
  

  

Abstract—In this paper, the control problem of space robot 
system with uncertain parameters and external disturbances is 
discussed. With the momentum conservation of the system, the 
kinematics and dynamics of the system are analyzed, and it is 
found that the generalized Jacobi matrix and the dynamic 
equations of the system are nonlinearly dependent on inertial 
parameters. In order to overcome the problems mentioned 
above, the idea of augmentation approach is introduced. It is 
shown that the augmented generalized Jacobi matrix and the  
dynamic equations of the system can be linearly dependent on a 
group of inertial parameters with augmented inputs and 
outputs. Based on the results, a robust adaptive composite 
control scheme for space-based robot to track the desired 
trajectories in inertial space is developed. The stability of the 
overall system is analyzed through Lyapunov direct method. 
For the proposed approach, the global uniform asymptotic 
stability of the system is established. In addition, the controller 
presented possesses the advantage that it needs no measurement 
of the position, linear velocity and acceleration of the base with 
respect to the orbit, because of the effective exploitation of the 
particular property of system dynamics. To show the feasibility 
of control scheme, a planar space robot system is simulated. 

I. INTRODUCTION 

PACE-BASED robot system has been suggested for lots of 
important tasks in space, such as capturing, handling and 

assembling space structures in earth orbit and considerable 
research efforts [1-5] have been focused on the dynamics and 
control problems of space-based robot system. Because of the 
high dynamic coupling between the arms and its floating base, 
the dynamics and control of the space-based robot system 
become extremely complicated. It is found that a major 
problem in controlling space-based robot system is that the 
dynamic control equations of the system cannot be linearly 
parameterized. This results in infeasibility of most robust 
control and adaptive control schemes which are currently 
applied to the fix-based robot system control [6-7], since the 
linear parameterization is a prerequisite of these schemes. 
Besides, the kinematic relation between inertial space, in 
which the tasks are usually specified, and joint space, where 
the control is executed, is not only dependent on the 
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kinematics parameters but also the dynamic parameters. 
Therefore, the controller for space robot system to track 
desired trajectory in inertial space is more complicated than 
that in joint space, especially when the system is subject to the 
uncertainties. Y.-L. Gu [8] investigated the control for 
free-floating space robot systems, and proposed an adaptive 
control scheme based on the augmentation approach. 
Yangsheng Xu [9] studied the linear parameterization 
problem of robot system dynamics, and verified the 
effectiveness of the proposed adaptive control scheme both in 
joint space and inertial space. Chen Li [10] proposed the 
adaptive and robust composite control scheme of coordinated 
motion of space robot system with prismatic joint. Guo 
Yishen [11] presented a robust adaptive composite control of 
dual-arm space robot system in inertial space.  

Although these controllers mentioned above are effective 
in compensating the influence of structured uncertainties, 
such as uncertain or unknown payload, it is not clear that they 
can obtain the desired control performance when a space 
robot system faces unstructured uncertainties, such as sensor 
noise and external disturbances. 

In this paper, the difficulties of nonlinear parameterization 
of the generalized Jacobi matrix and the dynamic equations of 
the system are overcome by the augmentation approach. It is 
demonstrated that the augmented generalized Jacobi matrix 
and the dynamic equations of the system can be linearly 
dependent on a group of inertial parameters. Based on the 
results, a robust adaptive composite control scheme for a 
space-based robot system with uncertain parameters and 
external disturbances in inertial space is proposed. The 
advantage of the presented control scheme is that it needs no 
measurement of the position, linear velocity and acceleration 
of the base with respect to the orbit. A planar space robot 
system is simulated to verify the control scheme. 

The remainder of paper is organized as follow: In section II, 
the dynamics of a space-based robot system is formulated. 
Section III presents the Jacobi relation of the system. The 
augmentation approach is introduced in section IV. A robust 
adaptive composite control of space robot system is proposed 
in section V. To show the feasibility of control scheme, The 
simulation studies are presented in section VI, which are 
followed by conclusions given in section VII.  

II.  DYNAMICS OF THE SYSTEM 

Without a loss of generality, a planar two-link space-based 
robot system with payload is considered here, Fig. 1. The 
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system consists of the base 0B , 1B (link 1) and 2B (link 2) and 
the payload P . We assume the end-effector hold the payload 
rigidly. 0O  coincides with the mass center 0CO  of 0B , iO  

)2,1( =i is the rotational center of the revolute joint between 
1−iB  and iB , 1CO  is the mass center of 1B , 2CO  is the mass 

center of combination 2B  and P , ix  is the symmetrical axis 
of each link. The other symbols are defined as follows 

 
0l   Distance from joint 0O  to 1O ; 
il   Length of link i )2,1( =i ; 
ia   Distance from joint iO  to the mass center 

CiO )2,1( =i ; 
im   Mass of iB )2,1,0( =i ; 
Pm   Mass of P ; 

M   Total mass of the entire system; 
iJ  Inertial moment of iB )2,1,0( =i  with respect 

to its mass center; 
PJ   Inertial moment of P  with respect to its mass 

center CPO ; 
)( XYO −   Inertial coordinate frame of the system; 
)( iii yxO −  Local coordinate frame of iB )2,1,0( =i ; 

C         Mass center of the entire system; 
ier   Unit vector pointing along with ix )2,1,0( =i ; 
ir

r
  Position vector of mass center of iB )1,0( =i ; 

2r
r

  Position vector of mass center of combination 
2B  and P ; 

Cr
r

 Position vector of the entire mass center C ; 
Pr
r

  Position vector of the end-effector P ; 
0θ   Attitude angle of the base, which is the angle 

between the Y  axis and the 0x  axis; 
iθ  Rotational angle of joint iO )2,1( =i , i.e. the 

angle between the 1−ix  axis and the ix  axis. 
From the geometrical relation of the system and the 

definition of the mass center of the system, the position vector 
of CiO )2,1,0( =i  and end-effector P  in inertial coordinate 
system can be written as 

2021010000 eeerr
rrrrr

LLLC +++= , i
i

iC L err rrr ∑
=

+=
2

0
11 , 

i
i

iC L err rrr ∑
=

+=
2

0
22 , i

i
PiCP L err rvr ∑

=

+=
2

0

.           (1)  

Where, ( ) MlmmL P 02100 +−= , ( ) MlmamL P 121101 +−= , 
MamL P )( 2202 −= , PP mmm += 22 , and the parameters 

Piii LLL ,, 21 )2,1,0( =i  same as iL0  are the functions of the 
inertial parameters.  

Assuming that there are no external forces, the space-based 
robot system can be regarded as a free-floating mechanical 
chain, and the momentum are conserved during the operation. 
Without any loss of generality, the initial momentum of the 
system is assumed to be zero here, i.e., 0=Cr&

r
. Obviously, 

From (1),  the velocities of the mass center of iB )2,1,0( =i   
are linearly dependent on the inertial parameters iii LLL 210 ,,  

)2,1,0( =i . 
With Lagrange Equation, the dynamic equations of the 

space-based robot system can be represented by the following 
form 
 TT )0(),()( ττqqqhqqD =++ d&&&& .  (2) 
Where, 33)( ×ℜ∈qD  is symmetric positive-definite inertial 
matrix; 3TT

0 )( ℜ∈= θq θ , T
21 )( θθ=θ  is generalized 

coordinate vector of the system; T
21 )( ττ=τ  represents the 

joints input torque vector of 1O  and 2O ; 3),( ℜ∈qqqh &&  is the 
vector of centripetal and Coriolis torque; 3ℜ∈dτ  represents 
the effects of external disturbances. If the elements of 

33),( ×ℜ∈qqh &  can be properly given as 
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For any arbitrary 3ℜ∈z , the following property exists [12] 

 zDzhzz &TT

2
1

= .  (4) 

Thus, the dynamic equations (2) of the system can be 
linearly parameterized. The result is good for the designing of 
robust adaptive composite control scheme. 

It is assumed that the above system satisfies the following 
assumptions. 

Assumption 1: The uncertain function dτ  is bounded in 
norm by a known constant upper bound. In other word, 
 dd <τ . (5) 

Where, d is a real positive constant. 
Assumption 2: The parameter deviation vector between the 

real plant and the model plant ∗∗∗ −= ΦΦΦ ˆ  is bounded in 
norm by a known constant upper bound, which means 
 Ψ≤∗Φ . (6) 

Where, +ℜ∈Ψ . 

III. JACOBI 

From the last equation of (1), the position coordinate of 
end-effector in inertial space can be written as 

( ) ( )10100 sinsin θθθ +++= PPCP LLxx  
)sin( 2102 θθθ +++ PL , 

( ) ( )10100 coscos θθθ +++= PPCP LLyy  
)cos( 2102 θθθ +++ PL .                                   (7) 

 
Fig. 1.  A planar two-link space-based robot system. 
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Differentiating (7), and using the assumption which the 
initial momentum of the system is zero, i.e., 0=Cr&

r
, we 

obtain 
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Where, 
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Obviously, ijJ )3,2,1;2,1( == ji  is the function of q  and 
also linearly dependent on a group of inertial parameters 

210 ,, PPP LLL . However, to obtain the generalized Jacobi 
matrix of the space robot system, 0θ&  needs to be eliminated 
from (8). This will make the generalized Jacobi matrix 
dependent nonlinearly on inertial parameters and results in 
the infeasibility of most robust and adaptive control schemes 
which are currently used in fix-based robot control. 

IV. AUGMENTATION APPROACH 

In order to overcome the above problems and guarantee 
that the dynamic equations of the space-based robot system 
can be linearly parameterized, we now extend the output 
vector T)( PPP yx=X  to be the augmented output vector 

TT
0 )( PXY θ= , and assume the variables 0θ , 0θ& , 0θ&&  can 

be measured. Then the relationship between the augmented 
output velocity vector Y&  and the generalized joint motions 
vector TT

0 )( θq &&& θ=  can be written as 
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Where, 11×ℜ∈I is identity matrix, 21×ℜ∈O  is zero matrix 
and 33×ℜ∈aJ  is the augmented generalized Jacobi matrix. 

If rJ  is assumed to be nonsingular, the square matrix aJ  
can be inverted. We obtain the inverse relation of (9) 

 

















−

== −−
−

Prbr
a XJJJ

OI
YJq

&

&
&& 0

11
1 θ

. (10) 

We denote TT
0 )( Pdd XY θ= , where, PdX  is the desired 

trajectory of end-effector of the robot system in inertial space, 
and )(~

1 PPd XXq −=  as the output error function between 
the actual and the desired trajectory. The augmented output 
error function q~  between Y  and dY  can be written as 
 TT

1 )~0()(~ qYYq =−= d . (11) 
we define a reference output velocity η&̂  as follows 

 TT
0

1 )ˆ()~(ˆˆ rpda ηqkYJη &&&& θ=+= − . (12) 

Where, 33×ℜ∈pk is a positive-definite symmetric constant 

matrix, )~)(ˆˆˆ(ˆ 11 qkYJJJη pdrbrr +−= −− && . 

Let an extended augmented error be defined by 
 TT

1 )ˆ0(ˆˆ sqηs &&&& =−= .  (13) 
Where, )ˆ(1̂ θηs &&& −= r . 

Then, substituting (11), (12) and (13) into (9), we have 

 11ˆ~~ ΦWsJqkq −=+ &&
ap .  (14) 

Where, ηJJΦW &̂)ˆ(11 aa −= , 33
1

×ℜ∈W  is a matrix function 
of q , dY  and dY& , and independent of physical parameters; 

3
111

ˆ ℜ∈−= ΦΦΦ  is the parameter deviation vector between 
the real plant and the model plant. 

Differentiating (12), we obtain 

 TT
0

1 )ˆ()ˆˆ~(ˆˆ rapda ηηJqkYJη &&&&&&&&&&& θ=−+= − .  (15) 

Where,  )ˆˆ~)(ˆˆˆ(ˆ 11 ηJqkYJJJη &&&&&&&
apdrbrr −+−= −− . 

From (13), the dynamic equations (2) can be rewritten as 
 dττηhηDshsD +−+=+ TT )0(ˆˆˆˆ &&&&&& .     (16) 

Finally, in order to keep the linear parameterization of the 
system dynamics equations, we must expand the input vector 
τ  of the system to the augmented input vector TT )0( τ . 

V. ROBUST ADAPTIVE COMPOSITE CONTROL SCHEME 

In this section, a robust adaptive composite control for 
space-based robot system with uncertain parameters and 
external disturbances is considered. Our objective is to find a 
controller which uses control laws to make Y  tend to dY  in 
the presence of uncertainties. 

Now let’s define the following control law 

dΨ uusKηhηDτ ++++= TT
11

TT ))ˆ((ˆˆˆˆ)0( &&&& δ .   (17) 
Where, D̂ , ĥ , respectively, represent the inertial matrix D  
and the matrix h  in the model plant. 22

1
×ℜ∈K  is a positive 

definite symmetric constant matrix. The notations Ψu and du  
are considered to compensate for ∗Φ  and dτ , respectively. 
The parameter δ  is proposed to guarantee that the input 
torque of the base's attitude is always zero. 

Substituting (17) into (16), we have 
∗∗=−++++ ΦWτuusKshsD ddΨ

TT
11 ))ˆ((ˆˆ &&&& δ .   (18) 

Where, ηhhηDDΦW &&& ˆ)ˆ(ˆ)ˆ( −+−=∗∗ , 63* ×ℜ∈W is a matrix 
function of q , q& ,η&̂ , η&&̂ , and also independent of the physical 
parameters, and 16)ˆ( ×∗∗∗ ℜ∈−= ΦΦΦ  is the parameter 
deviation vector between the real plant and the model plant. 

Assuming that the actual values 0θ , 0θ& , 0θ&&  are measurable 
and the notations Ψu and du  in the control law (17) which 
need to be specified are properly chosen, we can obtain the 
theorem as follows 

Theorem: The control input law (17) and the following 
adaptation law 

 qHWΦ ~ˆ T
1 1

−=
& . (19) 

Guarantee, 0~lim =
∞→

q
t

, 0ˆlim =
∞→

s&
t

. Where, 33×ℜ∈H  is a 

positive-definite symmetric constant matrix. 
Proof: Define the Lyapunov function candidate V  as 

 )~~ˆˆ(
2
1

1
T

1
TT ΦΦqHqsDsV ++= &&γ .  (20) 

Where, 0>γ  is a scalar constant. 
Differentiating V , and using (4), (14), (18) and (19), we 

2355



  

obtain 

1
T

1
TTT ~~ˆˆˆˆ

2
1 ΦΦqHqsDssDsV &&&&&&&&& +++= γγ  
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TT ))ˆ(((ˆˆˆ
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d  
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T ~~)ˆ ΦΦqHqshuu &&& ++−−− dΨ  
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T sKuuτΦWs && δγ −−−+= ∗∗
dΨd  

1
T

1
T ~~ ΦΦqHq && ++  

qkHquuτΦWs ~(~)(ˆ TT
pdΨd −+−−+= ∗∗&γ  

sKsΦΦΦWsJ &&&& ˆˆˆ)ˆ T
1

T
111 γ−−−+ a  

qHkquuτΦWs ~~)(ˆ TT
pdΨd −−−+= ∗∗&γ  

sKsΦqHWΦsHJq &&&& ˆˆ)ˆ~(ˆ~ T
1

T
1

T
1

T γ−+−+ a  

qHkquuτΦWs ~~)(ˆ TT
pdΨd −−−+= ∗∗&γ  

sKssHJq &&& ˆˆˆ~ TT γ−+ a .                                                 (21) 
Where, )1(diag 1KK =  and (21) can be rewritten as the 
inequality 

)ˆˆˆˆ( TTTT
dΨd ususτsΦWsV &&&&& −−⋅+⋅≤ ∗∗γ  

sKssHJqqHkq &&& ˆˆˆ~~~ TTT γ−+− ap .                        (22) 

that regarded to (5) and (6) leads to 

)ˆˆˆˆ( TTT
dΨdΨ ususssWV &&&&& −−⋅+⋅≤ ∗γ  

sKssHJqqHkq &&& ˆˆˆ~~~ TTT γ−+− ap .                (23) 

 Now, we define Ψu and du  as 
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Then, substituting (24) into (23) gives 

))1(ˆ)1(ˆ( 21
T

pdpΨ −⋅⋅+−⋅⋅≤ ∗ ssWV &&& γ  

sKssKJkqqKkkq &&& ˆˆˆ~~~ TTT γ−+− appp .            (25) 

According to the definitions of 21, pp in (24), the first term 
in the right-hand side of (25) is always zero, and then (25) is 
arranged as 
 sKssKJkqqKkkqV &&&& ˆˆˆ~~~ TTT γ−+−≤ appp . (26) 

Clearly, V&  is the quadratic form of q~  and s&̂ . Since aJ  is 
bounded and the parameter γ  is chosen to be big enough, V&  
is non-positive which means V  never increases. Since the 
matrix D  is symmetric positive-definite, from (20), we know 
that q~ , s&̂  and 1Φ are bounded. Considering (14) and (18), q&~ , 
s&&̂  and ∗Φ  are bounded too.  

Based on the results, we have 0lim =
∞→
V&

t
, which means 

0~lim =
∞→

q
t

, 0ˆlim =
∞→

s&
t

. 

Therefore, the control law (17), the adaptation law (19) and 
the definition of Ψu and du given in (24) can asymptotically 
stabilize the space robot system to track the desired trajectory 
described in terms of PdX . 

VI. NUMERICAL SIMULATION 

For illustrative purposes, a planar two-link space-based 
robot system shown in Fig. 1 is considered in our simulation 
study. The actual plant parameters of the system are as 
follows 

kg400 =m , kg22 21 == mm , kg5.2=Pm , m5.10 =l , 

m32 11 == al , m32 22 == al , 2
0 mkg17.34 ⋅=J  

2
21 mkg5.12 ⋅== JJ , 2mkg5.1 ⋅=PJ . 

In this simulation, the parameter vector ∗Φ  and 1Φ  are 
T

654321 )( ∗∗∗∗∗∗∗ = φφφφφφΦ , 
T

2101 )( PPP LLL=Φ . 

Where, 2
202

2
101

2
00001 LmLmLmJ P+++=∗φ ,  

2
212

2
111

2
01012 LmLmLmJ P+++=∗φ  , 

2
222

2
121

2
02023 LmLmLmJ PP +++=∗φ , 

2120211101010004 LLmLLmLLm P++=∗φ ,  

2220212101020005 LLmLLmLLm P++=∗φ ,  

2221212111020106 LLmLLmLLm P++=∗φ , 

0000 lLLP += , 1011 lLLP += , 2022 lLLP += . 
Two different desired trajectories of the end-effector in 

inertial space are chosen as follows 
The first desired trajectory 

)(m)
5

cos(
2
1

2
1 txPd

π
−= , )(m)

5
sin(

2
11 tyPd

π
+= . 

The second desired trajectory 

)(m)
5
πsin(

10
7 txPd = , )(m)

5
πsin(

10
7

10
6 tyPd += . 

and external disturbances are 
m)N(])2cos()2sin()2sin([ T ⋅= tttdτ . 

Here, the inertial parameters of the payload, i.e., Pm  and 
PJ  are uncertain, whose estimated values are kg2ˆ =Pm , 

2mkg25.1ˆ ⋅=PJ . The initial states of space-based robot 
system are given as 

(m))0.91370.1782()0( T=PX , 

        (rad))46.114.000.0()0( T=q . 
The gains of the controller are chosen as 

)0.2(diag=pk , )0.4(diag1 =K , 

)0.1(diag=H , 4641.3=d , 7.3235=Ψ . 
The time taken for simulation is 10.0 seconds. Fig. 2-4 are 
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the simulation results when the space-based robot system is 
specified to track the first desired trajectory. Fig. 2 plots the 
desired and actual trajectory of end-effector in inertial space. 
Fig. 3 shows the angle change curves of the base and joints 
during the operation. Fig. 4 is the tracking error of the whole 
system. And then, the same controller is utilized to control the 
end-effector to track the second desired trajectory in inertial 
space and the  corresponding simulation results are shown in 
Fig. 5-7. The simulation results verify that the proposed 
control laws for the space-based robot system are feasible and 
effective. The closed-loop system can deal with not only the 
parametric uncertainties, but also the external disturbances. 

 

 

 

 

 

 

VII. CONCLUSION 
In this paper, the augmentation approach is adopted to 

overcome the difficulty of nonlinear parameterization of 
space robot system and then a robust adaptive control scheme 
is developed to control the end-effector of the system to track 
the desired trajectories in inertial space. The controller 
proposed is designed based on a priori knowledge about 
uncertain bound and possess the advantages that there are no 
needs to measure the position, linear velocity and acceleration 
of the free-floating base. With Lyapunov direct method, the 
asymptotic stability of the overall system is analyzed. As 
simulation results illustrate, the proposed control scheme can 
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Fig. 7.  The tracking error of the system. 
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Fig. 6.  The angle change curves of the base and joints. 
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Fig. 5.  The desired (dot line) and actual trajectory (solid line) of 

end-effector. 
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Fig. 4.  The tracking error of the system. 
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Fig. 3.  The angle change curves of the base and joints. 
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Fig. 2.  The desired (dot line) and actual trajectory (solid line) of 

end-effector. 

2357



  

deal with not only  the parametric uncertainties, but also the 
external disturbances. 
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