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Abstract— We present a setup for simple and fast experi-
mental estimation of drag coefficients. Our system can accu-
rately determine the parameters of fluid-object interaction for
complicated geometry and boundary conditions in the realm
of classical Stokes equations. Obtained results are compared
with theoretical and numerical solutions. Good agreement
with those references is achieved in both cases. An advantage
of our method is the prompt and easy parameter retrieval
that still maintains appropriate accuracy. Comparable detailed
numerical estimations run on the order of hours or days.

I. INTRODUCTION

In our current research we examine the interaction be-

tween objects and fluidic environments on micro/nano-scale.

Knowledge about this relationship is for instance essential for

the development of miniature swimming robots [1]. In addi-

tion, determination of the parameters of an underlying object-

fluid interaction model will also be helpful for interactive

manipulation of micro/nano-structures, for instance to pro-

vide appropriate forces in a visuo-haptic tele-manipulation

environment [2].

Direct observation of the motion of micro/nano-devices in

a fluidic environment is complicated. Using a microscope

enables recording only in the focal plane in a limited

area. Also, it is hard to determine boundary conditions, for

instance contacts with other structures.

One possibiliy to analyze the object-fluid interaction is

numerical simulation [3], [4], however, the computations are

time-consuming and determination of boundary conditions is

not straight-forward. Another option is building of upscaled

models of the micro/nano-devices and experimenting in

highly viscous fluids. Until now, such experimental methods

only concentrated on determination of propulsive forces due

to flagellar swimming motions [5], [6].

Therefore, we have developed a setup for simple and fast

experimental estimation of drag coefficients. The apparatus

allows retrieving flow parameters of arbitrary structures

subject to complex fluid-solid interaction. The advantage of

our method is the fast parameter retrieval process, especially

for low Reynolds number flows, while maintaining overall

accuracy. The described approach is appropriate as long

as the phenomena can be captured completely by classical

Stokes equations.
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(a) Picture of setup with (top to bottom) sliding mechanism, probe
with force and acceleration sensor, mounted test object, vessel with
fluid, PHANToM device.

(b) Schematic drawing of system components.

Fig. 1. Setup for experimental parameter estimation.

The underlying principle is to record forces and veloci-

ties during movement of a target structure within a fluidic

environment. A specialized recording apparatus has been

integrated for the acquisition process. Based on the acquired

data, the drag coefficients are determined. In this paper
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we focus on the estimation of parameters in low Reynolds

number flows, i.e. Stokes flow. The underlying equations de-

scribing these environments and the derivation of a reduced

formulation are given in the Appendix.

In the context of our experiments, the most important part

of the full interaction equation (see e.g. [8]) is the relation

between the drag force f and the linear velocity v given by

f = µrK(p, P )v (1)

where µ is the absolute viscosity, p the external pressure

function, and P are geometrical parameters of the object. The

dimensionless second order drag coefficient tensor K(p, P )
is a full symmetric matrix, which can be simplified by taking

symmetries of the interacting object into account. We have

carried out experiments with the setup focusing on two types

of test objects – spheres and helices. In case of objects

with two symmetry planes, such as a sphere, the drag tensor

K(p, P ) has only one term, while in case of a helix it has

two.

After determining the parameters, the obtained experimen-

tal results are compared with theoretical and numerical so-

lutions. We show that a good agreement with these numbers

can be obtained.

In the following, the setup used for acquiring the drag

coefficients is described in Section II. Thereafter, experi-

ments with spherical test objects are outlined in Section III.

This is followed by the second study focusing on helices in

Section IV. We conclude with a summary of the presented

work and an outlook to future activities.

II. EXPERIMENTAL SETUP

A hardware framework, initially developed for data-driven

haptic rendering [7], has been adapted to account for fluid-

object interaction. A picture of the setup and a schematic

drawing of the system components is shown in Figure 1.

A PHANToM Desktop 1.5/3DOF (Sensable) is used as

the main component of the force recording system. A Nano-

17 6-DOF force sensor (ATI, Industrial Automation) and

an ADXL330 3-DOF acceleration sensor (Analog Devices)

is mounted to the stylus of the PHANToM, which serves

as a probing rod. The range of the force sensor is ±25N
with a resolution of 1.6mN and a noise level of 0.02N .

The range of the acceleration sensor is ±30m/s2 with a

resolution of 0.9mm/s2 and a noise level of 0.1m/s2. The

motion of the probing tool is limited to one DOF by a sliding

mechanism. A vessel with dimensions 200×80×50 mm3 is

installed under the slider and filled with a testing fluid. In our

experiments we used Dow Corning 200 12500 cSt Silicon

Oil with an absolute viscosity of µ = 12.125 Pas and specific

gravity of ρ = 970 kg/m3.

The rigid sample object is attached to the sensing tool by

an M2 screw rod (Figure 2). The object is fully submerged

into the testing fluid (i.e. the silicone oil), while the depth of

immersion is held constant, assuring well defined boundary

conditions during the experiment. Thereafter, the probe is

moved along the slider at different velocities by a user. The

1 cm

Fig. 2. Helix II mounted for lateral drag test.

size of the test objects should be small in relation to the

vessel in order to minimize any effects of the vessel wall on

the measurements. The interaction is recorded by the motion

and force sensors simultaneously at a sampling frequency of

1 kHz.

The drag coefficient is estimated by computing the ratio

between the force and the velocity during the interaction.

The force exerted by the fluid is measured directly by the

attached sensor. The linear velocity of the object is estimated

based on the PHANToM encoder readings and the ADXL330

acceleration sensor output. Both signals are fused by an

extended Kalman filter. If the encoder values were directly

used in a numerical derivation, the velocity estimate would

be too noisy to obtain reasonable results. The filter approach

avoids any explicit derivation and allows to estimate the

current velocity based on two independent quantities, namely

position and acceleration. The method provides a consistent

estimate of the current pose, velocity, and acceleration of

the tool. A linear interpolation is then fitted to these force-

velocity samples. The slope of the fit finally gives the

respective drag coefficient in the drag tensor.

III. EXPERIMENT 1 – SPHERE

In the first experiment we focus on objects with simple

geometries and boundary conditions. The main reason for

this is the possibility to determine an analytical solution for

the tensor in Equation 1, thus providing an accurate ground

truth for the evaluation. This is possible due to the linearity

of the Stokes equation which governs low Reynolds number

flows [8].

The analytical derivation of the drag force of a sphere has

been described already in 1851 by Stokes. For a sphere mov-

ing in an infinite media this is known as Stokes’ law. Later
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1 cm

(a) Sphere I. (b) Sphere II.

Fig. 3. Sphere-shaped test objects.

work expanded Stokes’ law to other boundary conditions, for

instance to a sphere in translation near a wall [9], which will

be used in our case.

The overall drag force is a superposition of the drag force

of the sphere moving parallel to the wall located at the

bottom of the test vessel and the transverse drag force of

the testing rod. Thus, according to the relations given in [9]

and [10], the analytical solution for the drag coefficient has

the form

K11 = K22 = 6πβ +
4πL

Rs (ln(L/Rr) + 0.19314)
. (2)

Here, the first term is based on the standard Stokes’ law,

extended with a correction ratio β that models the increase

of the sphere’s drag due to its proximity to a wall (see [9]

for details). The second term corresponds to the transverse

drag caused by the rod. The characteristic dimensions of the

objects are the radius of the sphere Rs, the radius of the rod

Rr, and the length L of the submerged part of the rod.

Two spheres were used in the experiments – Sphere I

(∅20 mm) and Sphere II (∅25 mm), respectively (Figure 3).

In the experiments the level of the Silicon oil inside the vessel

was 5 cm. Sphere I was located 8 mm and Sphere II 5 mm

from the bottom, resulting in correction ratios of β = 1.422
and β = 1.533, respectively. For each of the spheres three

experiments were performed.

Figure 4(a) shows a typical force-velocity graph obtained

during an experiment with Sphere I. A comparison of

recorded data and estimates given by Equation 1, when using

the estimated drag coefficient, is depicted in Figure 4(b). It

can be seen that Equation 1 is an appropriate model for the

examined object-fluid interaction.

The obtained drag coefficients were then compared to

the theoretical values. The properties of the liquid were
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Fig. 4. Data retrieved from the experiment.

assumed as given by the manufacturer’s technical data. It

was not necessary to match the viscosity to the specific

experimental conditions (i.e. temperature, humidity, etc.),

thus drag coefficients have not been normalized. Note that

the absolute drag coefficient is given as

K̃ = µRsK, (3)

where K̃ is the normalized resistance tensor and µ the

absolute viscosity.

Table I summarizes the results of the experiments. The

average drag coefficients of Sphere I and II are −4.206 ±

0.0036 [Ns/m] and −5.298±0.096 [Ns/m], respectively. The

maximal error between the experiments and the theory is

0.77%. The coefficient of variance (i.e. the relative standard

deviation) is 1.81%. Thus, an excellent agreement between

our results and the analytical solution could be obtained.
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TABLE I

EXPERIMENTAL RESULTS OF SPHERICAL TEST OBJECTS AND

COMPARISON TO ANALYTICAL SOLUTIONS.

Test object Exp. K̃11 [Ns/m] Difference
from average [%]

1 -4.209 -0.07
Sphere I 2 -4.202 0.095

3 -4.207 -0.023

Theoretical solution -4.223 -0.4

1 -5.19 2.0
Sphere II 2 -5.33 -0.6

3 -5.374 -1.43

Theoretical solution -5.257 0.77

TABLE II

GEOMETRICAL DETAILS OF HELICAL TEST OBJECTS.

Object Geometries

Helix I Diameter: 2.8 mm
Length: 55 mm
Strip width: 6 mm
Strip thickness: 0.15 mm
Pitch angle: 45◦

Helix II Diameter: 2.8 mm
Length: 40 mm
Strip width: 1.7 mm
Strip thickness: 0.15 mm
Pitch angle: 45◦

Nano-Helix [1] Diameter: 2.8 µm
Length: 40 µm
Strip width: 2 µm
Strip thickness: 50 nm
Pitch angle: 45◦

IV. EXPERIMENT 2 – HELIX

In order to assess the performance of our approach in case

of more complex geometries, an additional experiment was

carried out. Inspired by the propulsion systems for swimming

micro-robots discussed in [1], we examined helical test

objects. Two different helices, Helix I and II, respectively,

were examined. The dimensions of these test objects are

given in Table II. Moreover, also the values of the nano-helix

described in [1] are provided. The dimensions of Helix II

were chosen to be similar to those of the nano-helix for later

comparison. Figure 5 shows the different helical objects.

A helical object exhibits helical symmetry, i.e. one axis of

symmetry, thus the object-fluid interaction is determined by

the tensor

K̃ =





K̃11 0 0

0 K̃11 0

0 0 K̃33



 . (4)

Similar to the previous experiment, the mounted test

objects were moved through the liquid and data acquired

via the sensors. In order to find the drag coefficients of the

helix without the connecting rod, we carried out additional

experiments with the rod alone. The obtained drag of the

1 cm

(a) Helix I.

1 cm

(b) Helix II.

5 μm

(c) Nano-Helix (with permission from [1]).

Fig. 5. Helical test objects.

rod was then subtracted from that of the whole structure.

The results again were compared to a ground truth.

Unfortunately, finding an analytical solution for the drag

coefficients of helical structures is rather difficult. Therefore,

we relied on numerical simulations for obtaining those

values. Assessment of flow conditions using numerical tech-

niques is a frequent practice in micro-mechanical design

involving arbitrary geometries. The helix geometry and the

containing vessel were modeled in a CAD application and

subsequently covered by an adaptively fitted unstructured

mesh of up to 600,000 second order elements. For the

discretization of the equations the standard Bubnov-Galerkin

method was applied [11]. This resulted in a system of

linear equations that was subsequently solved with a high-

performance library for sparse asymmetric linear systems,

PARDISO [12], [13]. The typical computation times of a

solution were 1-4 h on an octacore shared memory PC,

mainly dependent on the mesh resolution. The method

proved capable of delivering detailed predictions on the flow

situation, including secondary spinning flows in directions

other than the dominating movement. Figure 6 provides

illustrations of the numerical computation.

Tables III and IV summarize the results of the helix

experiments. Only average values are provided that result

from five different experiments. For Helix I only K̃11 was

determined in the numerical simulation, while for Helix II

both coefficients were retrieved. Further, Reynolds numbers

are given, showing that the experiments are in the domain

of Stokes flow.

Moreover, since one of our motivations was the character-

ization of drag parameters of micro- or nano-structures, we

also examined if our results compare well to data obtained

for real nano-helices. For this comparison, we assume that
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(a) Tetrahedral mesh used in numerical simulation.

(b) Velocity in y-direction viewed in y-z plane.

Fig. 6. Numerical simulation of flow around helix.

the non-dimensional drag coefficient matrix K is the same

for Helix II and the nano-helix. Based on this assumption

one can calculate the drag of the nano-helix as

K̃NH

11
=

µNH

µHelixII

RNH

RHelixII
K̃HelixII

11

= 8.247 · 10−8K̃HelixII

11
(5)

where µNH = 10−3 Pa·s and µHelixII = 12.125 Pa·s are

the viscosities, and RNH , RHelixII the radii of the nano-

helix and Helix II, respectively.

Using Equation 5 we calculate for the nano-helix K̃11 =
−7.08 · 10−8 [Ns/m]. This compares well to the experimen-

tally obtained coefficient available in related work K̃11 =
−9.2 · 10−8 [Ns/m].

The simulation results revealed a good agreement between

the experimental and the numerical methods with a maximal

error of 9% and maximal coefficient of variance of 5.8%.

When considering these results it has to be taken into

account that there are slight differences between the real

helices and the modeled, digital ones. The former show

some variation from the perfect shape. Moreover, the nu-

merical simulation only provides an approximation of an

exact solution. Nevertheless, it has to be considered that a

TABLE III

EXPERIMENTAL RESULTS OF HELIX I AND COMPARISON TO NUMERICAL

SOLUTIONS.

Experiment K̃ii [Ns/m] Re number

Helix + Rod K̃11 -2.723 ± 0.07 0.057 ± 0.0057

K̃22 -3.66 ± 0.006 0.0058 ± 6.7·10−4

Rod K̃11 -1.489 ± 0.03 0.071 ± 0.016

K̃22 -1.04 ± 0.024 -

Helix K̃11 -1.233 ± 0.1 -

K̃22 -2.62 ± 0.03 -

Numerical result K̃ii [Ns/m] Re number

Helix + Rod K̃11 -2.57 -

Helix K̃11 -1.468 -

TABLE IV

EXPERIMENTAL RESULTS OF HELIX II AND COMPARISON TO

NUMERICAL SOLUTIONS.

Experiment K̃ii [Ns/m] Re number

Helix + Rod K̃11 -2.233 ± 0.046 0.021 ± 0.0068

K̃22 -3.628 ± 0.017 0.0038 ± 4.3·10−4

Rod K̃11 -1.374 ± 0.0126 0.026 ± 0.0093

Helix K̃11 -0.859 ± 0.06 -

K̃22 -2.254 ± 0.03 -

Numerical result K̃ii [Ns/m] Re number

Helix + Rod K̃11 -2.44 -

K̃22 -3.72 -

single numerical run consumes large computational resources

and requires substantially more time (1-4 h) than a simple

experiment using our setup that can be finished in 5 minutes.

V. CONCLUSIONS AND FUTURE WORKS

We have presented an experimental framework that en-

ables retrieval of parameters of fluid-object interaction. The

setup can measure accurately the drag coefficient of objects

with complicated geometry and boundary conditions. Our

system is valid for phenomena that can be described com-

pletely by classical Stokes equations. Systems with more

complex effects such as adsorption or surface tension, how-

ever, cannot be fully captured with the current technique.

Obtained measurements were compared with theoretical and

numerical ground truths. In both experiments good agree-

ment with those references was obtained.

In the future we intend to expand the interaction mea-

surements to find the complementary drag coefficient tensors

(Ω,C) and address intermediate Reynolds number fluid-

object interactions. These parameters will be used for the

development of swimming theories for micro/nano-robots.

Moreover, the framework will also aid us in retrieving haptic

models for micro-robots, for instance in the medical domain.

Finally, a possible application of our setup is in the context of

tele-manipulation of nano-robots, where it is hard to measure

interaction forces directly.
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APPENDIX

The interaction of a rigid object with a liquid can be

described using the force and torque vectors f and τ ,

respectively.

f = (ρ+ ρm)g1(x, ẋ, p, P )ẍ + µg2(x, ẋ, p, P )ẋ

τ = (ρ+ ρm)h1(x, ẋ, p, P )ẍ + µh2(x, ẋ, p, P )ẋ (6)

where x = [x, y, z, φ, θ, ψ]T denotes the linear and angular

position of the object in the liquid, ẋ is the velocity and ẍ

is the acceleration vector, describing both linear and angular

components. gi,hi are second order tensors consisting of

non-linear shape functions depending on position, velocity,

the external pressure function p, and geometrical parameters

P of the object. ρ is the density of the liquid, ρm is the

added mass, and µ is the absolute viscosity of the liquid.

Usually, the material parameters ρ and µ, as well as the

geometry P of the object are known. Hence, one has to find

the pressure function p, the shape tensors gi,hi, and the

added mass ρm.

For simple cases, these unknowns can be determined

analytically. More involved scenarios require numerical ap-

proaches using CFD software or parameter estimation via

experimentation.

In the application areas we are interested in (i.e. micro-

fluidics), flow is characterized by low Reynolds numbers and

thus inertial components of the interaction can be neglected.

f = µg2(x, ẋ, p, P )ẋ

τ = µh2(x, ẋ, p, P )ẋ (7)

Considering self induced propulsion and position indepen-

dent drag, one can define the following linear interaction:

[

f

τ

]

= µr

[

K(p, P ) C(p, P )
C(p, P )T Ω(p, P )

] [

v

ω

]

(8)

where r is the characteristic dimension of the structure

of interest (e.g. diameter of a nano-helix) and K(p, P ) is

a dimensionless second order drag coefficient tensor that

defines the relation between the linear velocity v and the

force f . Ω(p, P ) relates the angular velocity ω to the moment

τ . C(p, P ) converts angular velocity into force, and its

transpose linear velocity into torque.

For our work, the most important part of the full interac-

tion model is the relation between the drag force f and the

linear velocity v, described by Equation 1.
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