
 
 

 

  

Abstract— This paper presents a novel adaptive controller for 
image-based visual servoing of a small autonomous helicopter to 
cope with uncalibrated camera parameters and unknown 3-D 
geometry of the feature points. The controller is based on the 
backstepping technique but differs from the existing 
backstepping-based methods because the controller maps the 
image errors onto the actuator space via a depth-independent 
interaction matrix to avoid estimation the depth of the feature 
points. The new design method makes it possible to linearly 
parameterize the closed-loop dynamics by the unknown camera 
parameters and coordinates of the feature points in the three 
dimensional space so that an adaptive algorithm can be 
developed to estimate the unknown parameters and coordinates 
on-line. Two potential functions are introduced in the controller 
to guarantee convergence of the image errors and to avoid trivial 
solutions of the estimated parameters. The Lyapunov method is 
used to prove the asymptotic stability of the proposed controller 
based on the nonlinear dynamics of the helicopter. Simulations 
have been also conducted to demonstrate the performance of the 
proposed method. 

I. INTRODUCTION 
HE small scale helicopter can perform various missions 
which cannot be performed by fixed-wing aircrafts 

because of its superior abilities in hovering, vertical takeoff 
and landing, and low-speed cruise. It has many potential 
applications in various areas including environment 
monitoring, anti-terrorism, and military operations. The 
academic challenges and great application perspectives have 
attracted extensive attention of researchers in recent years [1] 
[15]-[16]. 

Visual servoing has been one of the hottest topics in 
robotics for years. Two basic schemes: position-based visual 
servoing [9] and image-based visual servoing [10], have been 
developed for visually controlled robots. Image-based 
approaches employ directly the projections of feature points 
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on the image plane as the feedback to the controller, and are 
considered simpler, more easily implemented and more robust 
to errors than position-based methods in which the position 
and orientation of the robot must be estimated. In image-based 
visual servoing, the underlying concept is the image Jacobian 
matrix which maps the image errors onto the joint space of the 
robot. The image Jacobian matrix depends on both the camera 
and the 3-D coordinates of the feature points. Calibrating the 
camera parameters at good accuracy is tedious, difficult and 
costly. It is usual that the 3-D coordinates of the feature points 
are not known to the robots. To cope with the uncertain camera 
parameters and the unknown 3-D coordinates, various 
adaptive controllers or on-line estimators of the image 
Jacobian matrix have been developed [6]- [8]. 

Compared to that of a robot manipulator, the dynamics of a 
helicopter is more complicated and difficult for its 
under-actuated property. When the visual servoing is 
addressed, the under-actuated and highly coupled dynamics 
further complicates the difficulties of the controller design. 
Only a few works can be found on visual servoing of 
helicopters. Most of existing controllers are subject to various 
assumptions. The visual servo controllers, developed in [1], 
assume that the optical axis of the camera coincides with the 
principal axis of the helicopter, which is hardly realized in real 
applications. The controllers proposed in [15][17] employed 
calibrated cameras. Zhang and Ostrowski [12] used the 
Lagrangian representation of the system dynamics to design an 
image-based controller for a blimp. In [13], Hamel and 
Mahony presented a novel image-based controller algorithm 
for under-actuated dynamic systems using the backstepping 
technique based on the passivity-like properties of the rigid 
body motion. They applied the controller to a helicopter [4] 
and an X4-flyer[16] and carried out experimental verifications. 
In our opinions, their work represents an important 
contribution to visual servoing of helicopters. However, the 
proposed method works with an accurately calibrated camera.    

This paper copes with uncalibrated visual servoing of a 
small scale helicopter. We assume that the intrinsic and 
extrinsic parameters of the camera and the 3-D geometry of the 
feature points are unknown. As mentioned previously, the 
under-actuated dynamics complicates the design of a visual 
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servo controller for the helicopter. A new design method, 
which differs from what we developed for robot manipulators, 
has been proposed on the basis of the backstepping technique. 
Compared to existing backstepping-based methods, for 
example the method developed by Hamel and Mahony, in 
which the camera parameters are necessary, our controller uses 
a depth-independent interaction matrix to map the visual 
feedback to the actuator space to avoid estimation of the depth 
of the features. This new design method makes it possible to 
linearly parameterize the closed-loop dynamics using the 
unknown camera parameters and the unknown geometry. 
Therefore, we can use an adaptive algorithm, similar to that 
in[6][7], to estimate the parameters on-line using multiple 
images by minimizing the projection errors of the feature 
points on the image plane. Moreover, to avoid singularity of 
the depth-independent interaction matrix and obtaining trivial 
solutions in the parameter estimation, two potential functions 
are introduced in the controller. It is proved by Laypunov 
method that the proposed controller leads to convergence of 
the image errors to zero and that the estimated parameters are 
convergent to the real values up to a scale. Finally, simulations 
have been performed to demonstrate the performance of the 
proposed controller. 

II. KINEMATICS AND DYNAMICS 

A. Helicopter Dynamic Model 

 
Fig. 1.  An autonomous helicopter with a camera 

Assume that the helicopter is a rigid body. Three coordinate 
frames as shown in Fig. 1, namely the inertial frame, the 
helicopter frame, and the camera frames, are set up to 
represent the positions and orientations of the helicopter and 
the camera. Let ( ), , Tφ θ ψ=η denote the Euler angle. Let 
R be the rotation matrix of the helicopter with respect to the 
inertial frame. Let ( )i tξ  and ( )i tv denote the position and 
velocity of the helicopter with respect to the inertial frame, 
respectively. And let ( )tξ and ( )tv denote the position and 
velocity represented in the helicopter frame, respectively. Let 

( )tω  denote angular velocities of the helicopter with respect 

to the helicopter frame. Let m denote the mass and I  represent 
the constant inertia tensor matrix around the mass center with 
respect to the helicopter frame. G is the feature point in the 
ground. In practice, the small body forces are ignored because 
they are much smaller than the magnitude of the force of the 
main rotor [2]-[5]. Thus, we will develop our work based on 
the following approximated dynamic model(the details can be 
seen in [3]): 

i i=ξ v                                                              (1) 

3 3
im u mg= − +v Rγ γ                                       (2) 

( )sk=R R ω                                                     (3) 

1 2 3( )c u c= − × − + +Iω ω Iω γ Pτ                     (4) 
It has four inputs ( , ) ( , , , )x y zu u τ τ τ=τ , the definition of 
P and τ can be seen in [3]. 

B. Perspective Projection 
Suppose that the camera is a perspective camera and the 

feature point is fixed on the ground and its coordinates are 
unknown. 

Let i x  denote the coordinates of the position of the feature 
point in the inertial frame. The projection ( )ty of the feature 
point on the image plane is given by 

1( ) 1 ( )
1 ( ) 1

i

hc

t
t

z t
− ⎡ ⎤⎡ ⎤

= ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

y x
NT                         (5) 

where ( )h tT  is the homogenous transformation matrix of the 
helicopter with respect to the inertial frame and changes with 
motion of the helicopter. ( )c z t denotes the depth of the feature 
point and N is the 3 × 4 perspective projection matrix 
depending on the intrinsic and extrinsic parameters. Let 

T
in denote the i-th row vector of the matrix N. 
By differentiating the eq. (5), we have 

1 3 3
3

1 3 1 32

( ( ), ( ), ( ))

( )( ( ) ( ))1( ) ( )
( )( )

T T i
T

c T

t t t

tsk t t
t t

tz t
×

× ×

⎧ ⎫⎛ ⎞ ⎡ ⎤− − ⎡ ⎤⎪ ⎪= × −⎜ ⎟⎨ ⎬ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎪ ⎪ ⎣ ⎦⎝ ⎠⎩ ⎭
A R ξ y

n vE R x ξ
y y n

ω0 0n
  

(6) 
The matrix ( ( ), ( ), ( ))t t tA R ξ y is called as the 
depth-independent interaction matrix and its dimension 
is 2 6× . The matrix ( ( ), ( ), ( ))t t tA R ξ y  is determined by the 
camera parameters, the position and orientation of the 
helicopter, the projection and the unknown 3-D coordinates of 
the feature point.  It is possible to use a parameter vector pθ  to 
represent the products of the unknown camera parameters and 
the unknown 3-D coordinates of the feature point.  The 
parameter vector pθ  has 39 components. The perspective 
projection matrix which satisfies the eq. (5) is not unique. 
Therefore, we can fix one component of the unknown matrix 
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N. Here we fix the 3-rd row and 3-rd column component of the 
matrix N which is denoted by n33. Without loss of generality, 
let n33=1 so that we have the following 38 components to be 
estimated: 

11 12 13 14 21 22 23 24 31 32 34( , , , , , , , , , , , , , )

, 1, 2,3

p

i i i T
kj x kj y kj zn x n x n x n n n n n n n n n n n

k j

=

∀ =

θ

             (7) 
where kjn denotes the component in the k-th row and the j-th 

column of matrix N and ( , , )i i i i T
x y zx x x=x . In the following 

sections we express an estimated value by using the variable 
with a cap “^”. 

III. IMAGE-BASED VISUAL SERVOING 

A. Controller Design 
This section presents an adaptive controller which uses the 

visual information to regulate the position of the helicopter. To 
simply the discussion we will consider the case when only one 
feature point is used. It is possible to extend the work to the 
case of multiple feature points. The objective here is to control 
the image errors to zero asymptotically. One feature point 
cannot constrain the position and attitude of the helicopter 
completely. Thus, we maintain the height and the yaw of 
helicopter simultaneously. The position and velocity of the 
helicopter can be measured by the DGPS. The Euler angle and 
the angular rate of the helicopter can be obtained from the 
IMU, and the visual information can be obtained by a camera 
mounted on the helicopter. The controller is designed by the 
backstepping technique. To linearly parameterize the 
closed-loop dynamics, we introduce the visual feedback at the 
last step of the backstepping procedure and use the 
depth-independent interaction matrix to map the image errors 
onto the actuator space of the helicopter.  

Define the first error 
1

i i
z zm mδ ξ ξ= −                                  (8) 

where i
zξ denotes the desired height of the helicopter in the 

inertial frame. We further define the first energy function: 
2

1 1
1
2

S δ=                                            (9) 

Differentiating eq. (9) and considering the eq. (1) leads to 
2

1 1 1( )i i
z dzS m v m vδ δ= − + −                           (10) 

where i
dzv  is the desired value for i

zv  and we choose 
1

i
dzm v δ= −  , and we want to hold the height of the helicopter 

so that 0i
zξ = .  

Define '
2

i i
z dzm v m vδ = − , then from (10) we have 

2 '
1 1 1 2S δ δ δ= − +                                    (11) 

We define the second error and energy function as follows: 
2'

2 2 2 2( ) ,  / 2i i T i i
x ym v m v m m Sδ δ= = − =δ v v           

(12) 
where (0 0 )i i T

dzv=v . 
By differentiating S2 and substituting eq. (2) into the 

derivative, we obtain 

2 2 3 3( ( ) )T iS u mg m= − + −δ R η γ γ v          (13) 
Let ( , )d duη  denote the desired values for ( , )uη and define 

3( )d d du=X R η γ                            (14) 

Let '
1 1(0,0, )Tδ=δ , choose '

3 2 1
i

d mg m= − + +X γ v δ δ . 
Thus we have 

2 '
2 2 2 1 2 3( ( ) )T T

dS u= − − + −δ δ δ δ X R η γ              (15) 
In the third stage of the backstepping algorithm, we define 

the following two errors: 
3 3( )d u= −δ X R η γ     3ε ψ ψ= −                    (16) 

where ψ  denotes the desired yaw angle of the helicopter and 
it is different from dψ generated by the backstepping 
algorithm via eq. (14). Consider the storage function 

2 2
3 3 3

1 1
2 2

S ε= +δ                                      (17) 

Differentiating S3 yields the following equation: 

3 3 3 3 3( ( ( ) ( ) ( ) )) ( )T
dS u u sk ε ψ ψ= − + + −δ X R η γ R η ω γ    (18) 

Here we extend the input u dynamically as follows[5]: 
u u=                                               (19) 

And the actual control u and its first derivative u become 
internal variables of the dynamic controller, u is the nominal 
control input. 

Consider the term associated with 3δ  of eq. (18) firstly. Let 
( , )d duω  denote the desired values for ( , )uω . We define: 

3 3

2 3

( ) ( ) ( )d d d

d

u u sk= +

= + +

Y R η γ R η ω γ

X δ δ
                       (20) 

Eq. (20) can be rewritten as 

2 3

0 0
0 0 ( ) ( )

0 0 1

dx
T

dy d

d

u
u

u

ω
ω

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− = + +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

R η X δ δ          (21) 

As seen in eq. (21), dzω  does  not appear and can be freely 
used  to control the yaw. Consider the term associated with 

3ε of eq. (18). We choose the desired yaw as 3dψ ψ ε= − . 
The kinematical relationship between the Euler angles and 

the angular velocity of a rigid body is 1
η

−=η W ω [5]. 
Replacing η  and ω  by dη  and dω  respectively and 
assuming , ( / 2, / 2)φ θ π π∈ − , and considering 3dψ ψ ε= − , 
we obtain 

5303



 
 

 

3(cos / cos )( (sin / cos ) )dz dyω θ φ ψ ε φ θ ω= − −        (22) 
With the choices made above, eq. (18) is rewritten as 

2 2
3 3 3 2 3 3

3 3 3

( )
( ( ( ) ( ) ( ) ))

T
d

d

S
u u sk

ε ε ψ ψ= − − − + −

+ − +

δ δ δ
δ Y R η γ R η ω γ

                (23) 

At the last stage of the backstepping algorithm, we 
introduce the following error terms:  

4 3 3 4( ( ) ( ) ( ) )d du u sk ε ψ ψ= − + = −δ Y R η γ R η ω γ        (24) 
The storage function associated with this stage of the 

backstepping is selected as  
2 2

4 4 4
1 1
2 2

S ε= +δ                                   (25) 

Then, taking the derivative of S4 yields 
4 4 3 3

3 3 4

( ( ( ) 2 ( ) ( )
( ) ( )( ( ) ) ( ) ( ) )) ( )

T
d

d

S u u sk
sk sk u sk ε ψ ψ

= − +
+ + + −

δ Y R η γ R η ω γ
R η ω ω γ R η ω γ

(26) 

At this stage the control inputs enter into the equations 
through u u= , ω  and ψ  as seen below. 

To simplify the following analysis we define =τ ω and by 
transforming the eq. (4), we have 

-1 -1 -1
1 2 3( )c u c= − × − + +τ I ω Iω I γ I Pτ             (27) 

Thus, we have 
1

3 ( ) sin sec cos secT
y z

d
dt ηψ φ θτ φ θτ−= − + +γ W ω       (28) 

Then, the derivative of the last storage function in eq. (25)  
has the following form: 

4 4 3 3

3 3 4

[ 2 ( ) ( ) ( ) ( )( ( ) )
( ( ) ( ) ( ) )] ( )

T
d

d

S u sk sk sk
u u sk ε ψ ψ
= − −

− − + −
δ Y R η ω γ R η ω ω γ

R η γ R η γ τ
  (29) 

Here, we will introduce the visual feedback in the 
controller.  Denote the desired position of the feature point on 
the image plane by yd , which is a constant vector. The image 
error is obtained by measuring the difference between the 
current position and the desired one: 

                             ( ) ( ) dt tΔ = −y y y                                  (30) 
where ( )tΔy is the image error vector. To achieve the desired 
control, we choose 

3 3

3 3 3 4

1 2
1 1 3 4 4 4

( ) ( ) ( )

2 ( ) ( ) ( ) ( )( ( ) )
ˆ ˆ( ( )) ( ( ))ˆ ˆ( ) ( ) ( ) ( ) ˆ ˆ( ) ( )

d

p pT T
p

p p

u u sk

u sk sk sk

U t U t
t t k t k

t t

−

= − − + +

∂ ∂
+ Δ + +

∂ ∂

R η γ R η γ τ

Y R η ω γ R η ω ω γ δ δ

θ θ
R η A K y θ δ δ

θ θ

   

  (31) 

3 4 2 2

1 2
3 4 4 4

ˆcos sec ( ) ( )
ˆ ˆ( ( )) ( ( ))ˆ ( ) ˆ ˆ( ) ( )

T
d

p pT
p

p p

t t

U t U t
k t k

t t

ψ ψ ε ε φ θ

ε ε

= − − − Δ

∂ ∂
− −

∂ ∂

A K y

θ θ
θ

θ θ

            (32) 

The first five terms of eq.  (31) and the first three terms of eq. 
(32)  are obtained by  the standard backstepping procedure. 
The terms 1 1

ˆ( ) ( ) ( )T t tΔR η A K y  and 
2 2

ˆcos sec ( ) ( )T t tφ θ ΔA K y represent the feedback of the image 
errors and can be represented as a linear form of the estimated 
parameters[6][7]: 

1 1 1

2 2 2

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
ˆ ˆcos sec ( ) ( ) cos sec ( ) ( )

T
p

T
p

t t t t

t t t tφ θ φ θ

Δ =

Δ =

R η A K y R η Y θ

A K y Y θ
          (33) 

The last two terms of eqs. (31) and (32) are due to the potential 
functions used in  the adaptive algorithm for on-line estimation 
of the parameters. K1 and K2 are 2 2×  positive-definite gain 
matrices. 3k  and 4k are scalar gains. 1

ˆ ( )T tA and 2
ˆ ( )T tA are 

parts of the estimated depth-independent interaction matrix 
and will be discussed in the subsection.  

With the above choices, the derivative of S4 has the form: 
2 2

4 4 4 3 4 4 3

4 1 4 2

21 2
3 4 4

21 2
3 4 4

ˆ ˆ( ) ( ) ( ) cos sec ( ) ( )

ˆ ˆ( ( )) ( ( ))ˆ( ( ) )ˆ ˆ( ) ( )

ˆ ˆ( ( )) ( ( ))ˆ( ( ) )ˆ ˆ( ) ( )

T

T
p p

p pT
p

p p

p pT
p

p p

S

t t t t

U t U t
k t k

t t

U t U t
k t k

t t

ε ε ε

η ε φ θ

ε

= − − − −

− −

∂ ∂
− +

∂ ∂

∂ ∂
− +

∂ ∂

δ δ δ

δ R Y θ Y θ

θ θ
θ δ

θ θ

θ θ
θ

θ θ

        (34) 

From eq. (28), eq. (31) and eq. (32), the control input 
( , , , )x y zu τ τ τ  can be determined uniquely as long as 0u ≠ . 
And then we can obtain the input u  and the input τ via eq. 
(19) and eq. (27), respectively.  

B. On-line Parameters Estimation 
To estimate the unknown parameters on-line, we use an 

algorithm similar to what developed in our previous 
work[6][7]. The idea is to minimize an error function that is 
linear to the parameters on-line using multiple images. 
Suppose that s images of the feature point have been captured 
at different time instants ( 1, 2,..., )jt j s=  on the trajectory of 
the camera. For each image, we define the following error 
function: 

1 ˆ ( ) ˆˆˆ( ) ( , ) ( ) ( ) ( ) ( ) ( )
1

i
c

j j j h j j p
t

t z t t t t t t t− ⎡ ⎤
= − =⎢ ⎥

⎣ ⎦

x
e y P T W θ      (35) 

where ˆ ( )tP is the matrix consisting of the first two rows of the 
matrix ˆ ( )tN .the matrix ( )jtW is a constant matrix for a fixed 

jt  and its value changes with change of jt .  The error ( )j te  
varies with time. It is well known in computer vision that given 
a sufficient number s of images sequence, it is only possible to 
estimate the perspective projection matrix N and the 
coordinates of the feature point up to a scale[14].  Since there 
are 38 components in θ , 19 images are necessary for 
estimating the parameters. The proposed algorithm is to 
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estimate the unknown parameters by minimizing the error 
( )j te . Obviously, the zero parameters vector is one of the 

solutions minimizing the error. To avoid the trivial solution, 
we introduce the following potential function: 

2
1

ˆ ( )
1 1

ˆ ( ) 1/( 1 )p t
pU t eα β= − +

θ(θ )                           (36) 

where 1α  is a positive constant and 1β is a small positive 
number.  
Define 1 2( ) ( ) ( ) cos sec ( )T T T T

p t t tφ θ⎡ ⎤= ⎣ ⎦Y Y R η Y   4 4( ) [ ]T T Tt ε=o δ  

Then the adaptive rule is given by 

1
5

1

21 2

ˆ ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ( )) ( ( ))
( ) ( )ˆ ˆ( ) ( )

s
T T

p p j j
j

p p

p p

d t t t t t
dt

U t U t
t

t t

−

=

⎧
= − − +⎨

⎩
⎫∂ ∂ ⎪+ + ⎬

∂ ∂ ⎪⎭

∑θ Λ Y o W K e

θ θ
o

θ θ

        (37) 

where Λ is a 38×38 positive-definite gain matrix. The first 
term on the right hand side of eq. (37)is to cancel the 
regression terms[11]. The second term represents on-line 
minimization of the errors ( )j te . K5 is a 2×2 positive-definite 
gain matrix. The first part of the last term is to pull the 
estimated parameters away from the zero values. The second 
part is due to another potential function which is introduced to 
guarantee the matrix ˆ ( )p tA (see in next subsection) having a 
rank of 2. 

C. Stability Analysis 
For simplicity, we assume that the feature point is always 

visible during the motion so that its depth with respect to the 
camera frame is always positive.  

Firstly, introducing the following non-negative function: 

1 2 3 4
1 ˆ ˆ( ) ( ) ( )
2

T
p pV t S S S S t t= + + + + θ Λθ                        (38) 

By differentiating the non-negative function and 
considering (11), (15), (23), (34) and  (37) together,  we have 

1 2 3 4

2 2 2 2 2 2
1 2 3 4 3 4 5

1

21 2
3 4

ˆ ˆ( ) ( ) ( )

( ) ( )

ˆ ˆ( ( )) ( ( ))ˆ ˆ( )( 1) ( ) ( ) ( ( ) ) ( )ˆ ˆ( ) ( )

T
p p

s
T
j j

i

pT T T
p

p

V t S S S S t t

t t

U t U tt k t t k t t
t t

δ ε ε
=

= + + + +

≤ − − − − − − −

∂ ∂
− − − −

∂ ∂

∑

θ Λθ

δ δ δ e K e

θ θo θ o θ o
θ θ

 

(39) 
We choose the gain 3k  is larger than 1, and choose the gain 
matrix Λ is a diagonal matrix.  We select such the gain 4k  

that 4 min2 (0) /k V λ≥ , where minλ  is the minimum 
component of the gain matrix Λ . 

From the above discussion, we can deduce that the function 
( )V t never increases its value so that it is upper bounded. 

From the definition of ( )V t , bounded ( )V t directly implies 
that the 1 2 3 4 3 4, , , , , , ( )tδ ε εδ δ δ o  and the estimated parameters 
are all bounded. In this paper we assume that the position 
coordinates of the helicopter in the inertial frame are bounded. 
Thus, from the definitions of 1 2 3 4 3 4, , , , , , ( )tδ ε εδ δ δ o  and the 
eq. (37) we can claim ( )V t is uniformly continuous. From the 
Barbalat Lemma, we conclude that 

1 2 3 4 3

4

lim 0, lim , lim , lim , lim 0,

lim 0, lim ( ) , lim ( ) ( 1,..., )
t t t t t

jt t t
t t j s

δ ε

ε
→∞ →∞ →∞ →∞ →∞

→∞ →∞ →∞

= = = = =

= = = =

δ 0 δ 0 δ 0

o 0 e 0
     (40) 

Consider the invariant set when ( ) 0V t = , which must 
satisfy 

1 1 2 2
ˆ ˆ( ) ( ) ( ) 0, cos sec ( ) ( ) 0T Tt t t tφ θΔ = Δ =R η A K y A K y  (41) 

We can choose 2 1μ=K K  where μ is a positive scalar. 
Since the matrix ( )ηR  has a rank of 3 and the term cos secφ θ  
is nonzero, the above equations are equivalent to the following 
equations: 

1 1 2 1
ˆ ˆ ˆ( ) ( ) [ ( ) ( )] ( ) 0T T

p t t t t tΔ = Δ =A K y A A K y                 (42) 

where ˆ ( )p tA  is a 2×4 matrix calculated by                             

       ˆ ˆ ˆ ˆ ˆ( ) ( )(:,5) ( )(:, 4) ( )(:,3) ( )(:,6)p t t t t t⎡ ⎤= −⎣ ⎦A A A A A                

where ˆ ( )(:, )t iA  denotes the i-th column vector of the matrix 
ˆ ( )tA . From LaSalle theorem, we can have the following result 

on the convergence: 

1
ˆlim ( ) ( ) 0T

pt
t t

→∞
Δ =A K y                           (43) 

The matrix ˆ ( )p tA has a rank of 2 and the proof is omitted 

due to the constraint of space. Consequently, lim ( ) 0
t

t
→∞

Δ =y .    

IV. SIMULATION 
To evaluate the performance of the proposed visual 

servoing method, we have conducted a simulation on Hirobo 
Shuttle Plus(30 class engine). The physical and geometric 
parameters of the helicopter are based on estimations or rough 
measurement. m=4.5kg, I=diag(0.17, 0.15, 0.1), l1=0.232m, 
l2=0.735m, l3=0.0567m. The initial position, velocity and 
angular velocity of the helicopter are as follows: 

(0) (13, 55, 55) ,  (0) (0,0,0) /  , (0) (0,0,0) /T T Tm m s rad s= − − = =ξ v ω  
The desired height, the desired yaw angle and the desired 
image position 
are ( ) 55 ,  ( ) 0 , (382, 280)T

z dt m t rad pixelsξ ψ= − = =y . 
The control gains are chosen as K1=2e-6diag(1,1), 
K2=2e-8diag(1,1), k3=10, k4=2e8, K5=1.5e-3diag(1,1), the 
constant coefficients are 1 11, 1 4eα β= = − . The real position 

of the feature point is (50, 50, 10)i T= − −x . The real values of 
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the intrinsic parameters are 871ua = pixels, 882va = pixels, 

0 382u = pixels and 0 280v = pixels. The real extrinsic 
parameters matrix is: 

[ 0.7071,0,0.7071,0.4;0, 1,0,0;0.7071,0.2;0,0,0,1]c = − −T  
The initial estimation of the unknown parameters are 30% 
difference from the true values.  

Fig. 2a and Fig. 2b show the position and the Euler angle of 
the helicopter, respectively. Fig. 3a displays the position errors 
on the image plane. Fig. 3b shows one of the groups of the 
estimated projection errors. The simulation results confirmed 
the expected asymptotic convergence of the position errors on 
the image plane and the estimated projection errors to zero 
under the control of the proposed method. 

 
(a)                                                     (b) 

Fig. 2 The position and Euler angle of the helicopter 
 

 
(a)                                                     (b) 

Fig. 3 The profile of the estimated projection errors e1(t) and the position errors 
on the image plane 

V. CONCLUSION 
This paper presented an image-based visual servoing 

method using the backstepping technique for a small scale 
autonomous helicopter when the camera is not calibrated and 
the 3-D coordinates of the feature points are unknown. The 
key concept lies in linear parameterization of the closed-based 
dynamics of the helicopter using the unknown parameters and 
coordinates. The linear parameterization is made possible by 
using the depth-independent interaction matrix to map the 
image errors onto the actuator space and incorporating the 
visual feedback into the controller design at the last step of the 
backstepping procedure. An adaptive algorithm is proposed to 
estimate the unknown parameters and coordinates based on 
on-line minimization of an error function. The Lyapunov 
method is used to prove the convergence of the position error 

on the image plane and the estimated projection error to zero. 
Finally, simulations were conducted to demonstrate the 
performance of the proposed method. 
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