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Abstract— Locating all obstacles around a moving robot and 
classifying them as stable obstacles or not by a sensor such as an 
omnidirectional camera are essential for the robot’s smooth 
movement and avoiding problems in calibrating many cameras. 
However, there are few works on locating and classifying all 
obstacles around a robot while it is moving by only one 
omnidirectional camera. In order to locate obstacles, we regard 
floor boundary points where robots can measure the distance 
from the robot by one omnidirectional camera as obstacles. 
Tracking them, we can classify obstacles by comparing the 
movement of each tracked point with odometry data. Moreover, 
our method changes a threshold to detect the points based on the 
result of comparing in order to enhance classification. The 
classification ratio of our method is 85.0%, which is four times 
higher than that of a method without changing a parameter to 
detect the points. 

I. INTRODUCTION 
It is important for moving robots to locate obstacles and 

classify them as stable obstacles or not. Many works use 
distance measurement devices such as the Laser Range 
Finder (LRF) and stereo cameras [1]. However, robots have 
to be equipped with more than one sensor when they classify 
all obstacles around them at once by these sensors. Using 
many LRFs is expensive, and calibration is troublesome. 

An ominidirectional camera can take images of all 
obstacles around a robot simultaneously while moving. 
Therefore, it is often used for localization of robots [2]. 
However, it is difficult to apply previous obstacle 
classification techniques such as [3] to omnidirectional 
images without changing them to general images. Even if we 
change images, previous techniques do not work well 
because changed images lose a lot of information. Moreover, 
classifying obstacles as stable or not by a moving camera is 
more difficult than classifying by a static camera. 

We have developed an original method of classifying all 
obstacles around the robot by only one omnidirectional 
camera while moving. In order to locate and classify 
obstacles, we focus on floor boundary points where the robot 
can measure the distance from itself by only one 

omnidirectional camera. Our robot classifies a floor boundary 
point as a dynamic obstacle when its movement is different 
from the robot’s movement. In particular, we aim to detect 
dynamic obstacles to ensure the robot’s smooth movement. 
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Section II describes how to find the floor boundary points. 
Section III describes the obstacle classification method based 
on the result of tracking floor boundary points. In Section IV, 
we confirm an ability of our floor detection method and 
accuracy of our classification method. Section V concludes 
this paper. 

II. FLOOR BOUNDARY POINTS DETECTION 

A. Floor Detection by Ward’s clustering 
We use floor colors for floor detection because floor colors 

are simple. Previous works use the Gaussian Mixture Model 
(GMM) for specific color detection [4]. The GMM can detect 
many specific colors, increasing a number of a mixed 
Gaussian. However, we have to evaluate the GMM many 
times in order to decide parameters such as the number of 
mixed Gaussian. Therefore, it is difficult for robots to apply 
the GMM to various environments quickly and accurately 
just after they start up.  
Our robot learns representative colors of the floor by itself 

based on the distribution of floor color data without prior 
setting. Considering the distribution, our floor detection 
method can adjust more easily than the GMM can and detects 
the floor as accurately as the GMM does. Here, in order to 
detect the representative colors of the floor, we use Ward’s 
clustering [5], which is one of the hierarchical clustering 
methods. Our robot selects the representative colors by 
Ward’s clustering as follows. 
1) Our robot takes an image and gets N color data from 

pixels to which the close area around it is projected. In an 
initial state, each datum shows a representative color. A 
cluster of color data that are similar to the representative 
color i is denoted by Ci . 

2) We choose two clusters C1 and C2 that minimize D as 
shown in Eq. (1), and create a new claster Ck that consists 
of the data in both C1 and C2. Let ci denote an average 
color vector in the cluster Ci. 
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3) In step 2), when Ck satisfies both Eq. (2) and Eq. (3), it is 
decided that ck is the representative color and data in Ck 
are not used for following loops. When Ck satisfies only 
Eq. (2), data in Ck are just not used for following loops. 
TD and TN is a constant threshold, |Ck| is a number of the 
data in Ck. 
                                                                                   (2) 
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4) Step 2) and 3) continue until all data are not used. 
Because Ward’s clustering considers the distribution of data, 

each cluster is identified easily by Mahalanobis distance. A 
color datum I is classified as floor color when we find a Cm 
that satisfies Eq. (4). μm, Σm and σ denote an average vector, a 
covariance matrix of data in Cm and a threshold, respectively. 
 

(4) 
 
When a robot uses an omnidirectoinal camera mounted on 

its head, the floor is projected to around the image center. 
Therefore, our robot classifies the pixels from center to outer 
by applying Eq. (4). If our robot finds continuous p pixels that 
do not satisfy Eq. (4), a floor boundary point is detected at the 
position where the first pixel in p pixels is located. 
 

B. Transforming Coordinates of Floor Boundary Points 
from Image Coordinates to Robot Coordinates  
In the case of using an omnidirectional camera 

incorporating a hyperbolic mirror, a position (X, Y, Z) on the 
robot coordinates is projected to a position (x, y) on the image 
coordinates as follows. Constant b and c denote proper 
parameters of the mirror, and f denotes a focal distance. 

 
 

(5) 
 
 
Many robots are equipped with an omnidirectional camera, 

and they can measure or know the distance from the floor to 
the camera while they are moving [6]. Therefore, with regard 
to floor boundary points, the variable Z in Eq. (5) becomes 
constant, and we can measure the distance from the robot to 
floor boundary points by applying Eq. (5). 

In order to decide the parameters Z, b, c and f, we have 
drawn cross-stripes on the floor as shown in Fig. 1. n pairs of 

(Xm, Ym) and (xm, ym) are acquired from the image to which n 
cross-points are projected. Here, (Xm, Ym) and (xm, ym) denote 
the position of the cross-point m on the robot coordinates and 
the image coordinates, respectively. Using n pairs, 
parameters that minimize the evaluation function F as shown 
in Eq. (6) are decided by the downhill simplex method.  

 
 

(6) 
 

 
For confirmation of parameters, a bird’s-eye image is 

created by using the decided parameters. Fig. 2 shows the 
bird’s-eye image. The lines that make cross-stripes on the 
floor are not distorted, because the decided parameters are 
corrected. Here, 1 pixel in this bird’s-eye image denotes 
about 5 cm in the real world. 

III. OBSTACLE CLASSIFICATION BY FLOOR BOUNDARY POINTS 

A. Classification Equation 
A floor boundary point m on the image at time t-dt is 

detected by the method as shown in Section II. dt depends on 
a processing speed. If the point m can be tracked from t-dt to t 
correctly, the position of m at t is located correctly on the 
image at t. It is easy to transform the coordinates of m at t-dt 
and t from the image coordinates to the robot coordinates (Xm, 
Ym)(t-dt) and (Xm, Ym)(t) by referring to the bird’s-eye image. 
The relative position (dX, dY, dΘ) from t-dt to t is estimated 

Fig. 1.  The omnidirectional image of the cross-stripes on the floor. This 
image is used for deciding the parameters. 
  

 
Fig. 2.  The bird’s-eye image. In this image, the distance between any two 
points on the floor is linear to the distance in the real space. 
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by odometry data. dΘ is based on the direction from the 
center of the robot to the front of the robot at t-dt. When m is 
located at the boundary between a stable obstacle and the 
floor, (Xm, Ym)(t)  is calculated by  (dX, dY, dΘ) and (Xm, 
Ym)(t-dt), as shown in Eq. (7). 

 
(7) 

 
When m is located at the boundary between a dynamic 

obstacle and the floor, Eq. (7) is not satisfied. Therefore, we 
can regard Eq. (7) as a Classification Equation (CE), that is, 
the floor boundary point m can be classified as a stable 
obstacle or a dynamic one by confirming whether Eq. (7) is 
satisfied or not. Actually, Eq. (7) includes a small error ε 
depending on an image resolution, which is ignored.  

The following conditions should be satisfied in order to 
regard Eq. (7) as the classification equation. 

1. Floor boundary points have to be located at the 
boundary between obstacles and the floor correctly in 
the image. 

2. Floor boundary points have to be tracked correctly. 
3. Camera parameters have to be decided correctly. 
4. Odometry has to be calculated correctly. 
Condition 4 is satisfied in the general environment, 

because the odometry is comparatively correct during short 
movement. Fig. 1 verifies that parameters are not so bad that 
condition 3 is satisfied, too. Floor boundary points can be 
tracked easily and tracking is not a major problem when they 
are detected accurately, because they are located at the 
boundary where the colors change significantly. However, 
floor boundary points cannot always be detected correctly by 
using only the floor colors in various environments. We apply 
the result of confirming whether the CE is satisfied or not to 
the floor detection method. 

B. Obstacle Classification  
The CE is satisfied as long as floor boundary point m is 

located on the floor. One of the reasons why m is not located 
on the floor is that the threshold σ in Eq. (4) is inappropriate. 
When the position of m does not satisfy the CE, σ is too large 
or m shows a dynamic obstacle. For confirmation, new floor 
boundary point m’ is detected by decreasing σ in the direction 
where m is located to σ-dσ. The parameter dσ should be small 
so that the robot does not narrow the floor area. The new floor 
boundary point m’ is tracked from t to t-dt and classified by 
confirming the CE again. When the position of m’ satisfies 
the CE, our robot regards m as a stable obstacle. Moreover, 
the position of m is changed to the position of m’. Conversely, 
if it is not satisfied, m is regarded as a dynamic obstacle. Our 
method changes the parameter dynamically by the result of 
the CE. For example, in Fig. 3, the position of floor boundary 
point a located at the boundary between the floor and a static 
obstacle satisfies the CE. The point b that is not located at the 
boundary does not satisfy the CE. Therefore, b creates a new 
floor boundary point b’ and b’ is tracked from t to t-dt. Using 
the result of tracking, our robot confirms whether b’ satisfies 
the CE or not. Because b’ is located at the boundary, b’ 
satisfies the CE in this case. Therefore, the position of b is 
changed to the position of b’ and b is classified as a static 
obstacle. The point c located at the boundary between a 
dynamic obstacle and the floor also does not satisfy the CE. 
The point c creates a new point c’ and its position is 
confirmed. Because dσ is small, the point at the boundary 
does not create a new point far from the original point. The 
position of c’ does not satisfy the CE in this case, and c is 
regarded as a dynamic obstacle.  
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If the threshold is low at the beginning of the robot’s 
activation, all points are located on the floor. However, they 
are located between the boundary and the robot, and free 
space looks very small. Our classification method first uses 
high thresholds and detects the boundary that is a little larger 
than the true boundary. Moving and confirming the CE refine 
the threshold of each direction where the floor boundary point 

Time t-dt Time t

: floor boundary point            : new floor boundary point

a

b

c

b’

c’

 
Fig. 3.  The example of classification process by using floor boundary points. A point a shows a stable obstacle. A point b is relocated and classified as a 
static obstacle. A point c shows a dynamic obstacle. 
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classified as a dynamic obstacle is located. Finally, the robot 
adapts the threshold of each direction and makes it possible to 
locate and classify obstacles accurately. 
 

IV. EVALUATION  

A. Our Robot and Obstacle Classification System 
Our classification method is implemented on our robot 

called ApriTauTM as shown in Fig. 4. It has a vehicle that can 
acquire the odometry data. An omnidirectional camera is 
mounted on the top of its head and does not move with the 
head motion. Taking images while moving by means of its 
vehicle, it synchronizes the odometry data. 

Fig. 5 shows our classification system. ApriTauTM takes 
images whose size is 320x240 (pixels) continuously at 30fps 
and inputs them to the system. In image at t-dt, the system 
detects 360 floor boundary points using the result of tracking 
previous points or the floor detection method. Red or blue 

points are floor boundary points in Fig. 6. 360 points are 
detected every one degree. If we use more points, they form 
complete floor boundary. However, we think 360 points are 
sufficient for the robot’s movement. These points are tracked 
and classified. In Fig. 6, blue and red points are classified as 
stable obstacles and dynamic obstacles, respectively. Most of 
them are located at the boundary between the floor and 
obstacles. A red line is drawn from the image center to the 
average of red points’ positions. This system integrates floor 
boundary points which are classified as dynamic obstacle like 
the red line, when points which are classified as dynamic 
obstacles are located near the other points which are 
classified as dynamic obstacles. 
 

B. Evaluation of Floor Detection 
1) Setting: 

 In order to evaluate the ability of the floor detection, we 
compared our method with the previous floor detection 
method based on the GMM. Two datasets are used in this 
experiment. Each dataset consists of learning data and test 
data. 

First, color distribution is learned and parameters such as 
the number of mixed Gaussian and the threshold are 
optimized for the GMM by using learning data of the first 
dataset. Our method learned color distribution automatically, 
and parameters such as TN, TD, and σ in Section II are 
optimized manually. Using optimized parameters and learned 
colors, both methods are tested by test data of the first dataset. 

Next, both methods learn only color distribution by using 
learning data of the second dataset. Using learned colors and 
parameters optimized by the first dataset, both methods are 
tested by test data of the second dataset. The second dataset is 
obtained in various places such as an experimental room, a 
center corridor in a mock store, and so on. 

omnidirectional camera

vehicle

LRF

ultrasonic sensor

 
 

Fig. 4.  ApriTauTM. It is 120 cm tall. 

Continuous Images

Detecting Floor Boundary Points

Points PositionTracking Floor Boundary Points

Confirming Classification Equation
(All Floor Boundary Points)

Threshold of Each
Direction for Detection

Detecting New Floor Boundary Points

Confirming Classification Equation
(New Floor Boundary Points)

Odometry

Omnidirectional CameraOmnidirectional Camera

Fig. 5.   The system in ApriTauTM.  The inputs are continuous 
omnidirectional images. The outputs are the results of the classification. 

Fig. 6.  The output of classification system. Blue points and red points 
show stable obstacles and dynamic ones, respectively. 
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In both test cases, the following two values (Hit and 
Correct Rejection: CR) are calculated for evaluation. Pf 
denotes the number of pixels to which the floor is projected. 
Pcf denotes the number of pixels detected correctly as the 
floor. Po denotes the number of pixels to which objects except 
the floor are projected. Pco denotes the number of pixels 
detected correctly as objects except the floor. Although pixels 
which are close to the robot are more important than pixels 
which are far from it for the robots’ smooth movement, in this 
experiment we regard all pixels as equal because we want to 
evaluate only the ability of the floor detection. 

 
(8) 

 
 

2) Result and Discussion 
The outputs of the first test and the second test are shown in 

Fig. 7 and Fig. 8. In the figures, (a) and (b) are outputs of the 
GMM method and our method, respectively. White and black 
regions correspond to the floor and the objects except the 

floor, respectively. The calculated evaluation values are 
shown in TABLE I.  

These results show that, when parameters are optimized 
manually, the ability of the GMM floor detection method is 
similar to that of our method. However, when parameters are 
not optimized, the Hit value of the GMM method is lower 
than that of our method. The result shows both maximum 
abilities are similar, but our method learns the floor colors 
more easily than the GMM does. 

One of the reasons why the second Hit value calculated by 
the result of the GMM is low is that many experiments are 
needed in order to decide the parameter of the GMM. 
Comparing the GMM parameters, parameters of Ward’s 
clustering and the threshold of Mahalanobis distance do not 
change dramatically because they are related to the 
distribution of learning data and decided based on them. In 

this experiment, the second test data includes more colors 
than the first test data does because of illumination changing 
and so on. The number of mixture Gaussian optimized at the 
first test is too small for the GMM to learn the floor colors 
completely. 

oco

fcf

PPCR

PPHit

=

=

TABLE I 
COMPARING THE GMM METHOD WITH OUR METHOD 

Method Hit  CR  

First Test The GMM 
(optimized parameters) 

0.95 
(7277 / 7655) 

0.95 
(65826 / 69145) 

First Test Ours 
(optimized parameters) 

0.94 
(7210 / 7655) 

0.96 
(66029 / 69145) 

Second Test The GMM 
(first test parameters) 

0.73 
(13204 /18022) 

0.96 
(203953 / 212378)

Second Test Ours 
(first test parameters) 

0.90 
(16245 /18022) 

0.95 
(202061 / 212378)

(a) GMM (b) Ward + Mahalanobis

Test Image

 

 

C. Evaluation of Obstacle Classification 
1) Setting 

 In order to confirm the effectiveness of changing the 
threshold σ dynamically based on the result of the CE, we 
compared the classification ratio of our method with that of a 
simple method using a constant threshold. The experimental 
steps are as follows: 

1. ApriTauTM and another robot move on the given 
route. 

2. ApriTauTM takes images synchronized with odometry 
data continuously while moving. 

3. The images and the odometry data are input to the 
systems of both our method and the simple method. 
Note that, although same data are input to both 
systems, each system processes some of them because 
of the difference of the processing speed. 

Fig. 7.  The output of first test. Outputs of both methods are similar. 

Test Image

(a) GMM (b) Ward + Mahalanobis
 

Fig. 8.  The output of second test. The GMM cannot detect the floor which 
is far from our robot. 
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4. The classification ratios of our method and the simple 
method are calculated by both outputs. 

In this experiment, the classification ratio is the F value 
calculated by the recall ratio R and the precision ratio P as 
shown in Eq. (9). Here, A, O and C show the number of 
images to which another moving robot is projected, the 
number of obstacles the system classified as dynamic 
obstacles, and the number of dynamic obstacles the system 
outputs and locates correctly, respectively. 

 
 

(9) 
 
 
2) Result and Discussion 

The classification ratios of both methods are shown in 
TABLE II. The classification ratio of our method is 4 times 
higher than that of the simple method. In particular, the 
improvement of the precision ratio affects the F value. One of 

the reasons why the precision ratio of our method is much 
higher than that of the simple method is that ApriTauTM can 
select floor boundary points showing candidates of dynamic 
obstacles by the CE and relocate points correctly by 
strengthening the threshold detecting each point. The result 
shows obstacles can be classified even if we regard obstacles 
as small points. Moreover, the accuracy of locating points 
greatly affects classification ratio. 

However, the precision ratio is too low for robots’ smooth 
movement. In this paper, we assume errors of tracking points 
are very small, which is certainly correct to some extent for 
the image coordinates. In the case of omnidirectional camera 
image, the distance resolution changes depending on the 
distance from the image center. It is very low for a distant 
place. Tracking errors of a few pixels become errors of a few 
meters for the world coordinates. Because of errors of a few 
meters, Eq. (7) does not work as the CE. When the floor 
boundary point is located at a position distant from the center 
of the image, we have to track it for a longer time and use its 
average movement.  

V. CONCLUSION 
This work deals with the problems of how one moving 

omnidirectional camera locates all obstacles around the robot 
and of how it classifies them as stable or not. In particular, we 
aim to detect dynamic obstacles while the robot moves. In 
order to locate obstacles, floor boundary points where one 
omnidirectional camera can measure the distance from the 
robot are used. They are detected by the floor detection 
method using Ward’s clustering to find representative colors 
and Mahalanobis distance to identify floor colors.  

For classification, our robot tracks the floor boundary 
points. Comparing the robot’s movement with floor boundary 
points’ movement, our robot classifies obstacles and 
dynamically changes the threshold that the floor detection 
uses. 

The first experimental result shows our floor detection 
method detects floor color as accurately as the GMM does 
and learns the floor colors more easily than the GMM does. In 
the second experiment, we confirm the classification ratio 
increases to 85% by dynamically changing the threshold of 
our classification method. In future work, we plan to change 
tracking duration based on the distance between the center of 
the image and the position of floor boundary points. 

)/(2
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PRRPF
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ACR

+=
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TABLE II 
THE CLASSIFICATION RATIOS 

Method Recall Ratio Precision Ratio F value 

Simple 0.63 
(10 / 16) 

0.13 
(10 / 79) 0.21 

Dynamic 0.94 
(17 / 18) 

0.77 
(17 / 22) 0.85 
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