaled by the velocity scaling filter

in order to achieve a feasible signal u̇.

Details on the filter will be given in the next sections.

It is important to highlight that it is designed such to

automatically scale the velocity profile in order to fulfill

proper constraints. To this purpose, inequalities (6) and (7)

must be preliminary converted into equivalent bounds on ü

and
...
u . Due to (18), for each joint k it is possible to write

τk = b1,kü+b2,k: constraints (6) are satisfied by imposing

τk ≤ b1,k ü+b2,k ≤ τk, k = 1,2, . . . ,n . (21)

Necessarily, this implies that the feasibility of ü is guaranteed

if ü ∈
n⋂

k=1

[βk ,αk], with

αk =





τk−b2,k

b1,k
, if b1,k > 0

τk−b2,k

b1,k
, if b1,k < 0

∞, if b1,k = 0

and βk =





τk−b2,k

b1,k
, if b1,k > 0

τk−b2,k

b1,k
, if b1,k < 0

−∞, if b1,k = 0
(22)

or, equivalently, if ü ∈ [S− ,S+] where

S− := max
k=1,...,n

{βk} , S+ := min
k=1,...,n

{αk} . (23)

Depending on the manipulator status of motion it could

happen that S− > S+: in this case there does not exist any

feasible interval for ü and the control will be lost with

certainty.

A similar problem must be solved in order to guarantee

that also (7) are satisfied. To this aim, constraints on the

maximum GFDs must be converted into an equivalent limit

on the maximum admissible jerk along the path. Bearing in

mind (16), it follows that the derivative of (17) can be written

as

τ̇ττ = Ḣ(q, q̇) q̈d +H(q)
...
qd +D(q, q̇) q̇+2C(q, q̇) q̈

+B(q, q̇) q̇+E(q, q̇) q̈+kT
p ė+kT

v ë . (24)

Also this expression can be parametrized in function of the

curvilinear coordinate u by means of (1)–(5), so that, after

simple manipulations, it is possible to write

τ̇ττ = b1(u;q)
...
u + b̃2(u, u̇, ü;q, q̇, q̈) , (25)

where

b1(u;q) := H(q) f(u)
′
, (26)

b̃2(u, u̇, ü;q, q̇, q̈) := Ḣ(q, q̇) [f(u)
′′
u̇2 + f(u)

′
ü]

+H(q) [f(u)
′′′

u̇3 +3f(u)
′′
u̇ü]

+D(q, q̇) q̇+2C(q, q̇) q̈+B(q, q̇) q̇

+E(q, q̇) q̈+kT
p ė+kT

v ë . (27)

Term b1(u;q) is the same computed in (19). Therefore only

b̃2(u, u̇, ü;q, q̇, q̈) needs to be evaluated. From Equation (27)

it follows that the knowledge of the inertia matrix derivative,

i.e., Ḣ(q, q̇), is required. This give us the opportunity to

propose a new method for the online evaluation of Ḣ(q, q̇).
The new algorithm is described in the appendix so that, from

now on, both b̃2(u, u̇, ü;q, q̇, q̈) and Ḣ(q, q̇) are assumed to

be known.

In order to satisfy the requirements on the GFDs, it is

necessary to guarantee that

τ̇k ≤ b1,k
...
u + b̃2,k ≤ τ̇k, k = 1,2, . . . ,n . (28)
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In this second case, feasibility is achieved if
...
u ∈

n⋂

k=1

[δk ,γk],

with

γk =





τ̇k−b̃2,k

b1,k
, if b1,k > 0

τ̇k−b̃2,k

b1,k
, if b1,k < 0

∞, if b1,k = 0

and δk =





τ̇k−b̃2,k

b1,k
, if b1,k > 0

τ̇k−b̃2,k

b1,k
, if b1,k < 0

−∞, if b1,k = 0
(29)

or, equivalently, if
...
u ∈ [U− ,U+] where

U+ := min
k=1,...,n

{γk} , U− := max
k=1,...,n

{δk} . (30)

Again, configurations such that U− > U+ could arise, thus

indicating that the manipulator status is located inside an area

where feasibility cannot be achieved. In this case, a feasible

solution to the problem does not exist and dynamic limits

are violated with certainty. A more detailed discussion on

the solution feasibility can be found in [13].

V. THE TRAJECTORY SCALING FILTER

The trajectory scaler is implemented according to the

scheme shown in Fig. 2. It was early anticipated that it

is composed by two basic elements. The first is a veloc-

ity planner which provides a velocity reference signal u̇d

parametrized in function of the longitudinal coordinate u:

given any point u along the curve its corresponding reference

velocity is u̇d(u). Function u̇d(u) is supplied by the users and

could be unfeasible with respect to (6) and (7). The second

part of the system is the dynamic nonlinear filter which

automatically scales u̇d(u) in order to fulfill constraints (23)

and (30) and, in turn, (6) and (7). It is made by a chain of

three integrators driven by an algebraic nonlinear controller

designed by means of variable structure techniques [17]. A

discrete-time implementation has been considered. In the

following, subscript i is used to denote sampled variables,

so that u̇di
corresponds to the reference signal u̇d acquired

at time ti = iT , where T is the sampling period.

The discrete state-space model of the integration chain is

given by the following equation




ui+1

u̇i+1

üi+1


 =




1 T T 2

2

0 1 T

0 0 1







ui

u̇i

üi


+




T 3

6
T 2

2

T


 ...

u i . (31)

It is driven by the following nonlinear controller C

C :
...
u i :=

{
U−sat(σi) if σi ≥ 0

−U+sat(σi) if σi < 0
(32)

σi := żi − ˙̃zi . (33)

The two terms żi and ˙̃zi are evaluated by means of the

following algebraic equations

ż+ := −
S+ − üdi

TU−
, (34)

z+ := −⌈ż+⌉

[
ż+ −

⌈ż+⌉−1

2

]
, (35)

ż− :=
S−− üdi

TU+
, (36)

z− := ⌈−ż−⌉

[
−ż−−

⌈−ż−⌉−1

2

]
, (37)

[α β ] :=





[U+ U−] if
ẏi

T
+

ÿi

2
> 0

[U− U+] if
ẏi

T
+

ÿi

2
≤ 0

, (38)

zi :=
1

T α

∣∣∣∣
ẏi

T
+

ÿi

2

∣∣∣∣ , (39)

γi :=





z+ if zi < z+

zi if z+ ≤ zi ≤ z−

z− if zi > z−
, (40)

mi := Int

[
1+

√
1+8 |γi|

2

]
, (41)

˙̃zi := −
γi

mi

−
mi −1

2
sgn(γi) , (42)

ÿi

T |α|
if

[
(zi ≥ 0 &

ÿi

T |α|
≤ ˙̃zi) (43)

żi :=





or (zi < 0 &
ÿi

T |α|
≥ ˙̃zi)

]

ÿi

T |β |
+

(
mi −1

2
+

|γi|

mi

)
α +β

|β |
otherwise .

(44)

Evidently, üdi
is the discrete-time derivative of the velocity

reference signal, ẏi := u̇i− u̇di
is the filter velocity error, ÿi :=

üi − üdi
is the filter acceleration error. Function ⌈·⌉ provides

the upper integer of its argument, while sat(·) saturates its

argument to ±1. Signals u̇di
and üdi

are assumed to be known

and üdi
is supposed to be piece-wise constant.

The exact characterization of the filter is beyond the scopes

of this paper due to space limitation, but it is important

to point-out its main characteristics. Its output signal u̇i

perfectly tracks u̇di
until this latter fulfill constraints (23)

and (30). If these conditions are not satisfied tracking is

voluntarily lost in order to guarantee that u̇i does not exceed

the given limits. The filter is similar to that proposed in [13]:

as soon as u̇di
becomes feasible, its tracking is newly gained

without overshoot and in minimum time, but, and this is the

novelty, the reference signal is now hanged with a deadbeat

approach.

VI. A TEST CASE

The control strategy has been simulated by considering a

RP planar manipulator characterized by the dynamic param-

eters reported in Table I. The reference path is an ellipse
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TABLE I

ROBOT INERTIAL PARAMETERS

Link Mass Center of gravity Inertia Friction

q m (Kg) x(m) y(m) z(m) Ixx(Kg.m2) Iyy(Kg.m2) Izz(Kg.m2) B(N.s/rad)

θ1 23.90 0 0.10 0 2.521 1.671 1.358 1.5e-3

d2 3.88 0 -0.30 0 0.336 0.336 0.026 2.8e-3

parametrized as follows

f(u) =

[
θ1

d2

]
:=

[
Atan2(0.8sinu,0.4cosu)√

0.42 cos2 u+0.82 sin2 u

]
, u∈ [0,2π] .

(45)

The following tuning parameters have been selected for the

controller: kp = [500 400]T , kv = [10 60]T . The velocity

reference signal is shown in Fig. 3a by means of a dashed

line. It is parametrized as follows

u̇d(u) =





−7.6(u−0.5)2 +2 0 ≤ u < 0.5
2 0.5 ≤ u < 1.8
1 1.8 ≤ u < 3.6

−5.56(u−3.9)2 +1.5 3.6 ≤ u < 3.9
1.5 3.9 ≤ u

(46)

The corresponding reference acceleration is computed by

considering the chain differentiation rule.

For the considered robot, dynamic saturations are assumed

active on both joints. In particular, we suppose that τ1,τ2 ∈
[−13,13], τ̇1 ∈ [−200,200], and τ̇2 ∈ [−150,150]. Reference

signal (46) is unfeasible with respect to such dynamic

constraints and for this reason it must be filtered in order

to obtain a new feasible signal u̇.

The system behavior can be understood with the help

of Fig. 3b and Fig. 3c. Dashed lines correspond to upper

and lower bounds on ü and
...
u evaluated by means of (23)

and (30): the time scaling system generates an output signal

u̇ whose first and second derivatives fulfill the imposed

constraints. A comparison between the original u̇d and u̇ is

shown in Fig. 3a. The feasibility of the generated profile is

proven by Fig. 4: τττ and τ̇ττ always satisfy the given constraints.

The overall accuracy of the controller is verified by

measuring the path tracking error defined as the Euclidean

distance, expressed in function of u, between the manipulator

tool frame and the reference path. Fig. 4e compares the errors

detected with and without the filter: the maximum error

without the filter is equal to 3.770e-2 m, while it decreases

to 6.946e-4 m when the filter is used. The analysis of the

tracking tolerance is beyond the scope of this paper: for

the proposed filter it is currently not possible to predict or

assign a desired path tracking accuracy. Adaptations of the

techniques proposed in [8] could be used to this purpose.

VII. CONCLUSIONS

When saturations on GFDs are neglected path tracking can

be easily lost. The use of appropriate online trajectory scaling

methods can solve this issue. In the paper, a novel technique

to be used with inverse dynamics controllers has been

proposed. It is based on a dynamic filter which automatically

modifies reference trajectories in order to preserve a correct
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Fig. 3. a) Velocity reference signal u̇d (dashed line) compared with the
filter output u̇ (solid line); b) and c) acceleration and jerks bounds online
evaluated (dashed line) compared with the filter output ü and

...
u (solid line)

path tracking. The new scaling method requires the online

evaluation of the derivative of the manipulator inertia matrix:

to this purpose an efficient algorithm has been formulated.
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APPENDIX

EVALUATION OF b̃2(u, u̇, ü;q, q̇, q̈)

Vector b̃2(u, u̇, ü;q, q̇, q̈) must be evaluated in real time, so

that an efficient algorithm must be formulated. Most of the

terms in (27) have a negligible computational burden, since

known efficient techniques can be used for their evaluation.

The only two terms which require attention are the derivative

of the inertia matrix, i.e., Ḣ(q, q̇), and the derivatives of

the Coriolis, centripetal, gravity and friction forces, i.e.,

D(q, q̇) q̇+2C(q, q̇) q̈+B(q, q̇) q̇+E(q, q̇) q̈. The evaluation

of this last term is straightforward once Ḣ(q, q̇) is known: it

can be obtained by evaluating (16) for
...
q = 0.

Coefficients of Ḣ(q, q̇) can be obtained with a two step

approach. The first step determines terms ck j(q, q̇) of the

Coriolis/centripetal matrix C(q, q̇), then the second step

devises terms ḣk j(q, q̇) of Ḣ(q, q̇).
Let us indicate the unit vectors of a standard orthonormal

base as e j ∈ R
n, j = 1,2, . . . ,n: the j-th component of e j

is equal to one, the other elements are equal to zero. In

the following, friction and gravity coefficients are always set

equal to zero, so that (9) and (11) simplify as follows

τk =
n

∑
j=1

hk j(q) q̈ j +
n

∑
j=1

n

∑
i=1

ci jk(q) q̇i q̇ j , (47)

τ̇k =
n

∑
j=1

ḣk j(q, q̇) q̈ j +
n

∑
j=1

hk j(q)
...
q j +

n

∑
j=1

dk j(q, q̇) q̇ j +2
n

∑
j=1

ck j(q, q̇) q̈ j . (48)

For efficiency reasons, generalized forces τk can be evalu-

ated by means of standard recursive Newton-Euler methods

[16], while their derivatives τ̇k can be obtained through a

recently devised extended Newton-Euler approach [18].

As a first step, the Newton-Euler algorithm is invoked n

times with q̈ = 0, q̇ = e j; j = 1,2, . . . ,n. It is evident from (47)

that, under these conditions, the recursive algorithm returns

all the Christoffel symbols which have the same first two

indexes, i.e.,

yk j(q) := τk = c j jk(q) . (49)

Subsequently, the inverse dynamics is newly evaluated

with q̈ = 0, q̇ = e j + ei; i, j = 1,2, . . . ,n; i 6= j. It is easy to

verify that this time (47) returns

ỹi jk(q) := τk = c j jk(q)+ c jik(q)+ ci jk(q)+ ciik(q) . (50)

Since c jik(q) = ci jk(q), and remembering that terms

c j jk(q) = yk j have already been computed, it is possible to

reorganize (50) and infer that

ci jk(q) =
ỹi jk(q)− yk j(q)− yki(q)

2
. (51)

Once all Christoffel symbols ci jk(q) have been evaluated,

it is possible to get elements ck j(q, q̇) of matrix C(q, q̇) by

means of (10).

The second step of the procedure is based on the use of the

extended Newton-Euler algorithm [18]. If we assume
...
q = 0,

q̈ = e j; j = 1,2, . . . ,n, (48) returns

wk j(q, q̇) := τ̇k = ḣk j(q, q̇)+2ck j(q, q̇)+
n

∑
j=1

dk j(q, q̇)q̇ j. (52)

Analogously, by assuming
...
q = 0, q̈ = 0, from (48) it

descends that

w̃k j(q, q̇) := τ̇k =
n

∑
j=1

dk j(q, q̇) q̇ j . (53)

By rearranging (52) and considering (53), we finally obtain

the elements of matrix Ḣ(q, q̇)

ḣk j(q, q̇) = wk j(q, q̇)− w̃k j(q, q̇)−2ck j(q, q̇) . (54)
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